首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-[Arg(3)]insulin-like growth factor-I (IGF-I) is a potent analog of insulin-like growth factor-I that has been modified by a Glu(3) --> Arg mutation and a 13-amino acid extension appended to the N terminus. We have determined the solution structure of (15)N-labeled Long-[Arg(3)]-IGF-I using high resolution NMR and restrained molecular dynamics techniques to a precision of 0.82 +/- 0.28 A root mean square deviation for the backbone heavy atoms in the three alpha-helices and 3.5 +/- 0.9 A root mean square deviation for all backbone heavy atoms excluding the 8 N-terminal residues and the 8 C-terminal eight residues. Overall, the structure of the IGF-I domain is consistent with earlier studies of IGF-I with some minor changes remote from the N terminus. The major variations in the structure, compared with IGF-I, occur at the N terminus with a substantial reorientation of the N-terminal three residues of the IGF-I domain. These results are interpreted in terms of the lower binding affinity for insulin-like growth factor-binding proteins. The backbone dynamics of Long-[Arg(3)]IGF-I were investigated using (15)N nuclear spin relaxation and the heteronuclear nuclear Overhauser enhancement (NOE). There is a considerable degree of flexibility in Long-[Arg(3)]IGF-I, even in the alpha-helices, as indicated by an average ((1)H)(15)N NOE of 0.55 for the regions. The largest heteronuclear NOEs are observed in the helical regions, lower heteronuclear NOEs are observed in the C-domain loop separating helix 1 from helix 2, and negative heteronuclear NOEs are observed in the N-terminal extension and at the C terminus. Despite these data indicating conformational flexibility for the N-terminal extension, slow amide proton exchange was observed for some residues in this region, suggesting some transitory structure does exist, possibly a molten helix. A certain degree of flexibility may be necessary in all insulin-like growth factors to enable association with various receptors and binding proteins.  相似文献   

2.
Low resolution electron density maps have revealed the general orientation of the transmembrane helices of rhodopsin. However, high resolution structural information for the transmembrane domain of the G-protein-coupled receptor, rhodopsin, is as yet unavailable. In this study, a high resolution solution structure is reported for a 15 residue portion of the sixth transmembrane helix of rhodopsin (rhovih) as a free peptide. Helix 6 is one of the transmembrane helices of rhodopsin that contains a proline (amino acid residue 267) and the influence of this proline on the structure of this transmembrane domain was unknown. The structure obtained shows an alpha-helix through most of the sequence. The proline apparently induces only a modest distortion in the helix. Previously, the structure of the intradiskal loop connected to helix 6 was solved. The sequence of this loop contained five residues in common (residues 268-272) with the peptide reported here from the rhovih. The five residues in common between these two structures were superimposed to connect these two structures. The superposition showed a root mean square deviation of 0.2 A. Thus, this five residue sequence formed the same structure in both peptides, indicating that the structure of this region is governed primarily by short range interactions.  相似文献   

3.
The solution structure of a leucine-zipper motif peptide   总被引:5,自引:0,他引:5  
We report the complete structure determination of a 34 residue synthetic peptide with the amino acid sequence of the dimerization domain (leucine zipper) of GCN4. A high resolution structure in solution was obtained by 1H-NMR studies and distance geometry calculations followed by restrained energy minimization. A set of 20 final structures was obtained with an average root mean square deviation of 1.3 A for the backbone atoms (excluding the first and the last two residues). The structure contains an uninterrupted helix. A comparison with a structure previously determined for a larger peptide containing both the DNA-binding region (basic region) and the leucine-zipper motif shows the structural independence of the leucine-zipper domain from the contiguous DNA binding region.  相似文献   

4.
T P Ko  J D Ng    A McPherson 《Plant physiology》1993,101(3):729-744
The three-dimensional structure of the vicilin storage protein canavalin, from Canavalia ensiformis, has been determined in a hexagonal crystal by x-ray diffraction methods. The model has been refined at 2.6 A resolution to an R factor of 0.197 with acceptable geometry. Because of proteolysis, 58 of 419 amino acids of the canavalin polypeptide are not visible in the electron density map. The canavalin subunit is composed of two extremely similar structural domains that reflect the tandem duplication observed in the cDNA and in the amino acid sequence. Each domain consists of two elements, a compact, eight-stranded beta-barrel having the "Swiss roll" topology and an extended loop containing several short alpha-helices. The root mean square deviation between 84 pairs of corresponding C alpha atoms making up the strands of the two beta-barrels in a subunit is 0.78 A, and for 112 pairs of structurally equivalent C alpha atoms of the two domains the deviation is 1.37 A. The interface between domains arises from the apposition of broad hydrophobic surfaces formed by side chains originating from one side of the beta-barrels, supplemented by at least four salt bridges. The interfaces between subunits in the trimer are supplied by the extended loop elements. These interfaces are also composed primarily of hydrophobic residues supplemented by six salt bridges. The canavalin subunits have dimensions about 40 x 40 x 86 A, and the oligomer is a disk-shaped molecule about 88 A in diameter with a thickness of about 40 A. The distribution of domains lends a high degree of pseudo-32-point group symmetry to the molecule. There is a large channel of 18 A diameter, lined predominantly by hydrophilic and charged amino acids, running through the molecule along the 3-fold axis. The majority of residues conserved between domains and among vicilins occur at the interface between subunits but appear otherwise arbitrarily distributed within the subunit, although predominantly on its exterior.  相似文献   

5.
The three-dimensional structure of the rhodanese homology domain At4g01050(175-195) from Arabidopsis thaliana has been determined by solution nuclear magnetic resonance methods based on 3043 upper distance limits derived from NOE intensities measured in three-dimensional NOESY spectra. The structure shows a backbone root mean square deviation to the mean coordinates of 0.43 A for the structured residues 7-125. The fold consists of a central parallel beta-sheet with five strands in the order 1-5-4-2-3 and arranged in the conventional counterclockwise twist, and helices packing against each side of the beta-sheet. Comparison with the sequences of other proteins with a rhodanese homology domain in Arabidopsis thaliana indicated residues that could play an important role in the scaffold of the rhodanese homology domain. Finally, a three-dimensional structure comparison of the present noncatalytic rhodanese homology domain with the noncatalytic rhodanese domains of sulfurtransferases from other organisms discloses differences in the length and conformation of loops that could throw light on the role of the noncatalytic rhodanese domain in sulfurtransferases.  相似文献   

6.
The solution structure of the 53 amino acid peptide hormone, human epidermal growth factor (hEGF), has been determined to high resolution from nuclear magnetic resonance (n.m.r.) data. A large number of internuclear distance and dihedral restraints was obtained, including data from uniformly 15N-labelled hEGF. Dynamical simulated annealing methods using the program XPLOR were used for structure calculation. An improved protocol was developed combining efficient conformational searching at a reduced computational cost. The general fold of the calculated structures compared well with that of a derivative of the carboxy-terminally truncated hEGF determined previously. A group of 44 structures were calculated with no violations greater than 0.3 A and 3 degrees for distance and dihedral restraints, respectively. The average pairwise root mean square (r.m.s.) deviation of all backbone atoms for these structures was 2.25 A for all 53 residues, 0.92 A for the bulk of the protein, and 0.23 A for the functionally important carboxy-terminal domain. Two new helical segments containing highly conserved amino acids have been identified; one between cysteines 6 and 14 and a second at the end of the carboxy-terminal domain. New insight into the molecular architecture of the site of putative receptor binding was provided by comparing the structure of hEGF with its biologically equipotent analogue, human transforming growth factor alpha. This comparison revealed a close structural relationship between the two growth factors and provides an improved understanding of the structure/function relationships in EGF.  相似文献   

7.
The three-dimensional structure of the N-terminal 51-residue domain of recombinant hirudin in aqueous solution was determined by 1H nuclear magnetic resonance (NMR) spectroscopy, and the resulting high-quality solution structure was compared with corresponding structures obtained from studies with the intact, 65-residue polypeptide chain of hirudin. On the basis of 580 distance constraints derived from nuclear Overhauser effects and 109 dihedral angle constraints, a group of 20 conformers representing the solution structure of hirudin(1-51) was computed with the program DIANA and energy-minimized with a modified version of the program AMBER. Residues 3 to 30 and 37 to 48 form a well-defined molecular core with two antiparallel beta-sheets composed of residues 14 to 16 and 20 to 22, and 27 to 31 and 36 to 40, and three reverse turns at residues 8 to 11 (type II), 17 to 20 (type II') and 23 to 26 (type II). The average root-mean-square deviation of the individual NMR conformers relative to their mean co-ordinates is 0.38 A for the backbone atoms and 0.77 A for all heavy atoms of these residues. Increased structural disorder was found for the N-terminal dipeptide segment, the loop at residues 31 to 36, and the C-terminal tripeptide segment. The solution structure of hirudin(1-51) has the same molecular architecture as the corresponding polypeptide segment in natural hirudin and recombinant desulfatohirudin. It is also closely similar to the crystal structure of the N-terminal 51-residue segment of hirudin in a hirudin-thrombin complex, with root-mean-square deviations of the crystal structure relative to the mean solution structure of 0.61 A for the backbone atoms and 0.91 A for all heavy atoms of residues 3 to 30 and 37 to 48. Further coincidence is found for the loop formed by residues 31 to 36, which shows increased structural disorder in all available solution structures of hirudin, and of which residues 32 to 35 are not observable in the electron density map of the thrombin complex. Significant local structural differences between hirudin(1-51) in solution and hirudin in the crystalline thrombin complex were identified mainly for the N-terminal tripeptide segment and residues 17 to 21. These are further analyzed in an accompanying paper.  相似文献   

8.
9.
The building of protein structures from alpha-carbon coordinates   总被引:3,自引:0,他引:3  
P E Correa 《Proteins》1990,7(4):366-377
A procedure for the construction of complete protein structures from only alpha-carbon coordinates is described. This involves building the backbone by sequential addition of Pro, Gly, or Ala residues. This main chain structure is then refined using molecular dynamics. Side chains are constructed by sequential addition of atoms with intermediate molecular dynamics refinement. For alpha lytic protease (a structure that is mostly beta sheet) a backbone root mean square deviation (RMSD) of 0.19 A and an overall RMSD of 1.24 A from the crystallographic coordinates are attained. For troponin C (67% alpha-helix), where the coordinates are available only for the alpha-carbons, a backbone RMSD of 0.41 A and an overall RMSD of 1.68 A are attained (fits kindly provided by Dr. Michael James and Natalie Strynadka). For flavodoxin a backbone RMSD of 0.49 A and an overall RMSD of 1.64 A were attained.  相似文献   

10.
Meprins are complex and highly glycosylated multi-domain enzymes that require post-translational modifications to reach full activity. Meprins are metalloproteases of the astacin family characterized by a conserved zinc-binding motif (HExxHxxGFxHExxRxDR). Human meprin-α and -β protease subunits are 55% identical at the amino acid level, however the substrate and peptide bond specificities vary markedly. Current work focuses on the critical amino acid residues in the non-primed subsites of human meprins-α and -β involved in inhibitor/ligand binding. To compare the molecular events underlying ligand affinity, homology modeling of the protease domain of humep-α and -β based on the astacin crystal structure followed by energy minimization and molecular dynamics simulation of fully solvated proteases with inhibitor Pro-Leu-Gly-hydroxamate in S subsites were performed. The solvent accessible surface area curve shows a decrease in solvent accessibility values at specific residues upon inhibitor binding. The potential energy, total energy, H-bond interactions, root mean square deviation and root mean square fluctuation plot reflect the subtle differences in the S subsite of the enzymes which interact with different residues at P site of the inhibitor.  相似文献   

11.
The NMR solution structures of NTX-1 (PDB code 1W6B and BMRB 6288), a long neurotoxin isolated from the venom of Naja naja oxiana, and the molecular dynamics simulation of these structures are reported. Calculations are based on 1114 NOEs, 19 hydrogen bonds, 19 dihedral angle restraints and secondary chemical shifts derived from 1H to 13C HSQC spectrum. Similar to other long neurotoxins, the three-finger like structure shows a double and a triple stranded beta-sheet as well as some flexible regions, particularly at the tip of loop II and the C-terminal tail. The solution NMR and molecular dynamics simulated structures are in good agreement with root mean square deviation values of 0.23 and 1 A for residues involved in beta-sheet regions, respectively. The overall fold in the NMR structure is similar to that of the X-ray crystallography, although some differences exist in loop I and the tip of loop II. The most functionally important residues are located at the tip of loop II and it appears that the mobility and the local structure in this region modulate the binding of NTX-1 and other long neurotoxins to the nicotinic acetylcholine receptor.  相似文献   

12.
The three-dimensional structure of the sea anemone polypeptide Stichodactyla helianthus neurotoxin I in aqueous solution has been determined using distance geometry and restrained molecular dynamics simulations based on NMR data acquired at 500 MHz. A set of 470 nuclear Overhauser enhancement values was measured, of which 216 were used as distance restraints in the structure determination along with 15 dihedral angles derived from coupling constants. After restrained molecular dynamics refinement, the eight structures that best fit the input data form a closely related family. They describe a structure that consists of a core of twisted, four-stranded, antiparallel beta-sheet encompassing residues 1-3, 19-24, 29-34, and 40-47, joined by three loops, two of which are well defined by the NMR data. The third loop, encompassing residues 7-16, is poorly defined by the data and is assumed to undergo conformational averaging in solution. Pairwise root mean square displacement values for the backbone heavy atoms of the eight best structures are 1.3 +/- 0.2A when the poorly defined loop is excluded and 3.6 +/- 1.0A for all backbone atoms. Refinement using restrained molecular dynamics improved the quality of the structures generated by distance geometry calculations with respect to the number of nuclear Overhauser enhancements violated, the size of the total distance violations and the total potential energies of the structures. The family of structures for S. heliathus neurotoxin I is compared with structures of related sea anemone proteins that also bind to the voltage-gated sodium channel.  相似文献   

13.
Abstract

Human ghrelin is a peptide hormone of 28 aminoacid residues, in which the Ser3 is modified by an octanoyl group. Ghrelin has a major role in the energy metabolism of the human body stimulating growth hormone release as well as food intake. Here we perform molecular dynamics simulations in explicit water and in a DMPC-lipid bilayer/water system in order to structurally characterize this highly flexible peptide and its lipid binding properties. We find a loop structure with residues Glu17 to Lys 20 in the bending region and a short α-helix from residues Pro7 to Glu13. The presence of a lipid membrane does not influence these structural features, but reduces the overall flexibility of the molecule as revealed by reduced root mean square fluctuations of the atom coordinates. The octanoyl-side chain does not insert into the lipid membrane but points into the water phase. The peptide binds to the lipid membrane with its bending region involving residues Arg15, Lys16, Glu17, and Ser18. The implications of these results for the binding pocket of the ghrelin receptor are discussed.  相似文献   

14.
Diiron proteins represent a diverse class of structures involved in the binding and activation of oxygen. This review explores the simple structural features underlying the common metal-ion-binding and oxygen-binding properties of these proteins. The backbone geometries of their active sites are formed by four-helix bundles, which may be parameterized to within approximately 1 A root mean square deviation. Such parametric models are excellent starting points for investigating how asymmetric deviations from an idealized geometry influence the functional properties of the metal ion centers. These idealized models also provide attractive frameworks for de novo protein design.  相似文献   

15.
The receptor for advanced glycated end products (RAGE) is a multiligand receptor that is implicated in the pathogenesis of various diseases, including diabetic complications, neurodegenerative disorders, and inflammatory responses. The ability of RAGE to recognize advanced glycated end products (AGEs) formed by nonenzymatic glycoxidation of cellular proteins places RAGE in the category of pattern recognition receptors. The structural mechanism of AGE recognition was an enigma due to the diversity of chemical structures found in AGE-modified proteins. Here, using NMR spectroscopy we showed that the immunoglobulin V-type domain of RAGE is responsible for recognizing various classes of AGEs. Three distinct surfaces of the V domain were identified to mediate AGE-V domain interactions. They are located in the positively charged areas of the V domain. The first interaction surface consists of strand C and loop CC ', the second interaction surface consists of strand C ', strand F, and loop FG, and the third interaction surface consists of strand A ' and loop EF. The secondary structure elements of the interaction surfaces exhibit significant flexibility on the ms-micros time scale. Despite highly specific AGE-V domain interactions, the binding affinity of AGEs for an isolated V domain is low, approximately 10 microm. Using in-cell fluorescence resonance energy transfer we show that RAGE is a constitutive oligomer on the plasma membrane. We propose that constitutive oligomerization of RAGE is responsible for recognizing patterns of AGE-modified proteins with affinities less than 100 nm.  相似文献   

16.
The alpha18-mer peptide, spanning residues 181-198 of the Torpedo nicotinic acetylcholine receptor alpha1 subunit, contains key binding determinants for agonists and competitive antagonists. To investigate whether the alpha18-mer can bind other alpha-neurotoxins besides alpha-bungarotoxin, we designed a two-dimensional (1)H-(15)N heteronuclear single quantum correlation experiment to screen four related neurotoxins for their binding ability to the peptide. Of the four toxins tested (erabutoxin a, erabutoxin b, LSIII, and alpha-cobratoxin), only alpha-cobratoxin binds the alpha18-mer to form a 1:1 complex. The NMR solution structure of the alpha-cobratoxin.alpha18-mer complex was determined with a backbone root mean square deviation of 1.46 A. In the structure, alpha-cobratoxin contacts the alpha18-mer at the tips of loop I and II and through C-terminal cationic residues. The contact zone derived from the intermolecular nuclear Overhauser effects is in agreement with recent biochemical data. Furthermore, the structural models support the involvement of cation-pi interactions in stabilizing the complex. In addition, the binding screen results suggest that C-terminal cationic residues of alpha-bungarotoxin and alpha-cobratoxin contribute significantly to binding of the alpha18-mer. Finally, we present a structural model for nicotinic acetylcholine receptor-alpha-cobratoxin interaction by superimposing the alpha-cobratoxin.alpha18-mer complex onto the crystal structure of the acetylcholine-binding protein (Protein Data Bank code ).  相似文献   

17.
Ligands of the IGF-II/mannose 6-phosphate receptor (IGF2R) include IGF-II and mannose 6-phosphate modified proteins. Disruption of the negative regulatory effects of IGF2R on IGF-II-induced growth can lead to embryonic lethality and cancer promotion. Of the 15 IGF2R extracellular domains, domains 1-3 and 11 are known to have a conserved beta-barrel structure similar to that of avidin and the cation-dependent mannose 6-phosphate receptor, yet only domain 11 binds IGF-II with high specificity and affinity. In order to define the functional basis of this critical biological interaction, we performed alanine mutagenesis of structurally determined solvent-exposed loop residues of the IGF-II-binding site of human domain 11, expressed these mutant forms in Pichia pastoris, and determined binding kinetics with human IGF-II using isothermal calorimetry and surface plasmon resonance with transition state thermodynamics. Two hydrophobic residues in the CD loop (F1567 and I1572) were essential for binding, with a further non-hydrophobic residue (T1570) that slows the dissociation rate. Aside from alanine mutations of AB loop residues that decrease affinity by modifying dissociation rates (e.g. Y1542), a novel mutation (E1544A) of the AB loop enhanced affinity by threefold compared to wild-type. Conversion from an acidic to a basic residue at this site (E1544K) results in a sixfold enhancement of affinity via modification principally of the association rate, with enhanced salt-dependence, decreased entropic barrier and retained specificity. These data suggest that a functional hydrophobic binding site core is formed by I1572 and F1567 located in the CD loop, which initially anchors IGF-II. Within the AB loop, residues normally act to either stabilise or function as negative regulators of the interaction. These findings have implications for the molecular architecture and evolution of the domain 11 IGF-II-binding site, and the potential interactions with other domains of IGF2R.  相似文献   

18.
The three-dimensional structure of the activation domain isolated from porcine pancreatic procarboxypeptidase B was determined using 1H NMR spectroscopy. A group of 20 conformers is used to describe the solution structure of this 81 residue polypeptide chain, which has a well-defined backbone fold from residues 11-76 with an average root mean square distance for the backbone atoms of 1.0 +/- 0.1 A relative to the mean of the 20 conformers. The molecular architecture contains a four-stranded beta-sheet with the polypeptide segments 11-17, 36-39, 50-56 and 75-76, two well defined alpha-helices from residues 20-30 and 60-70, and a 3(10) helix from residues 43-46. The three helices are oriented almost exactly antiparallel to each other, are all on the same side of the beta-sheet, and the helix axes from an angle of approximately 45 degrees relative to the direction of the beta-strands. Three segments linking beta-strands and helical secondary structures, with residues 32-35, 39-43 and 56-61, are significantly less well ordered than the rest of the molecule. In the three-dimensional structure two of these loops (residues 32-35 and 56-61) are located close to each other near the protein surface, forming a continuous region of increased mobility, and the third disordered loop is separated from this region only by the peripheral beta-strand 36-39 and precedes the short 3(10) helix.  相似文献   

19.
The structure of human BCL-w, an anti-apoptotic member of the BCL-2 family, was determined by triple-resonance NMR spectroscopy and molecular modeling. Introduction of a single amino acid substitution (P117V) significantly improved the quality of the NMR spectra obtained. The cytosolic domain of BCL-w consists of 8 alpha-helices, which adopt a fold similar to that of BCL-xL, BCL-2, and BAX proteins. Pairwise root meant square deviation values were less than 3 A for backbone atoms of structurally equivalent regions. Interestingly, the C-terminal helix alpha8 of BCL-w folds into the BH3-binding hydrophobic cleft of the protein, in a fashion similar to the C-terminal transmembrane helix of BAX. A peptide corresponding to the BH3 region of the pro-apoptotic protein, BID, could displace helix alpha8 from the BCL-w cleft, resulting in helix unfolding. Deletion of helix alpha8 increased binding affinities of BCL-w for BAK and BID BH3-peptides, indicating that this helix competes for peptide binding to the hydrophobic cleft. These results suggest that although the cytosolic domain of BCL-w exhibits an overall structure similar to that of BCL-xL and BCL-2, the unique organization of its C-terminal helix may modulate BCL-w interactions with pro-apoptotic binding partners.  相似文献   

20.
Lee KW  Briggs JM 《Proteins》2004,54(4):693-704
Aminoacyl-tRNA synthetases (aaRSs) strictly discriminate their cognate amino acids. Some aaRSs accomplish this via proofreading and editing mechanisms. Mursinna and coworkers recently reported that substituting a highly conserved threonine (T252) with an alanine within the editing domain of Escherichia coli leucyl-tRNA synthetase (LeuRS) caused LeuRS to cleave its cognate aminoacylated leucine from tRNA(Leu) (Mursinna et al., Biochemistry 2001;40:5376-5381). To achieve atomic level insight into the role of T252 in LeuRS and the editing reaction of aaRSs, a series of molecular modeling studies including homology modeling and automated docking simulations were carried out. A 3D structure of E. coli LeuRS was constructed via homology modeling using the X-ray structure of Thermus thermophilus LeuRS as a template because the E. coli LeuRS structure is not available from X-ray or NMR studies. However, both the X-ray T. thermophilus and homology-modeled E. coli structures were used in our studies. Amino acid binding sites in the proposed editing domain, which is also called the connective polypeptide 1 (CP1) domain, were investigated by automated docking studies. The root mean square deviation (RMSD) for backbone atoms between the X-ray and homology-modeled structures was 1.18 A overall and 0.60 A for the editing (CP1) domain. Automated docking studies of a leucine ligand into the editing domain were performed for both structures: homology structure of E. coli LeuRS and X-ray structure of T. thermophilus LeuRS for comparison. The results of the docking studies suggested that there are two possible amino acid binding sites in the CP1 domain for both proteins. The first site lies near a threonine-rich region that includes the highly conserved T252 residue, which is important for amino acid discrimination. The second site is located in a flexible loop region surrounded by residues E292, A293, M295, A296, and M298. The important T252 residue is at the bottom of the first binding pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号