首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-17A is a cytokine secreted by the newly described Th17 cells implicated in rheumatoid arthritis (RA). Less is known about its receptors in synoviocytes. IL-17RA and IL-17RC were found to be overexpressed in RA peripheral whole blood and their expression was detected locally in RA synovium. In vitro, IL-17A synergized with TNF-alpha to induce IL-6, IL-8, CCL-20, and matrix metalloproteinase-3. Using microarrays, a specific up-regulation of Glu-Leu-Arg+ CXC chemokines was observed in IL-17A-treated synoviocytes. Using both posttranslational inhibitions by silencing interfering RNA and extracellular blockade by specific inhibitors, we showed that both IL-17RA and IL-17RC are implicated in IL-17A-induced IL-6 secretion, whereas in the presence of TNF-alpha, the inhibition of both receptors was needed to down-regulate IL-17A-induced IL-6 and CCL-20 secretion. Thus, IL-17A-induced IL-6, IL-8, and CCL20 secretion was dependent on both IL-17RA and IL-17RC, which are overexpressed in RA patients. IL-17A-induced pathogenic effects may be modulated by IL-17RA and/or IL-17RC antagonism.  相似文献   

2.
IL-17A and IL-17F, produced by the Th17 CD4(+) T cell lineage, have been linked to a variety of inflammatory and autoimmune conditions. We recently reported that activated human CD4(+) T cells produce not only IL-17A and IL-17F homodimers but also an IL-17F/IL-17A heterodimeric cytokine. All three cytokines can induce chemokine secretion from bronchial epithelial cells, albeit with different potencies. In this study, we used small interfering RNA and Abs to IL-17RA and IL-17RC to demonstrate that heterodimeric IL-17F/IL-17A cytokine activity is dependent on the IL-17RA/IL-17RC receptor complex. Interestingly, surface plasmon resonance studies indicate that the three cytokines bind to IL-17RC with comparable affinities, whereas they bind to IL-17RA with different affinities. Thus, we evaluated the effect of the soluble receptors on cytokine activity and we find that soluble receptors exhibit preferential cytokine blockade. IL-17A activity is inhibited by IL-17RA, IL-17F is inhibited by IL-17RC, and a combination of soluble IL-17RA/IL-17RC receptors is required for inhibition of the IL-17F/IL-17A activity. Altogether, these results indicate that human IL-17F/IL-17A cytokine can bind and signal through the same receptor complex as human IL-17F and IL-17A. However, the distinct affinities of the receptor components for IL-17A, IL-17F, and IL-17F/IL-17A heterodimer can be exploited to differentially affect the activity of these cytokines.  相似文献   

3.
Recent studies into the pathogenesis of airway disorders such as asthma have revealed a dynamic role for airway smooth muscle cells in the perpetuation of airway inflammation via secretion of cytokines and chemokines. In this study, we evaluated whether IL-17 could enhance IL-1beta-mediated CXCL-8 release from human airway smooth muscle cells (HASMC) and investigated the upstream and downstream signaling events regulating the induction of CXCL-8. CXCL-8 mRNA and protein induction were assessed by real-time RT-PCR and ELISA from primary HASMC cultures. HASMC transfected with site-mutated activator protein (AP)-1/NF-kappaB CXCL-8 promoter constructs were treated with selective p38, MEK1/2, and phosphatidylinositol 3-kinase (PI3K) inhibitors to determine the importance of MAPK and PI3K signaling pathways as well as AP-1 and NF-kappaB promoter binding sites. We demonstrate IL-17 induced and synergized with IL-1beta to upregulate CXCL-8 mRNA and protein levels. Erk1/2 and p38 modulated IL-17 and IL-1beta CXCL-8 promoter activity; however, IL-1beta also activated the PI3K pathway. The synergistic response mediating CXCL-8 promoter activity was dependent on both MAPK and PI3K signal transduction pathways and required the cooperation of AP-1 and NF-kappaB cis-acting elements upstream of the CXCL-8 gene. Collectively, our observations indicate MAPK and PI3K pathways regulate the synergy of IL-17 and IL-1beta to enhance CXCL-8 promoter activity, mRNA induction, and protein synthesis in HASMC via the cooperative activation of AP-1 and NF-kappaB trans-acting elements.  相似文献   

4.
The proinflammatory cytokines IL-17A and IL-17F have a high degree of sequence similarity and share many biological properties. Both have been implicated as factors contributing to the progression of inflammatory and autoimmune diseases. Moreover, reagents that neutralize IL-17A significantly ameliorate disease severity in several mouse models of human disease. IL-17A mediates its effects through interaction with its cognate receptor, the IL-17 receptor (IL-17RA). We report here that the IL-17RA-related molecule, IL-17RC is the receptor for IL-17F. Notably, both IL-17A and IL-17F bind to IL-17RC with high affinity, leading us to suggest that a soluble form of this molecule may serve as an effective therapeutic antagonist of IL-17A and IL-17F. We generated a soluble form of IL-17RC and demonstrate that it effectively blocks binding of both IL-17A and IL-17F, and that it inhibits signaling in response to these cytokines. Collectively, our work indicates that IL-17RC functions as a receptor for both IL-17A and IL-17F and that a soluble version of this protein should be an effective antagonist of IL-17A and IL-17F mediated inflammatory diseases.  相似文献   

5.
The dual-specificity mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) inactivates MAP kinases by dephosphorylation. Here we show that the proinflammatory cytokine interleukin (IL)-17A induces adult mouse primary cardiac fibroblast (CF) proliferation and migration via IL-17 receptor A//IL-17 receptor C-dependent MKP-1 suppression, and activation of p38 MAPK and ERK1/2. IL-17A mediated p38 MAPK and ERK1/2 activation is inhibited by MKP-1 overexpression, but prolonged by MKP-1 knockdown. IL-17A induced miR-101 expression via PI3K/Akt, and miR-101 inhibitor reversed MKP-1 down regulation. Importantly, MKP-1 knockdown, pharmacological inhibition of p38 MAPK and ERK1/2, or overexpression of dominant negative MEK1, each markedly attenuated IL-17A-mediated CF proliferation and migration. Similarly, IL-17F and IL-17A/F heterodimer that also signal via IL-17RA/IL-17RC, stimulated CF proliferation and migration. These results indicate that IL-17A stimulates CF proliferation and migration via Akt/miR-101/MKP-1-dependent p38 MAPK and ERK1/2 activation. These studies support a potential role for IL-17 in cardiac fibrosis and adverse myocardial remodeling.  相似文献   

6.
7.
8.
目的:观察转化生长因子β激活激酶1(TAK1)基因沉默对肿瘤坏死因子a (TNF-a)诱导的滑膜细胞中促炎介质白介素-6(IL-6)和白介素-8(IL-8)表达的影响,以探讨TAK1在类风湿关节炎(RA)发病中的作用。方法:采取脂质体转染方法将TAK1特异性的小干扰RNA (siRNA)和阴性对照RNA (scRNA)导入类风湿关节炎的滑膜成纤维细胞株MH7A细胞,然后分别用20 ng/ml TNF-a刺激后,检测细胞内IL-6、IL-8 mRNA的表达和培养上清中IL-6和IL-8分泌情况以及p38、ERK、JNK、p65磷酸化的水平和抑制性蛋白IκBα的变化情况。结果:siRNA-TAK1转染72 h后滑膜细胞中TAK mRNA和蛋白表达的平均抑制率分别为75%和55%。siRNA-TAK1转染下调TNF-a诱导状态下IL-6和IL-8的表达,并能抑制p38、JNK、p65磷酸化和增加IκBα水平。结论:TAK1基因沉默能抑制TNF-a诱导的滑膜细胞IL-6、IL-8表达,可能与其抑制JNK和p38MAPK的活化及NF-κB的活化有关。  相似文献   

9.
IL-17 is the founding member of a family of cytokines and receptors with unique structures and signaling properties. IL-17 is the signature cytokine of Th17 cells, a relatively new T cell population that promotes inflammation in settings of infection and autoimmunity. Despite advances in understanding Th17 cells, mechanisms of IL-17-mediated signal transduction are less well defined. IL-17 signaling requires contributions from two receptor subunits, IL-17RA and IL-17RC. Mutants of IL-17RC lacking the cytoplasmic domain are nonfunctional, indicating that IL-17RC provides essential but poorly understood signaling contributions to IL-17-mediated signaling. To better understand the role of IL-17RC in signaling, we performed a yeast 2-hybrid screen to identify novel proteins associated with the IL-17RC cytoplasmic tail. One of the most frequent candidates was the anaphase promoting complex protein 7 (APC7 or AnapC7), which interacted with both IL-17RC and IL-17RA. Knockdown of AnapC7 by siRNA silencing exerted no detectable impact on IL-17 signaling. However, AnapC5, which associates with AnapC7, was also able to bind IL-17RA and IL-17RC. Moreover, AnapC5 silencing enhanced IL-17-induced gene expression, suggesting an inhibitory activity. Strikingly, AnapC5 also associated with A20 (TNFAIP3), a recently-identified negative feedback regulator of IL-17 signal transduction. IL-17 signaling was not impacted by knockdown of Itch or TAXBP1, scaffolding proteins that mediate A20 inhibition in the TNFα and IL-1 signaling pathways. These data suggest a model in which AnapC5, rather than TAX1BP1 and Itch, is a novel adaptor and negative regulator of IL-17 signaling pathways.  相似文献   

10.
Biochemical evidence indicates that TGF-beta-activated kinase 1 (TAK1), a key modulator of the inflammatory response, exists in a complex with various adaptor proteins including the TAK1 binding protein 1 (TAB1). However, the physiological importance of TAB1 in TAK1 activation, and in the subsequent induction of proinflammatory mediators, remains unclear. In this study, a critical role for TAK1 in IL-1alpha or TNFalpha stimulated MAPK and NFkappaB activation was confirmed by inhibition of the nuclear accumulation of NFkappaB p65 and phosphorylated forms of c-Jun and p38 following siRNA mediated TAK1 silencing. These effects were associated with significant reductions in IL-1alpha stimulated levels of secreted IL-6, IL-8, MCP-1 and GM-CSF. In contrast, IL-1alpha or TNFalpha dependent cellular redistribution of NFkappaB p65 and phosphorylated c-Jun and p38 was not affected by 80% siRNA mediated knockdown of TAB1 protein levels. Interestingly, IL-6, IL-8 and GM-CSF release from TAB1 siRNA transfected cells was significantly reduced following IL-1alpha treatment, but was unchanged after TNFalpha stimulation, suggesting differential roles for TAB1 in IL-1alpha and TNFalpha signalling pathways. These findings may imply an as yet unidentified role for TAB1 in the inflammatory response, which is independent of the activation of classical TAK1 associated signalling cascades.  相似文献   

11.
Salmonella enterica subspecies 1 serovar Typhimurium (S. Typhimurium) causes diarrhea and acute inflammation of the intestinal mucosa. The pro-inflammatory cytokines IL-17A and IL-17F are strongly induced in the infected mucosa but their contribution in driving the tissue inflammation is not understood. We have used the streptomycin mouse model to analyze the role of IL-17A and IL-17F and their cognate receptor IL-17RA in S. Typhimurium enterocolitis. Neutralization of IL-17A and IL-17F did not affect mucosal inflammation triggered by infection or spread of S. Typhimurium to systemic sites by 48 h p.i. Similarly, Il17ra(-/-) mice did not display any reduction in infection or inflammation by 12 h p.i. The same results were obtained using S. Typhimurium variants infecting via the TTSS1 type III secretion system, the TTSS1 effector SipA or the TTSS1 effector SopE. Moreover, the expression pattern of 45 genes encoding chemokines/cytokines (including CXCL1, CXCL2, IL-17A, IL-17F, IL-1α, IL-1β, IFNγ, CXCL-10, CXCL-9, IL-6, CCL3, CCL4) and antibacterial molecules was not affected by Il17ra deficiency by 12 h p.i. Thus, in spite of the strong increase in Il17a/Il17f mRNA in the infected mucosa, IL-17RA signaling seems to be dispensable for eliciting the acute disease. Future work will have to address whether this is attributable to redundancy in the cytokine signaling network.  相似文献   

12.
IL-17A and IL-17F are members of the IL-17 family that play crucial roles in allergic inflammation. Recent studies reported that IL-17A and IL-17F production from a distinct Th lymphocyte subset, Th17, was specifically induced by IL-23, which was produced by dendritic cells and macrophages in response to microbial stimuli. The IL-23-IL-17 axis might therefore provide a link between infections and allergic diseases. In the present study, we investigated the effects of IL-17A, IL-17F, and IL-23, alone or in combination, on cytokine and chemokine release from eosinophils and the underlying intracellular mechanisms. Human eosinophils were found to constitutively express receptors for IL-17A, IL-17F, and IL-23 at the protein level. IL-17A, IL-17F, and IL-23 could induce the release of chemokines GRO-alpha/CXCL1, IL-8/CXCL8, and MIP-1beta/CCL4 from eosinophils, while IL-17F and IL-23 could also increase the production of proinflammatory cytokines IL-1beta and IL-6. Synergistic effects were observed in the combined treatment of IL-17F and IL-23 on the release of proinflammatory cytokines, and the effects were dose-dependently enhanced by IL-23, but not IL-17F. Further investigations showed that IL-17A, IL-17F, and IL-23 differentially activated the ERK, p38 MAPK, and NF-kappaB pathways. Moreover, inhibition of these pathways using selective inhibitors could significantly abolish the chemokine release induced by IL-17A, IL-17F, and IL-23 and the synergistic increases on IL-1beta and IL-6 production mediated by combined treatment of IL-17F and IL-23. Taken together, our findings provide insight for the Th17 lymphocyte-mediated activation of eosinophils via differential intracellular signaling cascades in allergic inflammation.  相似文献   

13.

Background

Idiopathic pulmonary fibrosis is a devastating as yet untreatable disease. We demonstrated recently the predominant role of the NLRP3 inflammasome activation and IL-1β expression in the establishment of pulmonary inflammation and fibrosis in mice.

Methods

The contribution of IL-23 or IL-17 in pulmonary inflammation and fibrosis was assessed using the bleomycin model in deficient mice.

Results

We show that bleomycin or IL-1β-induced lung injury leads to increased expression of early IL-23p19, and IL-17A or IL-17F expression. Early IL-23p19 and IL-17A, but not IL-17F, and IL-17RA signaling are required for inflammatory response to BLM as shown with gene deficient mice or mice treated with neutralizing antibodies. Using FACS analysis, we show a very early IL-17A and IL-17F expression by RORγt+ γδ T cells and to a lesser extent by CD4αβ+ T cells, but not by iNKT cells, 24 hrs after BLM administration. Moreover, IL-23p19 and IL-17A expressions or IL-17RA signaling are necessary to pulmonary TGF-β1 production, collagen deposition and evolution to fibrosis.

Conclusions

Our findings demonstrate the existence of an early IL-1β-IL-23-IL-17A axis leading to pulmonary inflammation and fibrosis and identify innate IL-23 and IL-17A as interesting drug targets for IL-1β driven lung pathology.  相似文献   

14.
It is widely accepted that impairment of the intestinal epithelial barrier from HIV/AIDS contributes significantly to microbial translocation and systemic immune activation. Such factors present potential targets for novel treatments aimed toward a functional cure. However, the extracellular mechanisms of intestinal barrier repair are poorly understood. In the current study, we investigated the abilities of IL-17A and IL-17F to repair the damaged barrier caused by HIV-1 gp140 using Caco-2 monolayers. It was found that HIV-1 gp140 downregulated the expression of tight junction-associated genes and disrupted the barrier integrity of Caco-2 monolayers. However, IL-17A and IL-17F treatment reversed the HIV-1 gp140-induced barrier dysfunction by upregulating the expression of tight junction-associated genes, the combination of which resulted in a stronger induction of barrier repair. Furthermore, the effects of IL-17A and IL-17F were reduced by downregulation of Act1 with siRNA and inhibition of NF-κB and MAPK pathways with BAY11-7082 and U0126, respectively. These data indicated that the NF-κB and MAPK pathways are involved in the repair of barrier integrity mediated by IL-17A and IL-17F, and IL-17 pathways are potential targets for gut barrier restoration therapies during HIV/AIDS.  相似文献   

15.
IL-25 (IL-17E) is a unique IL-17 family ligand that promotes Th2-skewed inflammatory responses. Intranasal administration of IL-25 into naive mice induces pulmonary inflammation similar to that seen in patients with allergic asthma, including increases in bronchoalveolar lavage fluid eosinophils, bronchoalveolar lavage fluid IL-5 and IL-13 concentrations, goblet cell hyperplasia, and increased airway hyperresponsiveness. IL-25 has been reported to bind and signal through IL-17RB (IL-17BR, IL-17Rh1). It has been demonstrated recently that IL-17A signals through a heteromeric receptor composed of IL-17RA and IL-17RC. We sought to determine whether other IL-17 family ligands also utilize heteromeric receptor complexes. The required receptor subunits for IL-25 biological activities were investigated in vitro and in vivo using a combination of knockout (KO) mice and antagonistic Abs. Unlike wild-type mice, cultured splenocytes from either IL-17RB KO or IL-17RA KO mice did not produce IL-5 or IL-13 in response to IL-25 stimulation, and both IL-17RB KO and IL-17RA KO mice did not respond to intranasal administration of IL-25. Furthermore, treatment with antagonistic mAbs to either IL-17RB or IL-17RA completely blocked IL-25-induced pulmonary inflammation and airway hyperresponsiveness in naive BALB/c mice, similar to the effects of an antagonistic Ab to IL-25. Finally, a blocking Ab to human IL-17RA prevented IL-25 activity in a primary human cell-based assay. These data demonstrate for the first time that IL-25-mediated activities require both IL-17RB and IL-17RA and provide another example of an IL-17 family ligand that utilizes a heteromeric receptor complex.  相似文献   

16.
17.
IL-23 is a heterodimeric cytokine composed of a p19 subunit and the p40 subunit of IL-12. IL-23 has proinflammatory activity, inducing IL-17 secretion from activated CD4(+) T cells and stimulating the proliferation of memory CD4(+) T cells. We investigated the pathogenic role of IL-23 in CD4(+) T cells in mice lacking the IL-1R antagonist (IL-1Ra(-/-)), an animal model of spontaneous arthritis. IL-23 was strongly expressed in the inflamed joints of IL-1Ra(-/-) mice. Recombinant adenovirus expressing mouse IL-23 (rAd/mIL-23) significantly accelerated this joint inflammation and joint destruction. IL-1beta further increased the production of IL-23, which induced IL-17 production and OX40 expression in splenic CD4(+) T cells of IL-1Ra(-/-) mice. Blocking IL-23 with anti-p19 Ab abolished the IL-17 production induced by IL-1 in splenocyte cultures. The process of IL-23-induced IL-17 production in CD4(+) T cells was mediated via the activation of Jak2, PI3K/Akt, STAT3, and NF-kappaB, whereas p38 MAPK and AP-1 did not participate in the process. Our data suggest that IL-23 is a link between IL-1 and IL-17. IL-23 seems to be a central proinflammatory cytokine in the pathogenesis of this IL-1Ra(-/-) model of spontaneous arthritis. Its intracellular signaling pathway could be useful therapeutic targets in the treatment of autoimmune arthritis.  相似文献   

18.
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. While it is well-accepted that inflammation is central to NAFLD pathogenesis, the immune pathway(s) orchestrating disease progression are poorly defined. Notably, IL-17RA signaling, via IL-17A, plays an important role in obesity-driven NAFLD pathogenesis. However, the role of the IL-17F, another IL-17RA ligand, in NAFLD pathogenesis has not been examined. Further, the cell types expressing IL-17RA and producing IL-17RA ligands in the pathogenesis of NAFLD have not been defined. Here, IL-17RA-/-, IL-17A-/-, IL-17F-/- and wild-type (WT) mice were fed either standard chow diet or methionine and choline deficient diet (MCDD)—a diet known to induce steatosis and hepatic inflammation through beta-oxidation dysfunction—and hepatic inflammation and NAFLD progression were subsequently quantified. MCDD feeding augmented hepatic IL-17RA expression and significantly increased hepatic infiltration of macrophages and IL-17A and IL-17F producing CD4+ and CD8+ T cells in WT mice. In contrast, IL-17RA-/-, IL-17A-/-, and IL-17F-/- mice, despite increased steatosis, exhibited significant protection from hepatocellular damage compared to WT controls. Protection from hepatocellular damage correlated with decreased levels of hepatic T-cell and macrophage infiltration and decreased expression of inflammatory mediators associated with NAFLD. In sum, our results indicate that the IL-17 axis also plays a role in a MCDD-induced model of NAFLD pathogenesis. Further, we show for the first time that IL-17F, and not only IL-17A, plays an important role in NAFLD driven inflammation.  相似文献   

19.
20.
Chang SH  Dong C 《Cell research》2007,17(5):435-440
CD4+ helper T (TH) cells play crucial roles in immune responses. Recently a novel subset of TH cells, termed THIL-17, TH 17 or inflammatory TH (THi), has been identified as critical mediators of tissue inflammation. These cells produce IL-17 (also called IL-17A) and IL-17F, two most homologous cytokines sharing similar regulations. Here we report that when overexpressed in 293T cells, IL-17 and IL-17F form not only homodimers but also heterodimers, which we name as IL-17A/F. Fully differentiated mouse THi cells also naturally secrete IL-17A/F as well as IL-17 and IL-17F homodimeric cytokines. Recombinant IL-17A/F protein exhibits intermediate levels of potency in inducing IL-6 and KC (CXCL 1) as compared to homodimeric cytokines. IL-17A/F regulation of IL-6 and KC expression is dependent on IL-17RA and TRAF6. Thus, IL-17A/F cytokine represents another mechanism whereby T cells regulate inflammatory responses and may serve as a novel target for treating various immune-mediated diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号