首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Src family tyrosine kinases (SFKs) are important regulators of epithelial cell growth and differentiation. Characterization of cellular mechanisms that regulate SFK activity will provide insights into the pathogenesis of diseases associated with increased SFK activity. Keratin 14-Fyn (K14) transgenic mice were derived to characterize the effect of Fyn on epidermal growth and differentiation in vivo. The epidermis of K14-Fyn mice is thickened, manifests prominent scale, and exhibits features consistent with hyperproliferation. Increased epidermal Fyn levels correlate with activation of p44/42 MAP kinases, STAT-3, and PDK-1, key signaling molecules that promote epithelial cell growth. The Src-activating and signaling molecule (Srcasm) is a substrate of SFKs that becomes tyrosine-phosphorylated downstream of the EGF receptor. In vitro, increased Srcasm levels promote activation of endogenous Fyn and keratinocyte differentiation. To study the in vivo effect of Srcasm upon Fyn, double transgenic lines were derived. K14-Fyn/Srcasm transgenic mice did not manifest the hyperproliferative phenotype. In contrast, K14-Fyn/Srcasm-P transgenic mice, which express a nonphosphorylatable Srcasm mutant, maintained the hyperproliferative phenotype. Resolution of the hyperproliferative phenotype correlated with reduced Fyn levels in vivo in three experimental systems: transgenic mice, primary keratinocytes, and cell lines. Biochemical studies revealed that Srcasm-dependent Fyn down-regulation requires Fyn kinase activity, phosphorylation of Srcasm, and the Srcasm GAT domain. Therefore, Srcasm is a novel regulator of Fyn promoting kinase down-regulation in a phosphorylation-dependent manner. Srcasm may act as a molecular "rheostat" for activated SFKs, and cellular levels of Srcasm may be important for regulating epithelial hyperproliferation associated with increased SFK activity.  相似文献   

2.
3.
p64 is a chloride channel of intracellular membranes which is present in regulated secretory vesicles. Mechanisms by which the p64 channel could be regulated are largely unknown. p59(fyn) is a non-receptor tyrosine kinase of the Src family that has been implicated in a variety of intracellular signaling events. The N-terminal portion of p64 has several potential binding sites for Src family SH2 domains. In this paper, we demonstrate that p64 becomes tyrosine phosphorylated when co-expressed with p59(fyn) in HeLa cells. We show that co-expression of p64 with p59(fyn) renders p64 a ligand for the SH2 domain of p59(fyn) and this SH2 binding is eliminated by treating p64 with alkaline phosphatase. Using site-directed mutagenesis, we find that tyrosine 33 in the p64 sequence is necessary for SH2 binding. We also characterized p64-p59(fyn) interactions using native material from bovine kidney. We found that a small fraction of native kidney p64 can bind Fyn SH2 in vitro. Immunoprecipitation of p64 from solubilized kidney membranes yields a kinase activity with the same mobility by SDS-polyacrylamide gel electrophoresis as authentic bovine p59(fyn). Finally, we demonstrate that co-expression of p64 and p59(fyn) in HeLa cells results in enhanced p64-associated chloride channel activity.  相似文献   

4.
BACKGROUND: Disabled-1 (Dab1) is an intracellular adaptor protein that regulates migrations of various classes of neurons during mammalian brain development. Dab1 function depends on its tyrosine phosphorylation, which is stimulated by Reelin, an extracellular signaling molecule. Reelin increases the stoichiometry of Dab1 phosphorylation and downregulates Dab1 protein levels. Reelin binds to various cell surface receptors, including two members of the low-density lipoprotein receptor family that also bind to Dab1. Mutations in Dab1, its phosphorylation sites, Reelin, or the Reelin receptors cause a common phenotype. However, the molecular mechanism whereby Reelin regulates Dab1 tyrosine phosphorylation is poorly understood.RESULTS: We found that Reelin-induced Dab1 tyrosine phosphorylation in neuron cultures is inhibited by acute treatment with pharmacological inhibitors of Src family, but not Abl family, kinases. In addition, Reelin stimulates Src family kinases by a mechanism involving Dab1. We analyzed the Dab1 protein level and tyrosine phosphorylation stoichiometry by using brain samples and cultured neurons that were obtained from mouse embryos carrying mutations in Src family tyrosine kinases. We found that fyn is required for proper Dab1 levels and phosphorylation in vivo and in vitro. When fyn copy number is reduced, src, but not yes, becomes important, reflecting a partial redundancy between fyn and src.CONCLUSIONS: Reelin activates Fyn to phosphorylate and downregulate Dab1 during brain development. The results were unexpected because Fyn deficiency does not cause the same developmental phenotype as Dab1 or Reelin deficiency. This suggests additional complexity in the Reelin signaling pathway.  相似文献   

5.
Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that gamma-tubulin (gamma-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, gamma-tubulin, and with anti-phosphotyrosine antibody revealed that gamma-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in gamma-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated gamma-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing gamma-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of gamma-tubulin interaction with tubulin dimers or other proteins during neurogenesis.  相似文献   

6.
Fyn is a Src family tyrosine kinase expressed abundantly in neurons and believed to have specific functions in the brain. To understand the function of Fyn tyrosine kinase, we attempted to identify Fyn Src homology 2 (SH2) domain-binding proteins from a Nonidet P-40-insoluble fraction of the mouse brain. beta-Adducin, an actin filament-associated cytoskeletal protein, was isolated by two-dimensional gel electrophoresis and identified by tandem mass spectrometry. beta-Adducin was tyrosine phosphorylated by coexpression with wild type but not with a kinase-negative form of Fyn in COS-7 cells. Cell staining analysis showed that coexpression of beta-adducin with Fyn induced translocation of beta-adducin from the cytoplasm to the periphery of the cells where it was colocalized with actin filaments and Fyn. These findings suggest that tyrosine-phosphorylated beta-adducin associates with the SH2 domain of Fyn and colocalizes under plasma membranes.  相似文献   

7.
SHP-2, an SH2 domain-containing protein-tyrosine phosphatase, plays an important role in receptor tyrosine kinase-regulated cell proliferation and differentiation. Little is known about the activation mechanisms and the participation of SHP-2 in the activity of G protein-coupled receptors lacking intrinsic tyrosine kinase activity. We show that the activity of SHP-2 (but not SHP-1) is specifically stimulated by the selective alpha2A-adrenergic receptor agonist UK14304 and by lysophosphatidic acid (LPA) in Madin-Darby canine kidney (MDCK) cells. UK14304 and LPA promote the tyrosine phosphorylation of SHP-2 and its association with Grb2. The agonist-induced direct interaction of Grb2 with SHP-2 is mediated by the SH2 domain of Grb2 and the tyrosine phosphorylation of SHP-2. Rapid activation of Src family kinase by UK14304 preceded the SHP-2 activation. Among the Src family members (Src, Fyn, Lck, Yes, and Lyn) present in MDCK cells, Fyn was the only one specifically associated with SHP-2, and the physical interaction between them, which requires the Src family kinase activity, was increased in response to the agonists. Pertussis toxin, PP1 (a selective Src family kinase inhibitor), or overexpression of a catalytically inactive mutant of Fyn blocked the UK14304- or LPA-stimulated activity of SHP-2, SHP-2 tyrosine phosphorylation, and SHP-2 association with Grb2. Therefore, we have demonstrated for the first time that the activation of SHP-2 by these Gi protein-coupled receptors requires Fyn kinase and that there is a specific physical interaction of Fyn kinase with SHP-2 in MDCK cells.  相似文献   

8.
Growth control of epithelial cells differs substantially from other cell types. Activation of Fyn, a Src kinase family member, is required for normal keratinocyte differentiation. We report that increased Fyn activity by itself suppresses growth of keratinocytes, but not dermal fibroblasts, through downmodulation of EGF receptor (EGFR) signaling. Protein kinase C-eta has also been implicated in keratinocyte growth/differentiation control. We show that growth suppression of keratinocytes by PKC-eta depends mostly on Fyn. PKC-eta activity is both necessary and sufficient for Fyn activation, PKC-eta and Fyn are found in association, and recombinant PKC-eta directly activates Fyn. Thus, our findings reveal a direct cross talk between PKC-eta and Fyn, which presides over the decision between keratinocyte (epithelial) cell growth and differentiation.  相似文献   

9.
The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The repression is mediated by binding between the SH2 domain and a C-terminal phosphotyrosine, and the SH3 domain is required for this interaction. However, the biochemical basis of functional SH2-SH3 interaction is unclear. Here, we demonstrate that when the SH2 and SH3 domains of p59fyn (Fyn) were present as adjacent domains in a single protein, binding of phosphotyrosyl peptides and proteins to the SH2 domain was enhanced, whereas binding of a subset of cellular polypeptide ligands to the SH3 domain was decreased. An interdomain communication was further revealed by occupancy with domain-specific peptide ligands: occupancy of the SH3 domain with a proline-rich peptide enhanced phosphotyrosine binding to the linked SH2 domain, and occupancy of the SH2 domain with phosphotyrosyl peptides enhanced binding of certain SH3-specific cellular polypeptides. Second, we demonstrate a direct binding between purified SH2 and SH3 domains of Fyn and Lck Src family kinases. Heterologous binding between SH2 and SH3 domains of closely related members of the Src family, namely, Fyn, Lck, and Src, was also observed. In contrast, Grb2, Crk, Abl, p85 phosphatidylinositol 3-kinase, and GTPase-activating protein SH2 domains showed lower or no binding to Fyn or Lck SH3 domains. SH2-SH3 binding did not require an intact phosphotyrosine binding pocket on the SH2 domain; however, perturbations of the SH2 domain induced by specific high-affinity phosphotyrosyl peptide binding abrogated binding of the SH3 domain. SH3-SH2 binding was observed in the presence of proline-rich peptides or when a point mutation (W119K) was introduced in the putative ligand-binding pouch of the Fyn SH3 domain, although these treatments completely abolished the binding to p85 phosphatidylinositol 3-kinase and other SH3-specific polypeptides. These biochemical SH2-SH3 interactions suggest novel mechanisms of regulating the enzymatic activity of Src kinases and their interactions with other proteins.  相似文献   

10.
In the central nervous system, myelination of axons occurs when oligodendrocyte progenitors undergo terminal differentiation and initiate process formation and axonal ensheathment. Although it is hypothesized that neuron-oligodendrocyte contact initiates this process, the molecular signals are not known. Here we find that Fyn tyrosine kinase activity is upregulated very early during oligodendrocyte progenitor cell differentiation. Concomitant with this increase is the appearance of several tyrosine phosphorylated proteins present only in differentiated cells. The increased tyrosine kinase activity is specific to Fyn, as other Src family members are not active in oligodendrocytes. To investigate the function of Fyn activation on differentiation, we used Src family tyrosine kinase inhibitors, PP1 and PP2, in cultures of differentiating oligodendrocyte progenitors. Treatment of progenitors with these compounds prevented activation of Fyn and reduced process extension and myelin membrane formation. This inhibition was reversible and not observed with related inactive analogues. A similar effect was observed when a dominant negative Fyn was introduced in progenitor cells. These findings strongly suggest that activation of Fyn is an essential signaling component for the morphological differentiation of oligodendrocytes.  相似文献   

11.
The Src-homology 3 (SH3) region is a protein domain consisting of approximately 60 residues. It occurs in a large number of eukaryotic proteins involved in signal transduction, cell polarization and membrane--cytoskeleton interactions. The function is unknown, but it is probably involved in specific protein--protein interactions. Here we report the crystal structure of the SH3 domain of Fyn (a Src family tyrosine kinase) at 1.9 A resolution. The crystals have two SH3 molecules per asymmetric unit. These two Fyn SH3 domains are not related by a local twofold axis. The crystal structures of spectrin and Fyn SH3 domains as well as the solution structure of the Src SH3 domain show that these all have the same basic fold. A protein domain which has the same topology as SH3 is present in the prokaryotic regulatory enzyme BirA. The comparison between the crystal structures of Fyn and spectrin SH3 domains shows that a conserved surface patch, consisting mainly of aromatic residues, is flanked by two hairpin-like loops (residues 94-104 and 114-118 in Fyn). These loops are different in tyrosine kinase and spectrin SH3 domains. They could modulate the binding properties of the aromatic surface.  相似文献   

12.
Fyn is a Src kinase known to have an essential role in mast cell degranulation induced following aggregation of the high affinity IgE-receptor. Although Fyn possesses SH2 and SH3 protein binding domains, the molecules that interact with Fyn have not been characterized in mast cells. We thus analyzed Fyn-binding proteins in MC/9 mast cells to explore the Fyn-mediated signaling pathway. On mass spectrometric analysis of proteins binding to the SH2 and SH3 domains of Fyn, we identified six proteins that bind to Fyn including vimentin, pyruvate kinase, p62 ras-GAP associated phosphoprotein, SLP-76, HS-1, and FYB. Among these proteins, vimentin and pyruvate kinase have not been shown to bind to Fyn. After IgE-receptor mediated stimulation, binding of vimentin to Fyn was increased; and this interaction was via binding to the SH2, but not the SH3, domain of Fyn. Mast cells from vimentin-deficient mice showed enhanced mediator release and tyrosine phosphorylation of intracellular proteins including NTAL and LAT. The observation that vimentin and pyruvate kinase bind to Fyn provides additional insight into Fyn-mediated signaling pathways, and suggests a critical role for Fyn in mast cell degranulation in interacting with both cytosolic and structural proteins.  相似文献   

13.
A Sobko  A Peretz    B Attali 《The EMBO journal》1998,17(16):4723-4734
In the nervous system, Src family tyrosine kinases are thought to be involved in cell growth, migration, differentiation, apoptosis, as well as in myelination and synaptic plasticity. Emerging evidence indicates that K+ channels are crucial targets of Src tyrosine kinases. However, most of the data accumulated so far refer to heterologous expression, and native K+-channel substrates of Src or Fyn in neurons and glia remain to be elucidated. The present study shows that a Src family tyrosine kinase constitutively activates delayed-rectifier K+ channels (IK) in mouse Schwann cells (SCs). IK currents are markedly downregulated upon exposure of cells to the tyrosine kinase inhibitors herbimycin A and genistein, while a potent upregulation of IK is observed when recombinant Fyn kinase is introduced through the patch pipette. The Kv1.5 and Kv2.1 K+-channel alpha subunits are constitutively tyrosine phosphorylated and physically associate with Fyn both in cultured SCs and in the sciatic nerve in vivo. Kv2.1- channel subunits are found to interact with the Fyn SH2 domain. Inhibition of Schwann cell proliferation by herbimycin A and by K+-channel blockers suggests that the functional linkage between Src tyrosine kinases and IK channels could be important for Schwann cell proliferation and the onset of myelination.  相似文献   

14.
Dok-like adapter molecules represent an expanding family of pleckstrin homology (PH) and phosphotyrosine-binding (PTB) domain-containing tyrosine kinase substrates with negative regulatory functions in hematopoietic cell signaling. In a search for nonhematopoietic counterparts to Dok molecules, we identified and characterized Dok-4, a recently cloned member of the family. dok-4 mRNA was strongly expressed in nonhematopoietic organs, particularly the intestine, kidney, and lung, whereas both mRNA and protein were expressed at high levels in cells of epithelial origin. In Caco-2 human colon cancer cells, endogenous Dok-4 underwent tyrosine phosphorylation in response to pervanadate stimulation. In transfected COS cells, Dok-4 was a substrate for the cytosolic tyrosine kinases Src and Fyn as well as for Jak2. Dok-4 could also be phosphorylated by the receptor tyrosine kinase Ret but not by platelet-derived growth factor receptor-beta or IGF-IR. In both mammalian cells and yeast, Dok-4 was constitutively localized at the membrane in a manner that required both its PH and PTB domains. The PH and PTB domains of Dok-4 were also required for tyrosine phosphorylation of Dok-4 by Fyn and Ret. Finally, wild type Dok-4 strongly inhibited activation of Elk-1 induced by either Ret or Fyn. The attenuation of this inhibitory effect by deletion of the PH domain and its restoration by the addition of a myristoylation signal suggested an important role for constitutive membrane localization of Dok-4. In summary, Dok-4 is a constitutively membrane-localized adapter molecule that may function as an inhibitor of tyrosine kinase signaling in epithelial cells.  相似文献   

15.
The tyrosine kinase Fyn is a member of the Src family kinases which are important in many integrin‐mediated cellular processes including cell adhesion and migration. Fyn has multiple phosphorylation sites which can affect its kinase activity. Among these phosphorylation sites, the serine 21 (S21) residue of Fyn is a protein kinase A (PKA) recognition site within an RxxS motif of the amino terminal SH4 domain of Fyn. In addition, S21 is critical for Fyn kinase‐linked cellular signaling. Mutation of S21A blocks PKA phosphorylation of Fyn and alters its tyrosine kinase activity. Expression of Fyn S21A in cells lacking Src family kinases (SYF cell) led to decreased tyrosine phosphorylation of focal adhesion kinase resulting in reduced focal adhesion targeting, which slowed lamellipodia dynamics and thus cell migration. These changes in cell motility were reflected by the fact that cells expressing Fyn S21A were severely deficient in their ability to assemble and disassemble focal adhesions. Taken together, our findings indicate that phosphorylation of S21 within the pPKA recognition site (RxxS motif) of Fyn regulates its tyrosine kinase activity and controls focal adhesion targeting, and that this residue of Fyn is critical for transduction of signals arising from cell‐extracellular matrix interactions. J. Cell. Physiol. 226: 236–247, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
17.
Huang R  Fang P  Kay BK 《New biotechnology》2012,29(5):526-533
Fyn is a nonreceptor protein tyrosine kinase that belongs to a highly conserved kinase family, Src family kinases. Fyn plays an important role in inflammatory processes and neuronal functions. To generate a synthetic affinity reagent that can be used to probe Fyn, a phage-display library of fibronectin type III monobodies was affinity selected with the Src Homology 3 (SH3) domain of Fyn and three binders were isolated. One of the three binders, G9, is specific in binding to the SH3 domain of Fyn, but not to the other members of the Src family (i.e. Blk, Fgr, Hck, Lck, Lyn, Src and Yes), even though they share 51-81% amino acid identity. The other two bind principally to the Fyn SH3 domain, with some cross-reactivity to the Yes SH3 domain. The G9 binder has a dissociation constant of 166±6nM, as measured by isothermal titration calorimetry, and binds only to the Fyn SH3 domain out of 150 human SH3 domains examined in an array. Interestingly, although the G9 monobody lacks proline in its randomized BC and FG loops, it binds at the same site on the SH3 domain as proline-rich ligands, as revealed by competition assays. The G9 monobody, identified in this study, may be used as a highly selective probe for detecting and purifying cellular Fyn kinase.  相似文献   

18.
Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched domains is a transmembrane adaptor protein primarily involved in negative regulation of T-cell activation by recruitment of C-terminal Src kinase (Csk), a protein tyrosine kinase which represses Src kinase activity through C-terminal phosphorylation. Recruitment of Csk occurs via SH2-domain binding to PAG pTyr317, thus, the interaction is highly dependent on phosphorylation performed by the Src family kinase Fyn, which docks onto PAG using a dual-domain binding mode involving both SH3- and SH2-domains of Fyn. In this study, we investigated Fyn SH3-domain binding to 14-mer peptide ligands derived from Cbp/PAG-enriched microdomains sequence using biochemical, biophysical and computational techniques. Interaction kinetics and dissociation constants for the various ligands were determined by SPR. The local structural impact of ligand association has been evaluated using CD, and molecular modelling has been employed to investigate details of the interactions. We show that data from these investigations correlate with functional effects of ligand binding, assessed experimentally by kinase assays using full-length PAG proteins as substrates. The presented data demonstrate a potential method for modulation of Src family kinase tyrosine phosphorylation through minor changes of the substrate SH3-interacting motif.  相似文献   

19.
Ren XR  Hong Y  Feng Z  Yang HM  Mei L  Xiong WC 《Neuro-Signals》2008,16(2-3):235-245
Deleted in colorectal cancer (DCC) and neogenin are receptors of netrins, a family of guidance cues that promote axon outgrowth and guide growth cones in developing nervous system. The intracellular mechanisms of netrins, however, remain elusive. In this paper, we show that both DCC and neogenin become tyrosine phosphorylated in cortical neurons in response to netrin-1. Using a site-specific antiphosphor DCC antibody, we show that Y1420 phosphorylation is increased in netrin-1-stimulated neurons and that tyrosine-phosphorylated DCC is located in growth cones. In addition, we show that tyrosine-phosphorylated DCC selectively interacts with the Src family kinases Fyn and Lck, but not Src, c-Abl, Grb2, SHIP1, Shc, or tensin, suggesting a role of Fyn or Lck in netrin-1-DCC signaling. Of interest to note is that tyrosine-phosphorylated neogenin and uncoordinated 5 H2 (Unc5H2) not only bind to the Src homology 2 (SH2) domains of Fyn and SHP2, but also interact with the SH2 domain of SHIP1, suggesting a differential signaling between DCC and neogenin/Unc5H2. Furthermore, we demonstrate that inhibition of Src family kinase activity attenuated netrin-1-induced neurite outgrowth. Together, these results suggest a role of Src family kinases and tyrosine phosphorylation of netrin-1 receptors in regulating netrin-1 function.  相似文献   

20.
Stimulation of murine T cells by engagement of the multi-component T cell antigen receptor or by cross-linking the Thy-1 molecule leads to a similar response characterized by lymphocyte activation and lymphokine production. The early biochemical events induced by engaging these molecules also are similar and begin with activation of a tyrosine kinase pathway and tyrosine phosphorylation of a comparable set of substrates. Previous work demonstrates that the protein tyrosine kinase p60fyn is associated with the antigen receptor and therefore it may participate in the tyrosine phosphorylations that are observed with antigen receptor signaling. In this study we demonstrate that the Thy-1 molecule is also associated with p60fyn in a murine T cell hybridoma and in murine thymocytes. The interaction is independent of antigen receptor expression. Thy-1 is a member of the class of molecules anchored to the plasma membrane by a glycophosphatidylinositol (GPI) group. The association of Thy-1 with p60fyn is dependent on the GPI linkage, since cleavage of the GPI anchor disrupts the interaction. The association of Thy-1 and p60fyn suggests a means by which Thy-1 cross-linking leads to tyrosine phosphorylation and T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号