共查询到20条相似文献,搜索用时 0 毫秒
1.
《The Journal of general physiology》1984,83(5):771-799
Membrane current following prolonged periods of rapid stimulation was examined in short (less than 1.5 mm) canine cardiac Purkinje fibers of radius less than 0.15 mm. The Purkinje fibers were repetitively stimulated by delivering trains of depolarizing voltage clamp pulses at rapid frequencies. The slowly decaying outward current following repetitive stimulation ("post-drive" current) is eliminated by the addition of 10(-5) M dihydro-ouabain. The post-drive current is attributed to enhanced Na/K exchange caused by Na loading during the overdrive. Depolarizing voltage clamp pulses initiated from negative (- 80 mV) or depolarized (-50 mV) holding potentials can give rise to post- drive current because of activation of tetrodotoxin-sensitive or D600- sensitive channels. The magnitude of the post-drive current depends on the frequency of voltage clamp pulses, the duration of each pulse, and the duration of the repetitive stimulation. The time constant of decay of the post-drive current depends on extracellular [K] in accordance with Michaelis-Menten kinetics. The Km is 1.2 mM bulk [K], [K]B. The mean time constant in 4 mM [K]B is 83 s. Epinephrine (10(-5) M) decreases the time constant by 20%. The time constant is increased by lowering [Ca]o between 4 and 1 mM. Lowering [Ca]o further, to 0.1 mM, eliminates post-drive current following repetitive stimulation initiated from depolarized potentials. The latter result suggests that slow inward Ca2+ current may increase [Na]i via Na/Ca exchange. 相似文献
2.
It is well known that cardiac action potentials are shortened by increasing the external calcium concentration (Cao). The shortening is puzzling since Ca ions are thought to carry inward current during the plateau. We therefore studied the effects of Cao on action potentials and membrane currents in short Purkinje fiber preparations. Two factors favor the earlier repolarization. First, calcium-rich solutions generally raise the plateau voltage; in turn, the higher plateau level accelerates time- and voltage-dependent current changes which trigger repolarization. Increases in plateau height imposed by depolarizing current consistently produced shortening of the action potential. The second factor in the action of Ca ions involves iK1, the background K current (inward rectifier). Raising Cao enhances iK1 and thus favors faster repolarization. The Ca-sensitive current change was identified as an increase in iK1 by virtue of its dependence on membrane potential and Ko. A possible third factor was considered and ruled out: unlike epinephrine, calcium-rich solutions do not enhance slow outward plateau current, ikappa. These results are surprising in showing that calcium ions and epinephrine act quite differently on repolarizing currents, even though they share similar effects on the height and duration of the action potential. 相似文献
3.
The relationship among intracellular sodium activity, calcium, and strophanthidin inotropy in canine cardiac Purkinje fibers 总被引:4,自引:0,他引:4 下载免费PDF全文
《The Journal of general physiology》1984,83(2):287-307
The role of sodium and calcium ions in strophanthidin inotropy was studied by measuring simultaneously the electrical, mechanical, and intracellular sodium ion activities in electrically driven cardiac Purkinje fibers under conditions that change the intracellular sodium or calcium level (tetrodotoxin, strophanthidin, high calcium, and norepinephrine). Tetrodotoxin (TTX; 1-5 X 10(-6)M) shifted the action potential plateau to more negative values, shortened the action potential duration, and decreased the contractile tension and the intracellular sodium ion activity (aiNa). The changes in tension and in aiNa caused by TTX appear to be related since they had similar time courses. Strophanthidin (2-5 X 10(-7)M) increased tension and aiNa less in the presence of TTX, and, for any given value of aiNa, tension was less than in the absence of TTX. Increasing extracellular calcium (from 1.8 to 3.3-3.6 mM) or adding norepinephrine (0.5-1 X 10(-6)M) increased tension and decreased aiNa less in the presence than in the absence of TTX. When two of the above procedures were combined, the results were different. Thus, during the increase in aiNa and tension caused by strophanthidin in the presence of TTX, increasing calcium or adding norepinephrine increased tension markedly but did not increase aiNa further. In a TTX-high calcium or TTX-norepinephrine solution, adding strophanthidin increased both tension and aiNa, and the increase in tension was far greater than in the presence of TTX alone. The results indicate that: (a) the contractile force in Purkinje fibers is affected by a change in aiNa; (b) a decrease in aiNa by TTX markedly reduces the inotropic effect of strophanthidin, possibly as a consequence of depletion of intracellular calcium; (c) increasing calcium influx with norepinephrine or high calcium in the TTX-strophanthidin solution produces a potentiation of tension development, even if aiNa does not increase further; and (d) when the calcium influx is already increased by high calcium or norepinephrine, strophanthidin has its usual inotropic effect even in the presence of TTX. In conclusion, the positive inotropic effect of strophanthidin requires that an increase in aiNa be associated with suitable calcium availability. 相似文献
4.
Delayed rectification in the cardiac Purkinje fiber is not activated by intracellular calcium 总被引:3,自引:0,他引:3
R S Kass 《Biophysical journal》1984,45(4):837-839
This study was designed to test the hypothesis that an outward current (Ix) responsible for action potential repolarization in the cardiac Purkinje fiber is activated by intracellular calcium (Cai). Pharmacological probes were combined with the measurement of membrane current and contractile activity under voltage clamp conditions. Experiments were designed to examine properties of Ix that have previously linked activation of this current to changes in Cai. The independence of Ix from Cai was demonstrated for each case tested. Thus, the results of these experiments support the view that Ix is not a calcium-activated current. 相似文献
5.
《The Journal of general physiology》1975,65(3):367-384
A "slow" inward current (Is) has been identified in ventricular muscle and Purkinje fibers of several mammalian species. The two- microelectrode voltage clamp technique is used to examine some of the relationships between Is and contraction of the sheep cardiac Purkinje fiber. "Tails" of inward current occurring on repolarization and extrapolation of Is recovery each show that the Is system may not inactivate completely during prolonged depolarization. The rate of recovery of Is after a depolarization is slow, and when a train of 300- ms clamps (frequency 1 s-1) is begun after a rest, Is is larger for the first clamp than it is for succeedings clamps. For the first clamp after a rest, the thresholds for Is and tension are the same and there is a direct correlation between peak tension and peak Is for clamp voltages between threshold and minus 40 mV. After a clamp, however, the ability to contract recovers much more slowly than does Is. Therefore, since Is may occur under certain conditions without tension, the realtionship between Is and tension must be indirect. Calcium entering the cell via this current may replenish or augment an intracellular calcium pool. 相似文献
6.
Effect of strophanthidin on intracellular Na ion activity and twitch tension of constantly driven canine cardiac Purkinje fibers. 总被引:5,自引:0,他引:5 下载免费PDF全文
Intracellular Na ion activity (aiNa) and twitch tension (T) of constantly driven (1 Hz) canine cardiac Purkinje fibers were measured simultaneously and continuously with neutral carrier Na+-selective microelectrodes and a force transducer. The aiNa of 8.9 +/- 1.4 mM (mean +/- SD, n = 52) was obtained in the driven fibers perfused with normal Tyrode solution. Temporary interruption of stimulation showed that aiNa of the driven fibers was approximately 1.5 mM greater than that of quiescent fibers. The constantly driven fibers were exposed to strophanthidin of 10(-8), 5 X 10(-8), 10(-7), 5 X 10(-7), and 10(-6) M for 5 min. No detectable changes in aiNa and T were observed in the fibers exposed to 10(-8) M strophanthidin, and the threshold concentration of the strophanthidin effect appeared to be approximately 5 X 10(-8) M. With concentrations greater than 5 X 10(-8) M, strophanthidin produced dose-dependent increases in aiNa and T. An increase in aiNa always accompanied an increase in T and after strophanthidin exposure both aiNa and T recovered completely. During onset and recovery periods of the strophanthidin effect the time course of change in aiNa was similar to that of change in T. A plot of T vs. aiNa during the onset and recovery periods showed a linear relationship between T and aiNa. These results indicate strongly that the positive inotropic effect of strophanthidin is closely associated with the increase in aiNa. Raising [K+]0 from 5.4 to 10.8 mM produced decreases in aiNa and T, and restoration of [K+]0 resulted in recoveries of aiNa and T. During the changes of [K+]0 the time course of change in aiNa was similar to that of the change in T. A steady-state sarcoplasmic Ca ion activity (aiCa) of 112 +/- 31 nM (mean +/- SD, n = 17) was obtained in the driven fibers with the use of neutral carrier Ca2+-selective microelectrodes. Temporary interruption produced 10-30% decreases in aiCa. No detectable changes in aiCa were observed in the fibers exposed to strophanthidin of 10(-7) M or less; 5 X 10(-7) and 10(-6) M strophanthidin produced 1.3-1.6 and 2-3-fold increases in aiCa, respectively. This result is consistent with the hypothesis that an increase in aiNa produces an increase in aiCa, which enhances Ca accumulation in the intracellular stores. 相似文献
7.
Pelzer S La C Pelzer DJ 《American journal of physiology. Heart and circulatory physiology》2001,281(4):H1532-H1544
We compared the effects of cytosolic free magnesium (Mg(2+)(i)) on L-type Ca(2+) current (I(Ca,L)) in patch-clamped guinea pig ventricular cardiomyocytes under basal conditions, after inhibition of protein phosphorylation, and after stimulation of cAMP-mediated phosphorylation. Basal I(Ca,L) density displayed a bimodal dependence on the concentration of Mg(2+)(i) ([Mg(2+)](i); 10(-6)-10(-2) M), which changed significantly as cell dialysis progressed due to a pronounced and long-lasting rundown of I(Ca,L) in low-Mg(2+) dialysates. Ten minutes after patch breakthrough, I(Ca,L) density (at +10 mV) in Mg(2+)(i)-depleted cells ([Mg(2+)](i) approximately 1 microM) was elevated, increased to a maximum at approximately 20 microM [Mg(2+)](i), and declined steeply at higher [Mg(2+)](i). Treatment with the broad-spectrum protein kinase inhibitor K252a (10 microM) reduced I(Ca,L) density and abolished these effects of Mg(2+)(i) except for a negative shift of I(Ca,L)-voltage relations with increasing [Mg(2+)](i). Maximal stimulation of cAMP-mediated phosphorylation occluded the Mg(2+)(i)-induced stimulation of I(Ca,L) and prevented inhibitory effects of the ion at [Mg(2+)](i) <1 mM but not at higher concentrations. These results show that the modulation of I(Ca,L) by Mg(2+)(i) requires protein kinase activity and likely originates from interactions of the ion with proteins involved in the regulation of protein phosphorylation/dephosphorylation. Stimulatory effects of Mg(2+)(i) on I(Ca,L) seem to increase the cAMP-mediated phosphorylation of Ca(2+) channels, whereas inhibitory effects of Mg(2+)(i) appear to curtail and/or reverse cAMP-mediated phosphorylation. 相似文献
8.
Effects of changes of intracellular pH on contraction in sheep cardiac Purkinje fibers 总被引:1,自引:1,他引:1 下载免费PDF全文
Intracellular pH (pHi) was measured with a pH-sensitive microelectrode in voltage-clamped sheep cardiac Purkinje fibers while tension was simultaneously measured. All solutions were nominally CO2/HCO3 free and were buffered with Tris. The addition of NH4Cl (5-20 mM) produced an initial intracellular alkalosis that was associated with an increase of twitch tension. At the same time, a component of voltage-dependent tonic tension developed. Prolonged exposure (greater than 5 min) to NH4Cl resulted in a slow recovery of pHi accompanied by a decrease of tension. Removal of NH4Cl produced a transient acidosis that was accompanied by a fall of force. In some experiments, there was then a transient recovery of force. If extracellular pH (pHo) was decreased, then pHi decreased slowly. Tension also fell slowly. An increase of pHo produced a corresponding increase of both force and pHi. The application of strophanthidin (10 microM) increased force and produced an intracellular acidosis. The addition of NH4Cl, to remove this acidosis partially, produced a significant increase of force. The above results show that contraction is sensitive to changes of intracellular but not extracellular pH. This pH dependence will therefore modify the contractile response to inotropic maneuvers that also affect pHi. 相似文献
9.
Slow inactivation of a tetrodotoxin-sensitive current in canine cardiac Purkinje fibers. 总被引:7,自引:2,他引:7 下载免费PDF全文
We used the two-microelectrode voltage clamp technique and tetrodotoxin (TTX) to investigate the possible occurrence of slow inactivation of sodium channels in canine cardiac Purkinje fibers under physiologic conditions. The increase in net outward current during prolonged (5-20 s) step depolarizations (range -70 to +5 mV) following the application of TTX is time dependent, being maximal immediately following depolarization, and declining thereafter towards a steady value. To eliminate the possibility that this time-dependent current was due to inadequate voltage control of these multicellular preparations early during square clamp pulses, we also used slowly depolarizing voltage clamp ramps (range 5-100 mV/s) to ensure control of membrane potential. TTX-sensitive current also was observed with these voltage ramps; the time dependence of this current was demonstrated by the reduction of the peak current magnitude as the ramp speed was reduced. Reducing the holding potential within the voltage range of sodium channel inactivation also decreased the TTX-sensitive current observed with identical speed ramps. These results suggest that the TTX-sensitive time-dependent current is a direct measure of slow inactivation of canine cardiac sodium channels. This current may play an important role in modulating the action potential duration. 相似文献
10.
Na,K pump stimulation by intracellular Na in isolated, intact sheep cardiac Purkinje fibers 总被引:2,自引:3,他引:2 下载免费PDF全文
Regulation of the Na,K pump in intact cells is strongly associated with the level of intracellular Na+. Experiments were carried out on intact, isolated sheep Purkinje strands at 37 degrees C. Membrane potential (Vm) was measured by an open-tipped glass electrode and intracellular Na+ activity (aNai) was calculated from the voltage difference between an Na+-selective microelectrode (ETH 227) and Vm. In some experiments, intracellular potassium (aiK) or chloride (aCli) was measured by a third separate microelectrode. Strands were loaded by Na,K pump inhibition produced by K+ removal and by increasing Na+ leak by removing Mg++ and lowering free Ca++ to 10(-8) M. Equilibrium with outside levels of Na+ was reached within 30-60 min. During sequential addition of 6 mM Mg++ and reduction of Na+ to 2.4 mM, the cells maintained a stable aNai ranging between 25 and 90 mM and Vm was -30.8 +/- 2.2 mV. The Na,K pump was reactivated with 30 mM Rb+ or K+. Vm increased over 50-60 s to -77.4 +/- 5.9 mV with Rb+ activation and to -66.0 +/- 7.7 mV with K+ activation. aiNa decreased in both cases to 0.5 +/- 0.2 mM in 5-15 min. The maximum rate of aiNa decline (maximum delta aNai/delta t) was the same with K+ and Rb+ at concentrations greater than 20 mM. The response was abolished by 10(-5) M acetylstrophantidin. Maximum delta aNai/delta t was independent of outside Na+, while aKi was negatively correlated with aNai (aKi = 88.4 - 0.86.aNai). aCli decreased by at most 3 mM during reactivation, which indicates that volume changes did not seriously affect aNai. This model provided a functional isolation of the Na,K pump, so that the relation between the pump rate (delta aNai/delta t) and aiNa could be examined. A Hill plot allowed calculation of Vmax ranging from 5.5 to 27 mM/min, which on average is equal to 25 pmol.cm-2.s-1.K 0.5 was 10.5 +/- 0.6 mM (the aNai that gives delta aNai/delta t = Vmax/2) and n equaled 1.94 +/- 0.13 (the Hill coefficient). These values were not different with K+ or Rb+ as an external activator. The number of ouabain-binding sites equaled 400 pmol.g-1, giving a maximum Na+ turnover of 300 s-1. The Na,K pump in intact Purkinje strands exhibited typical sigmoidal saturation kinetics with regard to aNai as described by the equation upsilon/Vmax = aNai(1.94)/(95.2 + aNai(1.94)). The maximum sensitivity of the Na,K pump to aiNa occurred at approximately 6 mM. 相似文献
11.
Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers 总被引:12,自引:11,他引:12 下载免费PDF全文
We studied the influence of Mn, La, and D600 on action potentials and plateau currents in cardiac Purkinje fibers. The Ca antagonists each abolished the second inward current, but they failed to act selectively. Voltage clamp experiments revealed two additional effects: decrease of slow outward current (iotachi) activation, and increase of net outward time-independent plateau current. These effects occurred at inhibitor concentrations used in earlier studies, and were essential to the reconstruction of observed Ca antagonist effects on electrical activity. The inhibitory influence of Mn, La, and D600 on iotachi suggested that iotachi activation might depend upon prior Ca entry. This hypothesis was not supported, however, when [Ca]omicron was varied: elevating [Ca]omicron enhanced Ca entry, but iotachi was nevertheless depressed. Thus, the results suggested instead that Ca antagonists and Ca ions have rather similar effects on iotachi, possibly mediated by changes in membrane surface charge. 相似文献
12.
4-Aminopyridine and the early outward current of sheep cardiac Purkinje fibers 总被引:10,自引:0,他引:10 下载免费PDF全文
We have studied the effects of the potassium-blocking agent 4-aminopyridine (4-AP) on the action potential and membrane currents of the sheep cardiac Purkinje fiber. 4-AP slowed the rate of phase 1 repolarization and shifted the plateau of the action potential to less negative potentials. In the presence of 4-AP, the substitution of sodium methylsulfate or methanesulfonate for the NaCl of Tyrode's solution further slowed the rate of phase 1 repolarization, even though chloride replacement has no effect on the untreated preparation. In voltage clamp experiments, 4-AP rapidly and reversibly reduced the early peak of outward current that is seen when the Purkinje fiber membrane is voltage-clamped to potentials positive to -20 mV. In addition, 4-AP reduced the steady outward current seen at the end of clamp steps positive to -40 mV. 4-AP did not appear to change the slow inward current observed over the range of -60 to -40 mV, nor did it greatly change the current tails that have been used as a measure of the slow inward conductance at more positive potentials. 4-AP did not block the inward rectifying potassium currents, IK1 and IK2. A phasic outward current component that was insensitive to 4-AP was reduced by chloride replacement. We conclude that the early outward current has two components: a chloride-sensitive component plus a 4-AP-sensitive component. Since a portion of the steady-state current was sensitive to 4-AP, the early outward current either does not fully inactivate or 4-AP blocks a component of time-independent background current. 相似文献
13.
Inactivation properties of T-type calcium current in canine cardiac Purkinje cells. 总被引:2,自引:1,他引:1 下载免费PDF全文
The kinetic behavior of T-type Ca2+ current (ICa-T) was studied in canine cardiac Purkinje cells using a single suction-pipette whole-cell voltage clamp method. ICa-T was studied without contamination of conventional L-type Ca2+ current (ICa-L). Ca2+, Sr2+, or Ba2+ were used as the charge carrier. During maintained depolarization ICa-T decayed rapidly, and under most conditions the decay showed a voltage-dependent single exponential time course that did not depend on the species of charge carrier. The development of inactivation did not depend on Ca2+, but the time course required more than a single exponential process. Just negative to the threshold voltage for activating ICa-T, inactivation slowly developed and there was a delay in its onset. The time course of recovery from inactivation was dependent on the protocol used to measure it. As the duration of an inactivating voltage step was increased, recovery slowed markedly and there was a delay in its onset. The time course of recovery could be fit as a biexponential. The fast and slow time constants of recovery were relatively constant, however, the relative amplitudes were dependent on the duration of the inactivating voltage step. Recovery was not dependent on Ca2+, and it was slower at a less negative voltage. These results suggest that the T-type Ca2+ channel in cardiac Purkinje cells follows a complex kinetic scheme dependent only on voltage. This behavior can be accounted for by incorporating into a Markovian model several inactivated and closed states. 相似文献
14.
The events by which [Ca]O modifies diastolic depolarization (DD) were analyzed in sheep cardiac Purkinje fibers perfused in vitro. Cs (2 mM) reduced diastolic depolarization (DD) at different [Ca]O and in 10.8 mM [Ca]O revealed an oscillatory potential (VOS) and the decay of a prolonged depolarization (Vex). In the presence of Cs, procedures that reduce Cai (a slower driving rate, lower [Ca]O or tetrodotoxin) abolished VOS and Vex and partially restored DD. In 10.8 mM [Ca]O and at all driving rates, Cs reduced DD slope, DD amplitude and VOS amplitude but had little effect on the VOS time to peak. In 10.8 mM [Ca]O, decreasing calcium overload by different means (2.6 microM TTX, 0.2 mM Cd) abolished VOS and decreased DD slope and amplitude. Substituting Na with Li induced marked aftercontractions but small VOS. In 10.8 mM [Ca]O, Li increased the amplitude of the aftercontractions and decreased that of VOS. Li also depolarized slightly the resting membrane and abolished the voltage undershoot (Emax) at the end of the action potential. In low [K]O, Li repolarized the resting membrane but the repolarization was maintained only in the presence of Ca. It is concluded that Ca overload causes both VOS and Vex which can either be masked by or can mask DD depending on the magnitude of DD and of Ca overload. VOS is apparently caused by an electrogenic Na-Ca exchange since Li-induced Ca overload increases the aftercontraction but decreases VOS. 相似文献
15.
Thin canine cardiac Purkinje fibers in a fast flow chamber were exposed to K-free fluid for 15 s to 6 min to initiate "sodium loading," then returned to K-containing fluid to stimulate the sodium pump. The electrophysiological effects of enhanced pump activity may result from extracellular K depletion caused by enhanced cellular uptake of K or from an increase in the current generated as a result of unequal pumped movements of Na and K, or from both. The effects of pump stimulation were therefore studied under three conditions in which lowering the external K concentration ([K]0) causes changes opposite to those expected from an increase in pump current. First, the resting potential of Purkinje fibers may have either a "high" value of a "low" (less negative) value: at the low level of potential, experimental reduction of [K]0 causes depolarization, whereas an increase in pump current should cause hyperpolarization. Second, in regularly stimulated Purkinje fibers, lowering [K]0 prolongs the action potential, whereas an increase in outward pump current should shorten it. Finally, lowering [K]0 enhances spontaneous "pacemaker" activity in Purkinje fibers, whereas an increase in outward pump current should reduce or abolish spontaneous activity. Under all three conditions, we find that the effects of temporary stimulation of the sodium pump are those expected from a transient increase in outward pump current, not those expected from K depletion. 相似文献
16.
T Li R Bernabei P Carbonin M Vassalle 《Canadian journal of physiology and pharmacology》1986,64(11):1385-1394
The role of sodium and calcium on strophanthidin inotropy was studied in canine cardiac Purkinje fibers perfused in vitro under conditions that vary cellular sodium and calcium. With high concentrations of strophanthidin (greater than or equal to 10(-7) M), force increases more in the presence of low [Ca]0 or high [Na]0 and less in the presence of a low sodium-calcium concentration solution than in Tyrode solution. In a solution with a low concentration of sodium-calcium containing strophanthidin, restoring [Na]0 to normal decreases and then re-increases force: when [Na]0 is decreased again, the force transiently overshoots. These effects of strophanthidin are exaggerated by metabolic inhibitors. In a low [Ca] solution, low concentrations of strophanthidin (3 X 10(-8) or 5 X 10(-8) M) re-increase force a little or not at all. On recovery, the transient force increase is not exaggerated by low strophanthidin and is absent after manganese exposure. The inotropy of low concentrations of strophanthidin is potentiated by norepinephrine, high [Ca]0 (4 mM), or by lowering [Na]0. Thus, the present results suggest that the inotropic action of high strophanthidin concentrations depends primarily on sodium and secondarily on calcium, and that the inotropic action of low concentrations of strophanthidin involves a modification of the cell response to calcium. 相似文献
17.
18.
Membrane electrical properties were measured in sheep cardiac Purkinje fibers, having diameters ranging from 50 to 300 mum. Both membrane capacitance and conductance per unit area of apparent fiber surface varied fourfold over this range. Membrane time constant, and capacitance per unit apparent surface area calculated from the foot of the action potential were independent of fiber diameter, having average values of 18.8 +/- 0.7 ms, and 3.4 +/- 0.25 muF/cm2, respectively (mean +/- SEM). The conduction velocity and time constant of the foot of the action potential also appeared independent of diameter, having values of 3.0 +/- 0.1 m/s and 0.10 +/- 0.007 ms. These findings are consistent with earlier suggestions that in addition to membrane on the surface of the fiber, there exists a large fraction of membrane in continuity with the extracellular space but not directly on the surface of the fiber. Combining the electrical and morphological information, it was possible to predict a passive length constant for the internal membranes of about 100 mum and a time constant for chaning these membranes in a passive 100-mum fiber of 1.7 ms. 相似文献
19.