首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An increasing number of biologists are expressing discontent with the prevailing theory of neo-Darwinism. In particular, the tendency of neo-Darwinians to adopt genetic determinism and atomistic notions of both genes and organisms is seen as grossly unfair to the body of developmental theory. One faction of dissenteers, the Process Structuralists, take their inspiration from the rational morphologists who preceded Darwin. These neo-rationalists argue that a mature biology must possess universal laws and that these generative laws should be sought within organismal development. Such a rational biology will only be possible once the neo-Darwinian paradigm, with its reliance on inherently stochastic processes, is overthrown.To facilitate this revolution, process structuralism launches a broad attack on the theoritical adequacy of its opponent. It is charged that neo-Darwinism is untestable and therefore its hypotheses are nothing more than adaptive stories. Further, the lamentable tendencies toward genetic determinism and atomism by modern biologists is seen as the inescapable consequences of adopting the neo-Darwinian outlook.I allow that neo-Darwinism is untestable but argue that this does not pose a major difficulty for the theory. Further, it is not clear to what extent genetic determinism and atomism result from sloppy methodology as opposed to fundamental theoritical commitments. But the process structuralist critique does reveal some deep-seated problems with orthodox evolutionary theory and some of its suggestions may be employed to good effect.  相似文献   

2.
Failing to acknowledge substantial differences between Darwinism and neo-Darwinism impedes evolutionary biology. Darwin described evolution as the outcome of interactions between the nature of the organism and the nature of the conditions, each relatively autonomous but both historically and spatially intertwined. Furthermore, he postulated that the nature of the organism was more important than the nature of the conditions, leading to natural selection as an inevitable emergent product of biological systems. The neo-Darwinian tradition assumed a creative rather than selective view of natural selection, with the nature of the organism determined by the nature of the conditions, rendering the nature of the organism and temporal contingency unnecessary. Contemporary advances in biology, specifically the phylogenetics revolution and evo-devo, underscore the significance of history and the nature of the organism in biology. Darwinism explains more biology better, and better resolves apparent anomalies between living systems and more general natural laws, than does neo-Darwinism. The "extended" or "expanded" synthesis currently called for by neo-Darwinians is Darwinism.  相似文献   

3.
Three early 20th-century attempts at unifying separate areas of biology, in particular development, genetics, physiology, and evolution, are compared in regard to their success and fruitfulness for further research: Jacques Loeb's reductionist project of unifying approaches by physico-chemical explanations; Richard Goldschmidt's anti-reductionist attempts to unify by integration; and Sewall Wright's combination of reductionist research and vision of hierarchical genetic systems. Loeb's program, demanding that all aspects of biology, including evolution, be studied by the methods of the experimental sciences, proved highly successful and indispensible for higher level investigations, even though evolutionary change and properties of biological systems up to now cannot be fully explained on the molecular level alone. Goldschmidt has been appraised as pioneer of physiological and developmental genetics and of a new evolutionary synthesis which transcended neo-Darwinism. However, this study concludes that his anti-reductionist attempts to integrate genetics, development and evolution have to be regarded as failures or dead ends. His grand speculations were based on the one hand on concepts and experimental systems that were too vague in order to stimulate further research, and on the other on experiments which in their core parts turned out not to be reproducible. In contrast, Sewall Wright, apart from being one of the architects of the neo-Darwinian synthesis of the 1930s, opened up new paths of testable quantitative developmental genetic investigations. He placed his research within a framework of logical reasoning, which resulted in the farsighted speculation that examinations of biological systems should be related to the regulation of hierarchical genetic subsystems, possibly providing a mechanism for development and evolution. I argue that his suggestion of basing the study of systems on clearly defined properties of the components has proved superior to Goldschmidt's approach of studying systems as a whole, and that attempts to integrate different fields at a too early stage may prove futile or worse.  相似文献   

4.
ABSTRACT   Anthropologists often disagree about whether, or in what ways, anthropology is "evolutionary." Anthropologists defending accounts of primate or human biological development and evolution that conflict with mainstream "neo-Darwinian" thinking have sometimes been called "creationists" or have been accused of being "antiscience." As a result, many cultural anthropologists struggle with an "anti-antievolutionism" dilemma: they are more comfortable opposing the critics of evolutionary biology, broadly conceived, than they are defending mainstream evolutionary views with which they disagree. Evolutionary theory, however, comes in many forms. Relational evolutionary approaches such as Developmental Systems Theory, niche construction, and autopoiesis–natural drift augment mainstream evolutionary thinking in ways that should prove attractive to many anthropologists who wish to affirm evolution but are dissatisfied with current "neo-Darwinian" hegemony. Relational evolutionary thinking moves evolutionary discussion away from reductionism and sterile nature–nurture debates and promises to enable fresh approaches to a range of problems across the subfields of anthropology. [Keywords: evolutionary anthropology, Developmental Systems Theory, niche construction, autopoeisis, natural drift]  相似文献   

5.
Accounting for the evolutionary origins of morphological novelty is one of the core challenges of contemporary evolutionary biology. A successful explanatory framework requires the integration of different biological disciplines, but the relationships between developmental biology and standard evolutionary biology remain contested. There is also disagreement about how to define the concept of evolutionary novelty. These issues were the subjects of a workshop held in November 2009 at the University of Alberta. We report on the discussion and results of this workshop, addressing questions about (i) how to define evolutionary novelty and understand its significance, (ii) how to interpret evolutionary developmental biology as a synthesis and its relation to neo-Darwinian evolutionary theory, and (iii) how to integrate disparate biological approaches in general.  相似文献   

6.
Compelling evidence for an adaptive origin of aging has clashed with traditional evolutionary theory based on exclusively individual selection. The consensus view has been to try to understand aging in the context of a narrow, restrictive evolutionary paradigm, called the Modern Synthesis, or neo-Darwinism. But neo-Darwinism has shown itself to be inadequate in other ways, failing to account for stable ecosystems, for the evolution of sex and the maintenance of diversity and the architecture of the genome, which appears to be optimized for evolvability. Thus aging is not the only reason to consider overhauling the standard theoretical framework. Selection for stable ecosystems is rapid and efficient, and so it is the easiest modification of the neo-Darwinian paradigm to understand and to model. Aging may be understood in this context. More profound and more mysterious are the ways in which the process of evolution itself has been transformed in a bootstrapping process of selection for evolvability. Evolving organisms have learned to channel their variation in ways that are likely to enhance their long-term prospects. This is an expanded notion of fitness. Only in this context can the full spectrum of sophisticated adaptations be understood, including aging, sex, diversity, ecological interdependence, and the structure of the genome.  相似文献   

7.
First, a brief history is provided of Popper's views on the status of evolutionary biology as a science. The views of some prominent biologists are then canvassed on the matter of falsifiability and its relation to evolutionary biology. Following that, I argue that Popper's programme of falsifiability does indeed exclude evolutionary biology from within the circumference of genuine science, that Popper's programme is fundamentally incoherent, and that the correction of this incoherence results in a greatly expanded and much more realistic concept of what is empirical, resulting in the inclusion of evolutionary biology. Finally, this expanded concept of empirical is applied to two particular problems in evolutionary biology — viz., the species problem and the debate over the theory of punctuated equilibria — and it is argued that both of them are still mainly metaphysical.  相似文献   

8.
Functional morphology and evolutionary biology   总被引:4,自引:1,他引:3  
In this study the relationship between functional morpholoy and evolutionary biology is analysed by confronting the main concepts in both disciplines.Rather than only discussing this connection theoretically, the analysis is carried out by introducing important practical and experimental studies, which use aspects from both disciplines. The mentioned investigations are methodologically analysed and the consequences for extensions of the relationship are worked out. It can be shown that both disciplines have a large domain of their own and also share a large common ground. Many disagreements among evolutionary biologists can be reduced to differences in general philosophy (idealism vs. realism), selection of phenomenona (structure vs. function), definition of concepts (natural selection) and the position of the concept theory as an explaining factor (neutralists vs. selectionists, random variation, determinate selection, etc.).The significance of functional morphology for evolutionary biology, and vice versa depends on these differences. For a neo-Darwinian evolutionary theory, contributions from functional and ecological morphology are indispensable. Of ultimate importance are the notions of internal selection and constraints in the constructions determining further development. In this context the concepts of random variation and natural selection need more detailed definition.The study ends with a recommendation for future research founded in a system-theoretical or structuralistic conception.  相似文献   

9.
Abstract.— The idea of genetic assimilation, that environmentally induced phenotypes may become genetically fixed and no longer require the original environmental stimulus, has had varied success through time in evolutionary biology research. Proposed by Waddington in the 1940s, it became an area of active empirical research mostly thanks to the efforts of its inventor and his collaborators. It was then attacked as of minor importance during the "hardening" of the neo-Darwinian synthesis and was relegated to a secondary role for decades. Recently, several papers have appeared, mostly independently of each other, to explore the likelihood of genetic assimilation as a biological phenomenon and its potential importance to our understanding of evolution. In this article we briefly trace the history of the concept and then discuss theoretical models that have newly employed genetic assimilation in a variety of contexts. We propose a typical scenario of evolution of genetic assimilation via an intermediate stage of phenotypic plasticity and present potential examples of the same. We also discuss a conceptual map of current and future lines of research aimed at exploring the actual relevance of genetic assimilation for evolutionary biology.  相似文献   

10.
Darwinism is defined here as an evolving research tradition based upon the concepts of natural selection acting upon heritable variation articulated via background assumptions about systems dynamics. Darwin's theory of evolution was developed within a context of the background assumptions of Newtonian systems dynamics. The Modern Evolutionary Synthesis, or neo-Darwinism, successfully joined Darwinian selection and Mendelian genetics by developing population genetics informed by background assumptions of Boltzmannian systems dynamics. Currently the Darwinian Research Tradition is changing as it incorporates new information and ideas from molecular biology, paleontology, developmental biology, and systems ecology. This putative expanded and extended synthesis is most perspicuously deployed using background assumptions from complex systems dynamics. Such attempts seek to not only broaden the range of phenomena encompassed by the Darwinian Research Tradition, such as neutral molecular evolution, punctuated equilibrium, as well as developmental biology, and systems ecology more generally, but to also address issues of the emergence of evolutionary novelties as well as of life itself.  相似文献   

11.
During the early part of the 20th century most embryologists were skeptical about the significance of Mendelian genetics to embryological development. A few embryologists began to study the developmental effects of Mendelian genes around 1940. Such work was a necessary step on the path to modern developmental biology. It occurred during the time when the Evolutionary Synthesis was integrating Mendelian and population genetics into a unified evolutionary theory. Why did the first embryological geneticists begin their study at that particular time? One possible explanation is that developmental genetics was a potential avenue of alliance between embryology and evolutionary biology, two fields that had been separated since the 1890s. To assess this possible motive it is necessary to explore the methodological contrasts that obtained between embryology and both Mendelian-chromosomal genetics and neo-Darwinian evolutionary theory. Some of these contrasts persist to the present day.  相似文献   

12.
Nature has recently depicted the empirical advancements of the theory of evolution as a confrontation between “reformists”, that claim for an urgent rethinking of the standard neo-Darwinian approach including so far neglected factors and processes, and “conservatives” who reply “all is well” about the current evolutionary research programme based on genetic variation and natural selection. The fight is mainly around genetic reductionism, but it seems inconclusive. Reformists stress very important factors, but they are still missing a coherent proposal about the architecture of the future extended evolutionary theory. Conservative react defensively, relying just on non-essential add-ons to the old and stable neo-Darwinian core. We analyze the debate and we propose an interpretation. Evolutionary biology is a rapidly expanding field. The bone of contention is how to update and extend the central core of the Darwinian legacy. We propose here the idea that what is happening in the field today is a development of the evolutionary research programme, whose structure is composed of a set of compatible and integrated evolutionary patterns. Evolutionary biology has been extended over its history by the inclusion of more and more patterns, rather than by revision to core theory. Niles Eldredge’s “Hierarchy Theory” is an example of global structure (meta-theory) aiming at incorporating and unifying the currently observed evolutionary patterns.  相似文献   

13.
SUMMARY Evolutionary developmental biology has already made a major contribution to our understanding of evolutionary patterns, notably homology. However, while it has the potential to make an equally important contribution to our understanding of evolutionary mechanisms, and indeed to the integration of mechanism and pattern, it has not yet done so. This paper explores how this potential may be realized. In particular, I focus on the limitations of present-day neo-Darwinian theory, and indicate how a combination of the neo-Darwinian and "evo-devo" approaches provides a more inclusive view of evolutionary mechanisms with greater explanatory power. There is a particular focus on developmental reprogramming, which lies logically between mutation and selection, yet has been neglected in mainstream evolutionary theory. The inclusion of developmental reprogramming in the list of evolutionary mechanisms leads to a view that the direction of evolutionary change is determined by a combination of internal and external factors, rather than being controlled entirely by the environment.  相似文献   

14.
Biologists and philosophers have long recognized the importance of species, yet species concepts serve two masters, evolutionary theory on the one hand and taxonomy on the other. Much of present-day evolutionary and systematic biology has confounded these two roles primarily through use of the biological species concept. Theories require entities that are real, discrete, irreducible, and comparable. Within the neo-Darwinian synthesis, however, biological species have been treated as real or subjectively delimited entities, discrete or nondiscrete, and they are often capable of being decomposed into other, smaller units. Because of this, biological species are generally not comparable across different groups of organisms, which implies that the ontological structure of evolutionary theory requires modification. Some biologists, including proponents of the biological species concept, have argued that no species concept is universally applicable across all organisms. Such a view means, however, that the history of life cannot be embraced by a common theory of ancestry and descent if that theory uses species as its entities.These ontological and biological difficulties can be alleviated if species are defined in terms of evolutionary units. The latter are irreducible clusters of reproductively cohesive organisms that are diagnosably distinct from other such clusters. Unlike biological species, which can include two or more evolutionary units, these phylogenetic species are discrete entities in space and time and capable of being compared from one group to the next.  相似文献   

15.
Abstract

In 1978 George C. Williams predicted that the last two decades of this century would be a fabulous age, and that evolutionary biology would provide critical insights into the processes of change in the biological world. He suggested that these might come to be described as the “good old days”. I am not so sure that this is likely, but I am very sure that it will be a turbulent time. I think also that those biologists who attended the recent SYSTANZ meeting on evolution must by now be equally convinced. The conference was punctuated by heated debates on major topics such as Darwinian and neo-Darwinian theory, vicariance biogeography, and teleology, to mention but a few.  相似文献   

16.
The horns of a dilemma are usually on the same bull–Spanish proverb. A plague o' both your houses–Veronese imprecation. Although some hypotheses explain the world better than others, making ‘pluralism’ an untenable position, it is the case that scientists frequently set up as alternative hypotheses, one of which must be rejected, models which are merely compatible aspects of some other valid hypothesis that embraces them both. For example, Miillerian mimicry was once supposed to evolve either by a single large change or by gradual convergence (the assumption of gradualism is such that the second alternative has usually been regarded as correct). Yet our genetical research with Heliconius indicates that both processes take place, one after the other, when Miillerian mimicry evolves. A reconstruction of the most plausible route, through time and space, for the evolution of mimicry in Heliconius erato and H. melpomene is used to suggest that two currently popular controversies are similarly futile: the allopatric and parapatric models of race formation are considered to be the extremes of what in nature is a continuum of populations showing varying degrees of partial isolation (ecological change rather than stoppage of gene flow being the driving force in race formation); and it is shown that jerky evolution of the type now interpreted as evidence for ‘punctuated equilibria’ and ‘hopeful monsters’ can be produced by changes in the frequencies of major but ordinary gene mutations in response to changing ecological conditions, a phenomenon well accounted for in neo-Darwinian theory.  相似文献   

17.
This paper examines a new challenge to neo-Darwinism, a movement known as process structuralism. The process structuralist critique of neo-Darwinism holds 1) that there are general laws in biology and that biologists should search for these laws; 2) that there are general forms of morphology and development and that biologists should attempt to uncover these forms; 3) that organisms are unified wholes that cannot be understood without adopting a holistic perspective; and 4) that no special, causal primacy should be given to the genes in development and morphology. This paper places process structuralism in its historical context, examines the philosophical underpinnings of the movement, and discusses some of the evidence used to support its claims.  相似文献   

18.
In 2009, we are celebrating the 200th anniversary of Charles Darwin and the 150th jubilee of his masterpiece, the Origin of Species. Darwin constructed the first coherent and compelling narrative of biological evolution and thus founded evolutionary biology—and modern biology in general, remembering the famous dictum of Dobzhansky. It is, however, counter-productive, and ultimately, a disservice to Darwin’s legacy, to define modern evolutionary biology as neo-Darwinism. The current picture of evolution, informed by results of comparative genomics and systems biology, is by far more complex than that presented in the Origin of Species, so that Darwinian principles, including natural selection, are incorporated into the evolving new synthesis as important but certainly not all-embracing tenets. This expansion of evolutionary biology does not denigrate Darwin in the least but rather emphasizes the fertility of his ideas.  相似文献   

19.
Evolutionary developmental biology and niche-construction theory have much in common, despite independent intellectual origins. Both place emphasis on the role of ontogenetic processes in evolution. The same historical events shaped them, and similar philosophical and sociological barriers hindered their respective advances. Both perspectives maintain that neo-Darwinism needs a theory of macroevolutionary variation and that such a theory can now be adduced from developmental biology. Some proponents of both EvoDevo and niche construction propose additional evolutionary mechanisms, and specify a key role for stable extra-genetic forms of inheritance. Similarly, proponents of each lay emphasis on "reciprocal causation" in the relationship between organism and environment. We illustrate here how EvoDevo and niche construction could gain "added value" from each other, and demonstrate how the niche-construction perspective potentially provides a useful conduit to integrate evolutionary and developmental biology.  相似文献   

20.
Evolutionary biology rejoices in the diversity of life, but this comes at a cost: other than working in the common framework of neo-Darwinian evolution, specialists in, for example, diatoms and mammals have little to say to each other. Accordingly, their research tends to track the particularities and peculiarities of a given group and seldom enquires whether there are any wider or deeper sets of explanations. Here, I present evidence in support of the heterodox idea that evolution might look to a general theory that does more than serve as a tautology (‘evolution explains evolution’). Specifically, I argue that far from its myriad of products being fortuitous and accidental, evolution is remarkably predictable. Thus, I urge a move away from the continuing obsession with Darwinian mechanisms, which are entirely uncontroversial. Rather, I emphasize why we should seek explanations for ubiquitous evolutionary convergence, as well as the emergence of complex integrated systems. At present, evolutionary theory seems to be akin to nineteenth-century physics, blissfully unaware of the imminent arrival of quantum mechanics and general relativity. Physics had its Newton, biology its Darwin: evolutionary biology now awaits its Einstein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号