首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 122 毫秒
1.
A comparative anatomical study on the secondary phloem of 5-genera, 10 species in Celastraceae was carried out. Based on the phloem structure characters, 3 phloem types were observed. In type Ⅰ , as seen in 5 species of Euonymus, the sieve-tube elements have more inclined end walls and numerous sieve areas (compound sieve plates), phloem rays are almost uniseriate. Type Ⅱ is seen in Celastrus and Tripterygium. It has relatively short sievetube elements, slight inclined end wall and sparse number of sieve areas: the phloem fiber is not lignified and ray is multiseriate. Type Ⅲ is observed in Dipentodon and Perrottetia, the sieve-tube elements are with simple sieve plate, the end wall is almost transverse, there are sclereid and fiber groups in the nonfounctional phloem, and phloem rays are uniseriate or biseriate.  相似文献   

2.
In Ipomoea hederifolia Linn., stems increase in thickness by forming successive rings of cambia. With the increase in stem diameter, the first ring of cambium also gives rise to thin-walled parenchymatous islands along with thick-walled xylem derivatives to its inner side. The size of these islands increases (both radially and tangentially) gradually with the increase in stem diameter. In pencil-thick stems, that is, before the differentiation of a second ring of cambium, some of the parenchyma cells within these islands differentiate into interxylary phloem. Although all successive cambia forms secondary phloem continuously, simultaneous development of interxylary phloem was observed in the innermost successive ring of xylem. In the mature stems, thick-walled parenchyma cells formed at the beginning of secondary growth underwent dedifferentiation and led to the formation of phloem derivatives. Structurally, sieve tube elements showed both simple sieve plates on transverse to slightly oblique end walls and compound sieve plates on the oblique end walls with poorly developed lateral sieve areas. Isolated or groups of two to three sieve elements were noticed in the rays of secondary phloem. They possessed simple sieve plates with distinct companion cells at their corners. The length of these elements was more or less similar to that of ray parenchyma cells but their diameter was slightly less. Similarly, in the secondary xylem, perforated ray cells were noticed in the innermost xylem ring. They were larger than the adjacent ray cells and possessed oval to circular simple perforation plates. The structures of interxylary phloem, perforated ray cells, and ray sieve elements are described in detail.  相似文献   

3.
Secondary phloem anatomy of several species of Cycadeoidea is described from trunks in the Wieland Collection, Peabody Museum of Natural History. The trunks were collected from the Lakota Formation, Lower Cretaceous, Black Hills of South Dakota. Secondary phloem is extensively developed and consists of alternating, tangential bands of fibers and sieve elements, with rare phloem parenchyma. Uniseriate rays, 2-22 cells high, occur between every one to three files of the axial system. Fibers are long, more than 1200 μm, approximately 26.6-34.2 μm in diameter, and have slit-like apertures on the lateral walls. Sieve elements range from 16-25 μm in diameter and are up to 500 μm long. Elliptical sieve areas appear on both end and radial walls and measure 10 μm across; minute spots, which may represent sieve pores, are present within the sieve areas. Secondary phloem of North American Cycadeoidea is similar in organization (alternating tangential bands) and cell types (sieve cells, fibers, axial parenchyma) to that known in other extant and fossil cycadophytes and some seed ferns. The unusual pattern of cell types and thickness of secondary phloem is discussed in the context of plant habit, phloem efficiency, and potential phylogenetic importance.  相似文献   

4.
Early in April of 1987, cells in an undifferentiated state which overwintered on the phloem side of the cambial zone in the branch of Pterocarya stenoptera began to differentiate into merebets of phloem. Cambium divided actively in mid-April and ceased to decide by early-Novembet. Five to eleven bands of fibers alternating with the bands of sieve tubes, companion cells and phloem parenchyma cells produced every year. By mid to late April, new xylem differentiation began. Phloem and xylem differentiation ceased almost simultaneously. Functional sieve tube elements were present all the year round in the phloem. During winter, most sieve tubes produced in the current year ceased functioning, leaving only the zone of functional sieve tube of several rows of cells in width with open pores in the sieve plates. These sieve tubes did not collapse until mid-May. In October, several rows of partially differentiated sieve elements appeared near the cambial zone. They still possessed nuclei. The companion cells had produced but no P-protein. They matured during April of the following year and collapsed by July to September. The life span of sieve elements extended for 8 months at the most. In winter, there were less functional sieve tubes in the branch. This may be one of the reasons that only few Kerria yunnanensis survive on the branch of Pterocarya stenoptera.  相似文献   

5.
The anatomical structure of the wood of Bretschneidera sinensis Hemsl. was studied with both light and scanning electron microscopy. The main characters of the secondary xylem are as follows: (1) The wood is diffuse porous with distinct growth ring. (2) Most vessel elements possess simple perforation plates, only a few are with scalariform perforation plates, but both of them have spiral thickenings on their secondary walls. (3) Tracheids, fiber-tracheids and libriform fibers all exist and the libriform fibers may or may not have septa. (4) Wood parenchyma is mainly of terminal distribution type. (5) Wood ray is heterogenous belonging to the Krib′s heterogenous IIB type. (6) Tylosis, resin canal and secretory cell are absent. Based on the present study and other data derived from external morphology, bark anatomy, chromosome study, palynology and embryogenetic study, the systematic position of Bretschneidera sinensis was analysed and discussed. The authors agree that the genus should be elevated to the level of a monotypic family—Bretschneideraceae, belonging to the order of Sapindales; also it is closely related to other primitive families of the same order such as Staphyleaceae, Sabiaceae and Connaraceae.  相似文献   

6.
Phloem anatomy in the coenopterid fern Stauropteris biseriata is detailed from Lower-Middle Pennsylvanian coal ball specimens from eastern Kentucky. Axes exhibit a cruciate-shaped xylem trace in transverse section. Phloem tissue completely surrounds the xylem, but is more extensively developed in the embayments between the xylem arms. Phloem is composed of elongate conducting elements with a few scattered parenchyma cells. Large and small sieve cells are present, with larger ones occurring in the embayments within the primary plane of symmetry of the axes. Large elements are approximately twice the diameter of the smaller sieve elements. Oval sieve areas and pores have been observed on lateral and oblique end walls of both large and small elements. The structure and composition of Stauropteris phloem is discussed in relationship to the available information on phloem anatomy in other fossil cryptogams.  相似文献   

7.
The anatomical structures, especially the type, distribution and arrangement of the constituent elements in the secondary phloem of Euonymus bungeanus Maxim. have been studied. The results showed that the secondary phloem was thicker, consisted of sieve-tube elements, companion ceils ,phloem parenchyma cells ,secretory ceils and rays. Sieve-tube elements, phloem parenchyma cells and secretory cells were alternately arranged in tangential bands, forming a conspicuous zone-like constitution. There was no obvious boundary between the functional phloem and the non-functional phloem. Sieve-tube elements were long, slender cells with very oblique end walls and compound sieve plates. Sieve areas on lateral wall were highly differentiated. Companion cells were triangular in transection and slender in radial section. Mostly,two or three companion cells stayed along with one sieve-tube element. In the functional phloem, phloem parenchyma cells were also slender, containing a few starch grains;but in the nonfunctional phloem they enlarged and contained abundant starch grains. Secretory cells were longer than sieve-tube elements, consisting of rubber-like material. Rays were uniseriate. Finally, the authors also discussed the phylogenetic position of E. bungeanus, which may provide some references for further study of the classification of different genera of Celastraceae.  相似文献   

8.
Ultrastructures of sieve elements of secondary phloem of 1–2 year old branchlet of tropical deciduous tree Dalbegia odorifera T. Chen growing on Hainan Island were studied under transmission electron microscope and a comparation was made between the sieve elements in leaf-bearing and leaf-absent period. During the leaf-bearing period, there was a tailed spindleshaped P-protein body in each mature sieve element. The main part of the P-protein body con sisted of a disordered fine fiber mass with two crystalline tails. The sieve elements had horizontal end walls with simple sieve plate. The inner layers of the wall near the sieve plate appeared intumescent, protruding into the sieve element lumen. During the leaf-absent period, a functional phloem remained about the same thickness as that during the leaf-bearing period. The sieve elements in the leaf-absent period contained normal protoplasts and the P-protein and the sieve plate pores had the same structures as those during the leaf-bearing period. More starch grains and vesicles were found in sieve elements in the leaf-absent period.  相似文献   

9.
The phloem of most fossil plants, including that of Sphenophyllum, is very poorly known. Sphenophyllum was a relatively small type of fossil arthrophyte with jointed stems bearing whorls of leaves ranging in form from wedge or fan-shaped to bifid, to linear. The aerial stem systems of the plant exhibited determinate growth involving progressive reduction in the dimensions of the stem primary bodies, fewer leaves per whorl, and smaller and simpler leaves distally. The primary phloem occurs in three areas alternating in position with the arms of the triarch centrally placed primary xylem. Cells of the primary phloem, presumably sieve elements, are axially elongate with horizontal to slightly tapered end walls. In larger stems with abundant secondary xylem and secondary cortex or periderm, a zone of secondary phloem occurs whose structure varies in the three areas opposite the arms of the primary xylem, as opposed to the three areas lying opposite the concave sides of the primary xylem. The axial system of the secondary phloem consists of vertical series of sieve elements with horizontal end walls. In the areas opposite the protoxylem the parenchyma is present as a prominent ray system showing dilation peripherally. Sieve elements in the areas opposite the protoxylem arms have relatively small diameters. In the areas between the protoxylem poles the secondary phloem sieve elements have large diameters and are less obviously in radial files, while the parenchyma resembles that of the secondary xylem in these areas in that it consists of strands of cells extending both radially and tangentially. An actively meristematic vascular cambium has not been found, indicating that this layer changed histologically after the cessation of growth in the determinate aerial stem systems and was replaced by a post-meristematic parenchyma sheath made up of axially elongate parenchyma lacking cells indicative of being either fusiform or ray initials. A phellogen arose early in development in a tissue believed to represent pericycle and produced tissue comparable to phellem externally. Normally, derivatives of the phellogen underwent one division prior to the maturation of the cells. Concentric bands of cells with dark contents apparently represent secretory tissue in the periderm and cell arrangements indicate that a single persistent phellogen was present. Sphenophyllum is compared with other arthrophytes as to phloem structure and is at present the best documented example of a plant with a functionally bifacial vascular cambium in any exclusively non-seed group of vascular plants.  相似文献   

10.
The family Cephalotaxaceae contains only one genus, Cephalotaxus, with 9 species and some varieties, mostly endemic to China. The present paper deals with the comparative anatomy of secondary phloem of stems in 4 species and I cultivar, of this genus under light microscope and scanning electron microscope. The main results are as follows: (1) The structure of secondary phloem is rather uniform in the various species of this genus. In cross section, sieve cells, phloem parenchyma cells form continuous tangential rows of one cell in width respectively, which occur alternately. Sclerenchyma cells also form continuous tangential rows, each with a radial width of 1-4 cells. The interval between the rows is rather wide. (2) The type of phloem fiber and the quantity of sclereids can be served as the characters for identification of species and the evidence for the separation of two sections of Cephalotaxus, namely: Cephalotaxus and Pectinatae. (3) The secondary phloem of this genus contains more or less crystalliferous parenchyma cells, in the inner tangential walls of which calcium oxalate crystals are embedded. So far this character has not been reported in the other families and the genera of conifers. Our conclusion, therefore, agrees with the opinion that Cephalotaxaceae is a natural taxon and includes only one genus, Cephalotaxus.  相似文献   

11.
Gibberellin signaling   总被引:2,自引:0,他引:2  
A study of stem anatomy and the sclerenchyma fibre cells associated with the phloem tissues of hemp (Cannabis sativa L.) plants is of interest for both understanding the formation of secondary cell walls and for the enhancement of fibre utility as industrial fibres and textiles. Using a range of molecular probes for cell wall polysaccharides we have surveyed the presence of cell wall components in stems of hemp in conjunction with an anatomical survey of stem and phloem fibre development. The only polysaccharide detected to occur abundantly throughout the secondary cell walls of phloem fibres was cellulose. Pectic homogalacturonan epitopes were detected in the primary cell walls/intercellular matrices between the phloem fibres although these epitopes were present at a lower level than in the surrounding parenchyma cell walls. Arabinogalactan-protein glycan epitopes displayed a diversity of occurrence in relation to fibre development and the JIM14 epitope was specific to fibre cells, binding to the inner surface of secondary cell walls, throughout development. Xylan epitopes were found to be present in the fibre cells (and xylem secondary cell walls) and absent from adjacent parenchyma cell walls. Analysis of xylan occurrence in the phloem fibre cells of hemp and flax indicated that xylan epitopes were restricted to the primary cell walls of fibre cells and were not present in the secondary cell walls of these cells.  相似文献   

12.
Phloem anatomy in stems of Psaronius is described from coal ball specimens collected at the Berryville, IL and Lewis Creek, KY localities. Phloem completely surrounds the C-shaped xylem segments, but is more extensively developed on the abaxial side of the trace. The phloem zone consists of a central band of large diameter (approximately 90–120 μm) sieve elements surrounded by a mixed zone of smaller sieve elements and phloem parenchyma. Phloem is separated from the xylem by a parenchymatous xylem sheath. On the abaxial side of the trace, a discontinuous arc of very small diameter cells (7.8 μm) is present between the xylem sheath and the metaxylem. These cells corrrespond in position and size to protophloem cells in living marattialeans. Metaphloem sieve elements exhibit discrete, circular-oval sieve areas on their side and end walls, some of which show evidence of sieve pores. Phloem structure in Psaronius is compared with that known for living members of the Marattiales.  相似文献   

13.
The distribution of the phloem in relation to the xylem was examined in the stem of Hibiscus cannabinus L. with reference to a report in the literature that this species has internal (intraxylary) phloem, a feature not previously observed in the Malvaceae. In the present study, the stem was found to have phloem only outside the xylem (external or extraxylary phloem). In the protophloem, the sieve tubes are obliterated while the internode elongates and the associated cells become fibres with thick secondary walls. Fibres occur in the secondary phloem also. As seen in transections of stems, the secondary xylem forms a continuous ring. The primary xylem extends in the form of arcs into the pith. The tracheary cells of the protoxylem become crushed or completely obliterated in elongating internodes. The associated parenchyma cells either retain thin walls or develop secondary thickenings.  相似文献   

14.
 以辽东栎(Quercus liaotungensis)的13年生幼树为材料,分别培养在大气CO2浓度加倍(700μl·L-1)与对照(350μl·L-1)的开顶式熏气室中,研究CO2浓度升高对其茎次生木质部和次生韧皮部结构的影响。结果表明:经CO2浓度加倍处理的两个生长季内,辽东栎的年轮宽度明显增加,为对照的300%~370%,其中晚材宽度的增加更为显著,为对照的750%~830%。另外,晚材中导管的密度和径向直径分别比对照增加50%和20%;木纤维细胞的比例约为对照的170%。但早材的导管分子和木纤维细胞与对照相比均无显著变化。在CO2浓度加倍条件下,辽东栎的次生韧皮部中含晶韧皮薄壁细胞的数目,每条韧皮纤维切向带中韧皮纤维细胞的数目,以及韧皮纤维长度均有显著增加(p≤0.05)。相反地,韧皮纤维细胞的直径和筛管分子长度却无明显变化。值得提出的是,在CO2浓度加倍的条件下,次生韧皮部的宽度、筛管分子的直径、以及每年形成的韧皮部细胞总数分别为对照的82%、87%和80%。综上所述,大气CO2浓度加倍对辽东栎次生木质部的生长发育具明显的正效应,而对次生韧皮部的细胞总数与筛管分子的影响则呈负效应。  相似文献   

15.
The structure of the secondary phloem and the development of the crystaleiferous phloem fibers in the stem of Torrey grandis were observed under the ligth microscope and SEM. The secondary phloem is composed of sieve cells, phloem parenchyma cells, crystalliferous phloem fibers and stone cells in the longitudinal system, and the uniserite homogeneous phloem rays consisting of parenchyma cells only in the radial system. In the cross section, there are 3–9 sieve cells in radial rows forming discontinuous tangential layers, the crystalliferous phloem fibers often in a single discontinuous tangential layer and the stone cells dispersed in rangential layer of phloem parenchyma. The developmental process of crystalliferous phloem fibers is as follows: initial cells appeared in the end of April and were well differentiated in the first week of May. Some crystals were deposited in the primary wall, while others were free in the cell. At the end of May, the secondary wall of most crysalliferous phloem fibers started to be thickened. With the thickening of the secondary wall, all the crystals were embedded in the wall from June to August From the end of September to the early days of October, the crystalliferous phloem fibers reached their full maturation. It is shown by microchemical identification and EDAX analysis that the crystals embedded in the wail of crystalliferous phloem fibers are calcium oxalate crystals.  相似文献   

16.
A anatomical characters of secondary phloem in Glyptostrobus pensilis (Staunt.)Koch were observed by means of both light and scanning electron microscopy(SEM). The secondary phloem is composed of axial and radial systems. In the axial systems, the phloem consists of sieve cells, phloem parenchyma cells, albuminous cell and phloem fibers. In the radial systems, it consists of phloem rays. The alternate arrangement of different cells in cross section results in tangential bands. The sequence of radial arrangement follows the pattern of sieve cells, phloem parenchyma cells, sieve cells and phloem fibers, sieve cells. Many crystals of calbium oxalate are embedded in the radial walls of seive cells. The phloem fibers are of only one type. The phloem rays are homogeneous, uniseriate. According to the anatomical characters of secondary phloem of Glyptostrobus pensilis (Staunt.)Koch and comparison with the other genera of Taxodiaceae, Glyptostrobus, Metasequoia and Taxodium have close relationships.  相似文献   

17.
18.
In the stem of Gnetnm montanum Mgr. the general arrangement of various tissues and its pattern of secondary growth are very similar to those of angiosperms. The most conspicuous similarity lies in that the xylem contains vessels and the phloem, sieve elements and “companion ceils”. In climbing species of G. montanum, secondary growth initiates in s normal manner which is followed by the development of new combium at various loci among the parenehyms cells towards the periphery of each bundle. It does not initiate from the phloem parenchyma which is in agreement with the findings of Pearson (1929) and Maheshwari etc. (1961). Gradually these loci become incorporated into a continuous cylinder, producing a normally oriented ring of xylem and phloem separated by broad medullary rays. The growth of the first ring ceases at the commencement of the further formation of the outer, successive rings.  相似文献   

19.
The phloem of Etapteris leclercqii and Botryopteris tridentata petioles is described from Lower Pennsylvanian coal balls. Petioles of B. tridentata are characterized in transverse section by an omega-shaped xylem trace, a phloem zone which extends from 2-10 cells in width, and 2-parted cortex. Etapteris leclercqii petioles exhibit a 4–9 cell-wide phloem zone surrounding the central clepsydroid xylem mass, and a 3-parted cortex. In both taxa a 1–2 cell layer parenchyma sheath separates the xylem from the extra-xylary tissues. The phloem of both species consists of sieve elements that average about 20 μm in diam by 200 μm in length in Botryopteris, and 100 μm in length in Etapteris, with horizontal-slightly oblique end walls. In transmitted light, the radial walls of the sieve elements form an irregular reticulate pattern enclosing elliptical lighter areas. With the scanning electron microscope, these areas appear as horizontal-slightly oblique furrows on the cell wall, with many small indentations lining the furrows. These indentations, because of their regular occurrence and size (from a few fractions of a micron up to 1.0 μm in diam), are interpreted as sieve pores, and the elliptical areas that enclose them as sieve areas. The phloem of E. leclercqii and B. tridentata is compared with that described for other fossil genera and with that of extant ferns.  相似文献   

20.
Stem anatomy and development of medullary phloem are studied in the dwarf subshrub Cressa cretica L. (Convolvulaceae). The family Convolvulaceae is dominated by vines or woody climbers, which are characterized by the presence of successive cambia, medullary- and included phloem, internal cambium and presence of fibriform vessels. The main stems of the not winding C. cretica shows presence of medullary (internal) phloem, internal cambium and fibriform vessels, whereas successive cambia and included phloem are lacking. However, presence of fibriform vessels is an unique feature which so far has been reported only in climbing members of the family. Medullary phloem develops from peri-medullary cells after the initiation of secondary growth and completely occupies the pith region in fully grown mature plants. In young stems, the cortex is wide and formed of radial files of tightly packed small and large cells without intercellular air spaces. In thick stems, cortical cells become compressed due to the pressure developed by the radial expansion of secondary xylem, a feature actually common to halophytes. The stem diameter increases by the activity of a single ring of vascular cambium. The secondary xylem is composed of vessels (both wide and fibriform), fibres, axial parenchyma cells and uni-seriate rays. The secondary phloem consists of sieve elements, companion cells, axial and ray parenchyma cells. In consequence, Cressa shares anatomical characteristics of both climbing and non-climbing members. The structure of the secondary xylem is correlated with the habit and comparable with that of other climbing members of Convolvulaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号