首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Modulation of sarcoplasmic reticulum (SR) Ca(2+) transport by endogenous calmodulin-dependent protein kinase II (CaM K II) involves covalent changes of regulatory protein phospholamban (PLB), as a common, but not the only mechanism, in limb slow-twitch muscles of certain mammalian species, such as the rabbit. Here, using immunofluorescent techniques in situ, and biochemical and immunological methods on the isolated SR, we have demonstrated that rabbit masseter, a muscle with a distinct embryological origin, lacks PLB. Accommodating embryological heterogeneity in the paradigm of neural-dependent expression of specific isogenes in skeletal muscle fibers, our results provide novel evidence for the differential expression in the SR of 72 kDa beta components of CaM K II, together with the expression of a slow-twitch sarcoendoplasmic reticulum Ca(2+)-ATPase isoform, both in limb muscle and in the masseter.  相似文献   

2.
Systematic immunological and biochemical studies indicate that the level of expression of sarcoplasmic reticulum (SR) Ca(2+)-ATPase regulatory protein phospholamban (PLB) in mammalian slow-twitch fibers varies from zero, in the rat, to significant levels in the rabbit, and even higher in humans. The lack of PLB expression in the rat, at the mRNA level, is shown to be exclusive to slow-twitch skeletal muscle, and not to be shared by the heart, thus suggesting a tissue-specific, in addition to a species-specific regulation of PLB. A comparison of sucrose density-purified SR of rat and rabbit slow-twitch muscle, with regard to protein compositional and phosphorylation properties, demonstrates that the biodiversity is two-fold, i.e. (a) in PLB membrane density; and (b) in the ability of membrane-bound Ca(2+)-calmodulin (CaM)-dependent protein kinase II to phosphorylate both PLB and SERCA2a (slow-twitch isoform of Ca(2+)-ATPase). The basal phosphorylation state of PLB at Thr-17 in isolated SR vesicles from rabbit slow-twitch muscle, colocalization of CaM K II with PLB and SERCA2a at the same membrane domain, and the divergent subcellular distribution of PKA, taken together, seem to argue for a differential heterogeneity in the regulation of Ca(2+) transport between such muscle and heart muscle.  相似文献   

3.
Chronic excitation, at 2 Hz for 6-7 weeks, of the predominantly fast-twitch canine latissimus dorsi muscle promoted the expression of phospholamban, a protein found in sarcoplasmic reticulum (SR) from slow-twitch and cardiac muscle but not in fast-twitch muscle. At the same time that phospholamban was expressed, there was a switch from the fast-twitch (SERCA1) to the slow-twitch (SERCA2a) Ca(2+)-ATPase isoform. Antibodies against Ca(2+)-ATPase (SERCA2a) and phospholamban were used to assess the relative amounts of the slow-twitch/cardiac isoform of the Ca(2+)-ATPase and phospholamban, which were found to be virtually the same in SR vesicles from the slow-twitch muscle, vastus intermedius; cardiac muscle; and the chronically stimulated fast-twitch muscle, latissimus dorsi. The phospholamban monoclonal antibody 2D12 was added to SR vesicles to evaluate the regulatory effect of phospholamban on calcium uptake. The antibody produced a strong stimulation of calcium uptake into cardiac SR vesicles, by increasing the apparent affinity of the Ca2+ pump for calcium by 2.8-fold. In the SR from the conditioned latissimus dorsi, however, the phospholamban antibody produced only a marginal effect on Ca2+ pump calcium affinity. These different effects of phospholamban on calcium uptake suggest that phospholamban is not tightly coupled to the Ca(2+)-ATPase in SR vesicles from slow-twitch muscles and that phospholamban may have some other function in slow-twitch and chronically stimulated fast-twitch muscle.  相似文献   

4.
Anchoring protein alphaKAP targets calmodulin kinase II (CaMKII) to the sarcoplasmic reticulum (SR), and in the rabbit is a substrate of CaMKII itself in fast-twitch, but not in slow-twitch muscle. This work was aimed at elucidating the molecular basis for differential phosphorylation of alphaKAP. Here we show that two, immunologically related, size forms (23 and 21 kDa) of alphaKAP are present in fast-twitch muscle SR in a 3:1 stoichiometry. Phosphorylation experiments identified the shorter form as the CaMKII specific substrate. Both forms are shown to be stably integrated into the holoenzyme. Two splice variants of alphaKAP were found in rabbit fast-twitch muscle and only one in slow-twitch muscle, using RT-PCR. Mobilities on SDS-PAGE are those expected. The shorter splice variants lacks the 33-nucleotide sequence inserted by alternative splicing present in full-length alphaKAP, akin to differences between variants A and B of brain alphaCaMKII. The absence of the 11-amino acid sequence creates a novel CaMKII phosphorylation site. Taken together our results show that alternative splicing regulates alphaKAP phosphorylation in a fiber-type specific manner.  相似文献   

5.
Force decline during fatigue in skeletal muscle is attributed mainly to progressive alterations of the intracellular milieu. Metabolite changes and the decline in free myoplasmic calcium influence the activation and contractile processes. This study was aimed at evaluating whether fatigue also causes persistent modifications of key myofibrillar and sarcoplasmic reticulum (SR) proteins that contribute to tension reduction. The presence of such modifications was investigated in chemically skinned fibers, a procedure that replaces the fatigued cytoplasm from the muscle fiber with a normal medium. Myofibrillar Ca(2+) sensitivity was reduced in slow-twitch muscle (for example, the pCa value corresponding to 50% of maximum tension was 6.23 +/- 0.03 vs. 5.99 + 0.05, P < 0.01, in rested and fatigued fibers) and not modified in fast-twitch muscle. Phosphorylation of the regulatory myosin light chain isoform increased in fast-twitch muscle. The rate of SR Ca(2+) uptake was increased in slow-twitch muscle fibers (14.2 +/- 1.0 vs. 19.6 +/- 2. 5 nmol. min(-1). mg fiber protein(-1), P < 0.05) and not altered in fast-twitch fibers. No persistent modifications of SR Ca(2+) release properties were found. These results indicate that persistent modifications of myofibrillar and SR properties contribute to fatigue-induced muscle force decline only in slow fibers. These alterations may be either enhanced or counteracted, in vivo, by the metabolic changes that normally occur during fatigue development.  相似文献   

6.
The chronic stimulation of predominantly fast-twitch mammalian skeletal muscle causes a transformation to physiological characteristics of slow-twitch skeletal muscle. Here, we report the effects of chronic stimulation on the protein components of the sarcoplasmic reticulum and transverse tubular membranes which are directly involved in excitation-contraction coupling. Comparison of protein composition of microsomal fractions from control and chronically stimulated muscle was performed by immunoblot analysis and also by staining with Coomassie blue or the cationic carbocyanine dye Stains-all. Consistent with previous experiments, a greatly reduced density was observed for the fast-twitch isozyme of Ca(2+)-ATPase, while the expression of the slow-twitch Ca(2+)-ATPase was found to be greatly enhanced. Components of the sarcolemma (Na+/K(+)-ATPase, dystrophin-glycoprotein complex) and the free sarcoplasmic reticulum (Ca(2+)-binding protein sarcalumenin and a 53-kDa glycoprotein) were not affected by chronic stimulation. The relative abundance of calsequestrin was slightly reduced in transformed skeletal muscle. However, the expression of the ryanodine receptor/Ca(Ca2+)-release channel from junctional sarcoplasmic reticulum and the transverse tubular dihydropyridine-sensitive Ca2+ channel, as well as two junctional sarcoplasmic reticulum proteins of 90 kDa and 94 kDa, was greatly suppressed in transformed muscle. Thus, the expression of the major protein components of the triad junction involved in excitation-contraction coupling is suppressed, while the expression of other muscle membrane proteins is not affected in chronically stimulated muscle.  相似文献   

7.
Na+/K(+)-ATPase, Mg(2+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+)-ATPase are examined in cultured human skeletal muscle cells of different maturation grade and in human skeletal muscle. Na+/K(+)-ATPase is investigated by measuring ouabain binding and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase). SR Ca(2+)-ATPase is examined by ELISA, Ca(2+)-dependent phosphorylation and its activities on ATP and 3-O-methylfluorescein phosphate. Na+/K(+)-ATPase and SR Ca(2+)-ATPase are localized by immunocytochemistry. The activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase show a good correlation with the other assayed parameters of these ion pumps. All ATPase parameters investigated increase with the maturation grade of the cultured muscle cells. The number of ouabain-binding sites and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-MFPase are significantly higher in cultured muscle cells than in muscle. The Mg(2+)-ATPase activity, the content of SR Ca(2+)-ATPase and the activities of SR Ca(2+)-ATPase and Ca(2+)-dependent 3-O-MFPase remain significantly lower in cultured cells than in muscle. The ouabain-binding constant and the molecular activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase are equal in muscle and cultured cells. During ageing of human muscle the activity as well as the concentration of SR Ca(2+)-ATPase decrease. Thus the changes of the activities of the ATPases are caused by variations of the number of their molecules. Na+/K(+)-ATPase is localized in the periphery of fast- and slow-twitch muscle fibers and at the sarcomeric I-band. SR Ca(2+)-ATPase is predominantly confined to the I-band, whereas fast-twitch fibers are much more immunoreactive than slow-twitch fibers. The presence of cross-striation for Na+/K(+)-ATPase and SR Ca(2+)-ATPase in highly matured cultured muscle cells indicate the development and subcellular organization of a transverse tubular system and SR, respectively, which resembles the in vivo situation.  相似文献   

8.
(a) Chronic electrostimulation of fast-twitch skeletal muscles makes them resemble slow-twitch muscles. The involvement of second-messenger cascades in this muscle reprogramming is not well understood. The goal of this study was to examine protein kinase activities and calmodulin levels as a function of the duration of electrostimulation. (b) Fast-twitch rabbit muscle was subjected to continuous low-frequency electrostimulation for 2 weeks. The extensor digitorum longus was taken and examined for calmodulin concentration and cAMP-dependent (PKA). Ca(2+)-phospholipid-dependent (PKC) and Ca(2+)-calmodulin-dependent (CaM kinase or PKB) protein kinase activities. (c) Electrostimulation for 14 days led to a significant increase in total calmodulin level and PKB activity, both rising in the cytosolic fraction. Protein kinase C translocated to the membrane fraction, although total activity did not change. (d) These changes could be related with electrostimulation-induced changes in excitation-contraction coupling.  相似文献   

9.
Ca(2+)-calmodulin-dependent protein kinase II (CaM-kinase II) is a ubiquitous Ser/Thr-directed protein kinase that is expressed from a family of four genes (alpha, beta, gamma, and delta) in mammalian cells. We have documented the three-dimensional structures and the biophysical and enzymatic properties of the four gene products. Biophysical analyses showed that each isoform assembles into oligomeric forms and their three-dimensional structures at 21-25 A revealed that all four isoforms were dodecamers with similar but highly unusual architecture. A gear-shaped core comprising the association domain has the catalytic domains tethered on appendages, six of which extend from both ends of the core. At this level of resolution, we can discern no isoform-dependent differences in ultrastructure of the holoenzymes. Enzymatic analyses showed that the isoforms were similar in their K(m) for ATP and the peptide substrate syntide, but showed significant differences in their interactions with Ca(2+)-calmodulin as assessed by binding, substrate phosphorylation, and autophosphorylation. Interestingly, the rank order of CaM binding affinity (gamma > beta > delta > alpha) does not directly correlate with the rank order of their CaM dependence for autophosphorylation (beta > gamma > delta > alpha). Simulations utilizing this data revealed that the measured differences in CaM binding affinities play a minor role in the autophosphorylation of the enzyme, which is largely dictated by the rate of autophosphorylation for each isoform.  相似文献   

10.
Phospholamban is the regulator of the Ca(2+)-ATPase in cardiac sarcoplasmic reticulum (SR). The mechanism of regulation appears to involve inhibition by dephosphorylated phospholamban, and phosphorylation may relieve this inhibition. Fast-twitch skeletal muscle SR does not contain phospholamban, and it is not known whether the Ca(2+)-ATPase isoform from this muscle may be also subject to regulation by phospholamban in a similar manner as the cardiac isoform. To determine this we reconstituted the skeletal isoform of the SR Ca(2+)-ATPase with phospholamban in phosphatidylcholine proteoliposomes. Inclusion of phospholamban was associated with significant inhibition of the initial rates of Ca2+ uptake at pCa 6.0, and phosphorylation of phospholamban by the catalytic subunit of cAMP-dependent protein kinase reversed the inhibitory effects on the Ca2+ pump. Similar effects of phospholamban were also observed using phosphatidylcholine:phosphatidylserine proteoliposomes, in which the Ca2+ pump was activated by the negatively charged phospholipids (24). Regulation of the Ca(2+)-ATPase appeared to involve binding with the hydrophilic portion of phospholamban, as evidenced by cross-linking experiments, using a synthetic peptide that corresponded to amino acids 1-25 of phospholamban. These findings suggest that the fast-twitch isoform of the SR Ca(2+)-ATPase may be also regulated by phospholamban, although this regulator is not expressed in fast-twitch skeletal muscles.  相似文献   

11.
A direct binding of HRC (histidine-rich Ca(2+)-binding protein) to triadin, the main transmembrane protein of the junctional sarcoplasmic reticulum (SR) of skeletal muscle, seems well supported. Opinions are still divided, however, concerning the triadin domain involved, either the cytoplasmic or the lumenal domain, and the exact role played by Ca(2+), in the protein-to-protein interaction. Further support for colocalization of HRC with triadin cytoplasmic domain is provided here by experiments of mild tryptic digestion of tightly sealed TC vesicles. Accordingly, we show that HRC is preferentially phosphorylated by endogenous CaM K II, anchored to SR membrane on the cytoplasmic side, and not by lumenally located casein kinase 2. We demonstrate that HRC can be isolated as a complex with triadin, following equilibrium sucrose-density centrifugation in the presence of mM Ca(2+). Here, we characterized the COOH-terminal portion of rabbit HRC, expressed and purified as a fusion protein (HRC(569-852)), with respect to Ca(2+)-binding properties, and to the interaction with triadin on blots, as a function of the concentration of Ca(2+). Our results identify the polyglutamic stretch near the COOH terminus, as the Ca(2+)-binding site responsible, both for the acceleration in mobility of HRC on SDS-PAGE in the presence of millimolar concentrations of Ca(2+), and for the enhancement by high Ca(2+) of the interaction between HRC and triadin cytoplasmic segment. (c)2001 Elsevier Science.  相似文献   

12.
K U Bayer  K Harbers    H Schulman 《The EMBO journal》1998,17(19):5598-5605
Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) is present in a membrane-bound form that phosphorylates synapsin I on neuronal synaptic vesicles and the ryanodine receptor at skeletal muscle sarcoplasmic reticulum (SR), but it is unclear how this soluble enzyme is targeted to membranes. We demonstrate that alphaKAP, a non-kinase protein encoded by a gene within the gene of alpha-CaM kinase II, can target the CaM kinase II holoenzyme to the SR membrane. Our results indicate that alphaKAP (i) is anchored to the membrane via its N-terminal hydrophobic domain, (ii) can co-assemble with catalytically competent CaM kinase II isoforms and target them to the membrane regardless of their state of activation, and (iii) is co-localized and associated with rat skeletal muscle CaM kinase II in vivo. alphaKAP is therefore the first demonstrated anchoring protein for CaM kinase II. CaM kinase II assembled with alphaKAP retains normal enzymatic activity and the ability to become Ca2+-independent following autophosphorylation. A new variant of beta-CaM kinase II, termed betaM-CaM kinase II, is one of the predominant CaM kinase II isoforms associated with alphaKAP in skeletal muscle SR.  相似文献   

13.
The rev-erbAalpha orphan protein belongs to the steroid nuclear receptor superfamily. No ligand has been identified for this protein, and little is known of its function in development or physiology. In this study, we focus on 1) the distribution of the rev-erbAalpha protein in adult fast- and slow-twitch skeletal muscles and muscle fibers and 2) how the rev-erbAalpha protein influences myosin heavy chain (MyHC) isoform expression in mice heterozygous (+/-) and homozygous (-/-) for a rev-erbAalpha protein null allele. In the fast-twitch extensor digitorum longus muscle, rev-erbAalpha protein expression was linked to muscle fiber type; however, MyHC isoform expression did not differ between wild-type, +/-, or -/- mice. In the slow-twitch soleus muscle, the link between rev-erbAalpha protein and MyHC isoform expression was more complex than in the extensor digitorum longus. Here, a significantly higher relative amount of the beta/slow (type I) MyHC isoform was observed in both rev-erbAalpha -/- and +/- mice vs. that shown in wild-type controls. A role for the ratio of thyroid hormone receptor proteins alpha1 to alpha2 in modulating MyHC isoform expression can be ruled out because no differences were seen in MyHC isoform expression between thyroid hormone receptor alpha2-deficient mice (heterozygous and homozygous) and wild-type mice. Therefore, our data are compatible with the rev-erbAalpha protein playing an important role in the regulation of skeletal muscle MyHC isoform expression.  相似文献   

14.
Repetitive low frequency stimulation results in potentiation of twitch force development in fast-twitch skeletal muscle due to myosin regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent skeletal muscle myosin light chain kinase (skMLCK). We generated transgenic mice that express an skMLCK CaM biosensor in skeletal muscle to determine whether skMLCK or CaM is limiting to twitch force potentiation. Three transgenic mouse lines exhibited up to 22-fold increases in skMLCK protein expression in fast-twitch extensor digitorum longus muscle containing type IIa and IIb fibers, with comparable expressions in slow-twitch soleus muscle containing type I and IIa fibers. The high expressing lines showed a more rapid RLC phosphorylation and force potentiation in extensor digitorum longus muscle with low frequency electrical stimulation. Surprisingly, overexpression of skMLCK in soleus muscle did not recapitulate the fast-twitch potentiation response despite marked enhancement of both fast-twitch and slow-twitch RLC phosphorylation. Analysis of calmodulin binding to the biosensor showed a frequency-dependent activation to a maximal extent of 60%. Because skMLCK transgene expression is 22-fold greater than the wild-type kinase, skMLCK rather than calmodulin is normally limiting for RLC phosphorylation and twitch force potentiation. The kinase activation rate (10.6 s(-1)) was only 3.6-fold slower than the contraction rate, whereas the inactivation rate (2.8 s(-1)) was 12-fold slower than relaxation. The slower rate of kinase inactivation in vivo with repetitive contractions provides a biochemical memory via RLC phosphorylation. Importantly, RLC phosphorylation plays a prominent role in skeletal muscle force potentiation of fast-twitch type IIb but not type I or IIa fibers.  相似文献   

15.
Smooth muscle expresses in its endoplasmic reticulum an isoform of the Ca2+-transport ATPase that is very similar to or identical with that of the cardiac-muscle/slow-twitch skeletal-muscle form. However, this enzyme differs from that found in fast-twitch skeletal muscle. This conclusion is based on two independent sets of observations, namely immunological observations and phosphorylation experiments. Immunoblot experiments show that two different antibody preparations against the Ca2+-transport ATPase of cardiac-muscle sarcoplasmic reticulum also recognize the endoplasmic-reticulum/sarcoplasmic-reticulum enzyme of the smooth muscle and the slow-twitch skeletal muscle whereas they bind very weakly or not at all to the sarcoplasmic-reticulum Ca2+-transport ATPase of the fast-twitch skeletal muscle. Conversely antibodies directed against the fast-twitch skeletal-muscle isoform of the sarcoplasmic-reticulum Ca2+-transport ATPase do not bind to the cardiac-muscle, smooth-muscle or slow-twitch skeletal-muscle enzymes. The phosphorylated tryptic fragments A and A1 of the sarcoplasmic-reticulum Ca2+-transport ATPases have the same apparent Mr values in cardiac muscle, slow-twitch skeletal muscle and smooth muscle, whereas the corresponding fragments in fast-twitch skeletal muscle have lower apparent Mr values. This analytical procedure is a new and easy technique for discrimination between the isoforms of endoplasmic-reticulum/sarcoplasmic-reticulum Ca2+-transport ATPases.  相似文献   

16.
We identified the isoforms of Ca(2+) /calmodulin-dependent protein kinase II (CaM kinase II) subunits in rat striatum. All four subunits of CaM kinase II alpha, beta, gamma and delta were detected including the isoforms of alphaB, gammaA, gammaA', gammaA.B, delta3 and delta7 with nuclear localization signal. We established NG108-15 cells with the stably expressed dopamine D2L receptor (D2LR, long form), which is an alternative splicing variant. The cells were termed NGD2L. Immunostaining demonstrated that D2LR was localized in plasma membranes. Calcium imaging with fluo-3 AM revealed that quinpirole, a D2R agonist, increased the intracellular Ca(2+), which was blocked by treatment with sulpiride and pertussis toxin in NGD2L cells, but not in mock cells. Furthermore, stimulation of D2LR with quinpirole in NGD2L cells activated the nuclear isoform of CaM kinase II. Stimulation of D2LR increased the expression of exon III- and IV-BDNF mRNA. Overexpression of CaM kinase II delta3 increased exon IV- but not exon III-BDNF mRNA. These results suggest that D2R is involved in the activation of the nuclear isoform of CaM kinase II and thereby in stimulation of gene expression through Ca(2+) signaling.  相似文献   

17.
A Ca(2+)-calmodulin dependent protein kinase activity (DGC-PK) was previously shown to associate with skeletal muscle dystrophin glycoprotein complex (DGC) preparations, and phosphorylate dystrophin and a protein with the same electrophoretic mobility as alpha-syntrophin (R. Madhavan, H.W. Jarrett, Biochemistry 33 (1994) 5797-5804). Here, we show that DGC-PK and Ca(2+)-calmodulin dependent protein kinase II (CaM kinase II) phosphorylate a common site (RSDS(3616)) within the dystrophin C terminal domain that fits the consensus CaM kinase II phosphorylation motif (R/KXXS/T). Furthermore, both kinase activities phosphorylate exactly the same three fusion proteins (dystrophin fusions DysS7 and DysS9, and the syntrophin fusion) out of a panel of eight fusion proteins (representing nearly 100% of syntrophin and 80% of dystrophin protein sequences), demonstrating that DGC-PK and CaM kinase II have the same substrate specificity. Complementing these results, anti-CaM kinase II antibodies specifically stained purified DGC immobilized on nitrocellulose membranes. Renaturation of electrophoretically resolved DGC proteins revealed a single protein kinase band (M(r) approximately 60,000) that, like CaM kinase II, underwent Ca(2+)-calmodulin dependent autophosphorylation. Based on these observations, we conclude DGC-PK represents a dystrophin-/syntrophin-phosphorylating skeletal muscle isoform of CaM kinase II. We also show that phosphorylation of the dystrophin C terminal domain sequences inhibits their syntrophin binding in vitro, suggesting a regulatory role for phosphorylation.  相似文献   

18.
In this study radioimmunoassay, immunohistochemistry, Northern blot analysis, and a gel overlay technique have been used to examine the level, subcellular distribution, and potential target proteins of the S100 family of calcium-modulated proteins in adult and developing rat skeletal muscles. Adult rat muscles contained high levels of S100 proteins but the particular form present was dependent on the muscle type: cardiac muscle contained exclusively S100 alpha, slow-twitch skeletal muscle fibers contained predominantly S100 alpha, vascular smooth muscle contained both S100 alpha and S100 beta, and fast-twitch skeletal muscle fibers contained low but detectable levels of S100 alpha and S100 beta. While the distribution of S100 mRNAs paralled the protein distribution in all muscles there was no direct correlation between the mRNA and protein levels in different muscle types, suggesting that S100 protein expression is differentially regulated in different muscle types. Immunohistochemical analysis of the cellular distribution of S100 proteins in adult skeletal muscles revealed that S100 alpha staining was associated with muscle cells, while S100 beta staining was associated with nonmuscle cells. Radioimmunoassays of developing rat skeletal muscles demonstrated that all developing muscles contained low levels of S100 alpha at postnatal day 1 and that as development proceeded the S100 alpha levels increased. In contrast to adult muscle S100 alpha expression was confined to fast-twitch fibers in developing skeletal muscle until postnatal day 21. At postnatal day 1, developing contractile elements were S100 alpha positive, but no staining periodicity was detectable. At postnatal day 21, S100 alpha exhibited the same subcellular localization as seen in the adult: colocalization with the A-band and/or longitudinal sarcoplasmic reticulum. Comparison of the S100 alpha-binding protein profiles in fast- and slow-twitch fibers of various species revealed few, if any, species- or fiber type-specific S100 binding proteins. Isolated sarcoplasmic reticulum fractions and myofibrils contained multiple S100 alpha-binding proteins. The colocalization of S100 alpha and S100 alpha-binding proteins with the contractile apparatus and sarcoplasmic reticulum suggest that S100 alpha may regulate excitation and/or contraction in slow-twitch fibers.  相似文献   

19.
Summary Four monoclonal antibodies against the calcium ATPase in sarcoplasmic reticulum (SR) of rabbit fast-twitch skeletal muscle were characterized using SDS-PAGE, Western blots and immunofluorescence. The ultrastructural distribution of the antigens was determined using post-embedding immunolabeling. The antibodies recognized the calcium ATPase in the SR but not in transverse (T-) tubule or plasma membranes. The antibody, D12, had the same binding affinity for the calcium ATPase from fast-twitch (rabbit sternomastoid) and slow-twitch (rabbit soleus) fibers and the affinity fell by 30% after fixation for electron microscopy in both types of muscle fiber. Ultrastructural studies revealed that the density of D12 antibody binding to the terminal cisternae membrane of extensor digitorum longus (edl) and sternomastoid fibers was on average seven times greater than in the slow-twitch soleus and semimembranosus fibers. Since the affinity of the ATPase for the antibody was the same in SR from fast- and slow-twitch muscles, the concentration of calcium ATPase in the terminal cisternae membrane of fast-twitch fibers was seven times greater than in slow-twitch fibers. This conclusion was supported by the fact that the concentration of calcium ATPase in light SR membranes was six times greater in SR from fast-twitch fibers than in SR from slow-twitch fibers. The results provide strong evidence that the different calcium accumulation rates in mammalian fast- and slow-twitch muscles are due to different concentrations of calcium ATPase molecules in the SR membrane.  相似文献   

20.
Tropomyosin of fast-twitch, slow-twitch and cardiac muscles of carp and icefish has been isolated by hydroxyapatite chromatography. The subunit distribution has been investigated by polyacrylamide gel electrophoresis and by peptide mapping. The purified skeletal muscle tropomyosins all belong to the alpha family and differ from higher vertebrate tropomyosin by the lack of beta subunits. Specific alpha isotypes are however encountered in fast-twitch fibres (alpha w subunit) and slow-twitch or intermediate (pink) fibres (alpha and alpha w subunits). The amino acid compositions and the paracrystals formed by the carp alpha w alpha w and alpha alpha w tropomyosins do not differ markedly from that of rabbit alpha alpha chains. They differ however by their capability to inhibit the ATPase activity of rabbit skeletal muscle acto-HMM system. A beta-like subunit is found in carp cardiac tropomyosin, in the proportion of 25% of the native protein, but not in icefish heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号