首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
ABSTRACT. Studies were conducted in Zimbabwe of the responses of Glossina morsitans morsitans Westwood and Glossina pallidipes Austen to various host odours using either arrangements of electrocuting nets or visual observations. Tsetse flying upwind in a plume of carbon dioxide, acetone and octenol turned downwind upon flying into a plume of acetone or octenol, but did not turn upon flying into a plume of carbon dioxide. They also turned in response to a transient decline in odour concentration. Tsetse landed on the ground in the vicinity of a source of natural odour or artificial odour containing carbon dioxide but not at sources of acetone or octenol only. The proportion of female G.pallidipes caught at a source of natural odour (37%) was significantly different from that caught at a source of synthetic odour (17%). Resting tsetse stimulated by natural odour took off sooner than non-stimulated flies and had a strong upwind bias in the direction of take off. Tsetse stimulated with artificial odour did not take off sooner than non-stimulated flies. It is suggested that there is an unidentified components) of ox odour that activates resting tsetse.  相似文献   

2.
Abstract. In Zimbabwe, studies were made of the flight responses of tsetse ( Glossina spp.) to synthetic and natural ox odour using arrangements of electric nets.Tsetse flying away from a target showed a significant upwind bias when a blend of carbon dioxide (2/1 min), acetone (500 mg/h), octenol (0.4 mg/h), 4-methylphenol (0.8 mg/h) and 3-n-propylphenol (0.1 ma) was dispensed 15 m upwind, with c. 35% flying upwind.Without carbon dioxide this percentage was significantly reduced to 15% which was not significantly different from that with no odour (8%).This pattern was not altered by reducing the doses of acetone, octenol and phenols by 10–100 times, to levels comparable to those produced by an ox.With natural ox odour or a synthetic equivalent of ox odour dispensed from a ventilated pit 8 m upwind of the target, c. 28% flew upwind.This was reduced significantly to 15% if carbon dioxide was removed.In studies using a 17 m line of nets arranged orthogonally across the prevailing wind line, c. 50% of the catch was caught on the downwind side in the absence of odour.This increased significantly to c.60% when acetone, octenol and phenols were dispensed 15 m upwind, with or without carbon dioxide.With a shorter line (9 m) or an incomplete one (16.5 m long with 5 times 1.5 m wide gaps along its length) there was no change in the proportion caught downwind.For all three lines, dispensing odour upwind increased the catch 2–5 times on both the up-and downwind sides of the nets.It is concluded that a stronger upwind response to host odour is elicited when carbon dioxide is present.It is suggested that in nature upwind flight is very imprecisely orientated, with tsetse making flights up and down an odour plume 'searching' for a host.  相似文献   

3.
Abstract. To test the hypothesis that tsetse flies use visual input from the apparent movement of the ground to assess wind direction while in flight, Glossina morsitans morsitans Westwood females were video- recorded in a wind-tunnel as they entered, in cross-wind flight, a broad plume of simulated host odour (C02 at c. 0.05%). The tunnel (2.3 times 1.2 m wide) generated winds up to 0.25 m s-1 and had a strongly patterned floor that could be moved upwind or downwind to increase or decrease the visual input due to wind drift. Flight tracks were analysed for speed, direction relative to the wind, and angle of turn. Mean groundspeeds were c. 1.8 m s-1. In control measurements in still air (with or without odour) flies turned 50:50 'upwind': 'downwind'. With a 0.25 m s-1 odour-perme- ated wind, 79% turned upwind, and c. 70% left view flying upwind. When the floor was moved at 0.25 m s-1 upwind (to mimic the visual input from the ground due to a 0.5 m s_-1 wind), the strength of this response increased. If instead the floor was moved downwind, faster than the wind speed (to mimic the visual input due to a wind from the opposite direction), 59% turned downwind and c. 70% left view flying downwind, and thus away from the source (though progressing 'upwind' in terms of the visual input from apparent ground pattern movement). Upwind turns were on average significantly larger than downwind turns. It is concluded that tsetse navigate up host odour plumes in flight by responding to the visual flow fields due to their movement over the ground (optomotor anemotaxis), even in weak winds blowing at a fraction of their groundspeed.  相似文献   

4.
Abstract Airborne pheromone plumes in wind comprise filaments of odour interspersed with gaps of clean air. When flying moths intercept a filament, they have a tendency to surge upwind momentarily, and then fly crosswind until another filament is intercepted. Thus, the moment-to-moment contact with pheromone mediates the shape of a flight track along the plume. Within some range of favourable interception rates, flight tracks become straighter and are headed more due upwind. However, as the rate of interception increases, there comes a point at which the moth should not be able to discern discreet filaments but, rather, should perceive a 'fused signal'. At the extreme, homogeneous clouds of pheromone inhibit upwind progress by representative tortricids. In a wind tunnel, Cadra cautella (Walker) (Lepidoptera: Pyralidae) were presented with 10 ms pulses of pheromone at a repetition rate of 5, 10, 17 and 25/s and a continuous, internally turbulent plume. Pulse size and concentrations were verified with a miniature photoionization detector sampling surrogate odour, propylene, at 100 Hz. Male moths maintain upwind progress even at plumes of 25 filaments/s. Furthermore, moths exhibited greater velocities and headings more due upwind at 17 and 25 Hz than at the lower frequencies or with the continuous plume. It is hypothesized that either C. cautella possesses a versatile sensory system that allows the resolution of these rapidly pulsed pheromone plumes, or that this species does not require a 'flickering' signal to fly upwind.  相似文献   

5.
Movements of mature male Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) were observed individually in a wind tunnel under conditions of ‘cue-lure with wind’, ‘cue-lure with no wind’, ‘wind only’ and ‘no wind or cue-lure’. Further observations were made using a dense foliage array in the wind tunnel and a structured plume of cue-lure. Patterns of walking or flying were essentially the same in all of the first four treatments except that in the ‘cue-lure with wind’ treatment, over half of the flies moved in a consistent track upwind for at least 400 mm at some time during the first 5 min of observation. With clean wind, only 10% of the flies did this. The result was that mean net upwind displacement after 5 min in the ‘cue-lure with wind’ treatment significantly exceeded that in the other three treatments, the results of which did not differ significantly from each other. The upwind tracks were accomplished by either walking or flying (with or without stops) or by a combination of both. When the wind tunnel was filled with a dense foliage array, the results with cue-lure laden wind were similar to those obtained with the equivalent treatment without foliage, except that upwind tracks were predominantly in short stages. When flies were exposed to a structured plume of cue-lure odour (without foliage present), they did not apparently alter their behaviour on leaving or entering the plume, but some did make consistent upwind tracks while they were in the plume.  相似文献   

6.
The eucalyptus woodborer, Phoracantha semipunctata Fabricius (Coleoptera: Cerambycidae), attacks mainly species of Eucalyptus (Myrtaceae). This study investigated walking and flight behaviour of P. semipunctata males and females exposed to an odour plume originating from a log of E. globulus placed vertically in the upwind end of a wind tunnel. In control experiments, beetles were exposed to a PVC drainpipe in the same position as the log, providing a visual stimulus without host‐tree odour. No statistical differences were found between behavioural responses of either sex when exposed to the log or PVC pipe. No beetles landed on the PVC pipe, whereas 49% of the beetles exposed to host‐tree odour plume landed on the log. Beetles aged over 24 days after emergence from the host tree were more responsive than beetles aged 20–24 days, and accounted vor 86% of the beetles that landed on the log. While walking, host‐tree odour affected the behaviour of the beetles that landed on the log as follows: upwind movement and path linearity increased, whereas turning rate, stopping frequency, mean stopping time and time to take‐off flight decreased. During flight, host‐tree odour affected the behaviour of the beetles that landed on the log as follows: increased upwind flight, turning rate, flight time, flight distance, and decreased flight speed. For beetles that never lost contact with the odour plume, flight progressed upwind with narrow zigzags, and showed higher directedness upwind, path linearity, faster flight speed and lower turning rate than for beetles that lost contact with the odour plume. After loosing contact with the plume, beetles tended to decrease their upwind progression, exhibiting a sharp turn or quick counterturns followed by crosswind or downwind excursions. This led to regaining contact with the odour plume and resumed upwind progression at higher speed provided they flew within the boundaries of the plume. The results showed that host‐tree odour affects both walking and flight behaviour of P. semipunctata beetles, inducing a more directed upwind movement and landing on the visual stimulus of a tree trunk.  相似文献   

7.
ABSTRACT. Studies were made in Zimbabwe of the propensity of Glossina pallidipes Austen and G. morsitans morsitans Westwood to divert from flying upwind in plumes of host odour to various visual features (termed targets). Using various arrangements of electrocuting nets with targets placed downwind of an odour source it was found that 45% diverted to a square target, c. 30% diverted to a black vertical oblong and there was no significant diversion to a bark-coloured vertical oblong that simulated the bole of a tree. The relative propensity of tsetse to divert to variously coloured targets decreased in the order: black = blue > red > yellow; for different shapes it decreased in the order: circle > square > horizontal oblong = vertical oblong. Changes in the composition or concentration of the odour, or loss of contact with it, did not markedly affect the percentage that diverted. Tsetse that diverted to a target and subsequently flew away from it showed an upwind bias in the presence of odour. In the absence of odour there was a slight crosswind bias. If these crosswind fliers then flew into a plume of host odour they turned c. 50 upwind.  相似文献   

8.
Odor-modulated upwind flight of the sphinx moth,Manduca sexta L.   总被引:1,自引:0,他引:1  
1. Male and female Manduca sexta flew upwind in response to the odor of female sex-pheromone gland extract or fresh tobacco leaf respectively, and generated very similar zigzagging tracks along the odor plume. 2. After loss of odor during flight, males and females alike: (1) first flew slower and steered their flight more across the wind, then (2) stopped moving upwind, and finally (3) regressed downwind. 3. Males flying upwind in a pheromone plume in wind of different velocities maintained their ground speed near a relatively constant 'preferred' value by increasing their air speed as the velocity of the wind increased, and also maintained the average angle of their resultant flight tracks with respect to the wind at a preferred value by steering a course more precisely due upwind. 4. The inter-turn duration and turn rate, two measures of the temporal aspects of the flight track, were maintained, on average, with remarkable consistency across all wind velocities and in both sexes. The inter-turn durations also decreased significantly as moths approached the odor source, suggesting modulation of the temporal pattern of turning by some feature of the odor plume. This temporal regularity of turning appears to be one of the most stereotyped features of odor-modulated flight in M. sexta.  相似文献   

9.
Abstract. In the field over short grass, pheromone-stimulated oriental fruit moth males, Grapholita molesta (Busck), flying under high windspeeds tended to steer courses more into the wind and to increase their airspeeds compared with those flying in low windspeeds.Thus, optomotor anemotaxis enabled the males to steer relatively consistent upwind track angles and to maintain an upwind progress of between c. 50–100 cm/s despite variable wind velocities.Zigzagging flight tracks were observed at both 10 m and 3 m from the source, as were tracks with no apparent zigzags.Transitions from casting to upwind flight or vice-versa were observed.The durations of the intervals between reversals during both upwind zigzagging flight and casting were consistent with those observed in previous wind-tunnel experiments.The control of altitude was more precise during upwind zigzagging flight than during casting.In general, the side-to-side deviations in the tracks were greater than the up-and-down deviations, with both the side-to-side and vertical distances and their ratios being consistent with previous wind-tunnel studies of pheromone-mediated flight.One difference between the field and laboratory flight tracks was that males in the field exhibited much higher airspeeds than in the wind tunnel.Males occasionally were observed to progress downwind faster than the wind itself, and further analysis showed that they were steering a downwind course in pheromone-free air following exposure to pheromone, which is the first time this has been recorded in moths.We propose that such downwind flight may aid in the relocation of a pheromone plume that has been lost due to a wind-shift, by enabling the moth to catch up to the pheromone as it recedes straight downwind away from the source.  相似文献   

10.
The influence of host odour, windspeed, position of the sun, and temperature on flight behaviour of the cabbage seedpod weevil (Ceutorhynchus assimilis Paykull) were studied. This weevil showed a positive anemotaxis (upwind flight) inside the odour plume of a host crop (Brassica napus L.). Outside the odour plume the weevil showed a pronounced phototaxis at windspeeds below 1.5 m/s. At higher windspeeds, the seedpod weevils flew downwind. The cabbage seedpod weevil flies most readily at low windspeeds (less than 0.5 m/s) and at temperatures above 22 °C.  相似文献   

11.
Abstract. The behaviour of Heliothis virescens males flying upwind in the field in a sex pheromone plume was videorecorded and analysed. Males flew faster and straighter, with less counterturning, and heading more directly into the wind when they were 9-11m away from the odour source than when they were 1–3 m away. Regardless of their distance from the source or the windspeed, they maintained an average groundspeed of c. 200 cm s_1, except when they arrived within 1 m of the source, when their groundspeed slowed significantly. Two or more males flying in the plume at the same instant often exhibited either extremely straight and directly upwind tracks or else zigzagging tracks with significant counterturning (as did males flying through the field of view of the cameras at slighdy different times). The males' position, either in the centre of the plume's axis or along one side, might explain these differences in track straightness, which previous studies with H.virescens have shown to be caused by higher frequencies of contact with plume filaments. When a significant shift in wind direction occurred, males tended to make an initial movement in the direction of the shift, perhaps due to latencies of response in both the olfactory and visual systems associated with flying into clean air. The males' behaviour in the field overall was similar to that observed in the wind tunnel, except that their airspeeds and groundspeeds were significantly higher than those observed in the laboratory. The fact that they flew faster in the field can be explained both by the significandy higher windspeeds that males need to compensate for in the field to attain a preferred velocity of image motion, as well as by a higher height of flight over the ground in die field causing a slower apparent motion of images at a given groundspeed compared with the laboratory.  相似文献   

12.
Abstract.The stimuli and mechanisms mediating host location and host choice by the bee mite, Varroa jacobsoni (Oudemans), are currently unknown. It is shown that Varroa can use single clean‐air puffs and bee‐odour plumes in a wind tunnel as directional cues. Varroa turned nearly straight upwind in response to single 0.1‐s puffs of clean air directed at 90° to the their anterior‐posterior axis. They turned significantly further to their left side (104°) than to their right (76°), but showed no difference in latency to initiation of the turns (means of 63.3 ms vs. 62.6 ms, respectively). They also followed bee‐odour plumes in a wind tunnel. When released in odour and control plumes mid‐way between the plume's origin and the downwind end of the tunnel, mites responding to bee‐odour walked upwind in, or along the edge of, the odour plume with 38% making contact with the odour delivery tube; mites in clean air did not walk upwind along the air stream, and none made contact with the air delivery tube. Walking speeds were not different between the bee‐odour and control groups (0.28 vs. 0.29 cm s–1); there were also no differences in the turning rates (96.85 vs. 97.16 deg s–1 and 388.08 vs. 379.18 deg cm–1, respectively). Under all conditions, mites walked in a zigzag fashion.  相似文献   

13.
ABSTRACT. Male oriental fruit moths, Grapholitha molesta (Busck) (Tortricidae), continue to zigzag along a pheromone plume to the source in zero wind, if they have started flight with wind on. If the pheromone source is removed and the plume is hence truncated, moths flying in zero wind out of the end of the plume into clean air increase the width of their reversals and the angles of the straight legs of the tracks so they are more directly across the former wind line. Such moths reach the source less often than do those flying along a continuous plume. The males continue to zigzag up a plume in zero wind, apparently by a combination of sequential sampling of concentration along their path and the performance of an internal, self-steered programme of track reversals (zigzags) whose frequency increases with concentration. Visual feedback may aid in the still-air performance of the zigzags. We propose that both the sequential sampling (longitudinal klinotaxis) and self-steered counter-turning programme also are used in wind as well; anemotaxis apparently polarizes the direction of the zigzags to result in upwind displacement, and the narrow zigzags caused by the higher concentration in the plume keep the male 'locked on' to the odour.  相似文献   

14.
Cotesia rubecula Marshall (Hymenoptera: Braconidae) is a specialist larval parasitoid of the butterfly Pieris rapae L. which itself feeds almost exclusively upon cruciferous plants. Female wasps are attracted to the odour of host-infested plant (plant-host complex: PHC) and the probability of flights in a wind tunnel depends on females' prior oviposition experience with the PHC and on the concentration of the PHC odour. This study considers the effect of both factors on characteristics of oriented flight upwind towards the PHC. The flight track parameters that we measured and calculated were not significantly affected by these factors. C. rubecula females exhibited high average flight velocity and relatively straight flight tracks. There was a considerable variability between individuals, however, in their odour-modulated upwind flight tracks. Some females generated a zigzagging upwind flight track similar to those commonly observed from male moths responding to female sex pheromone. Other females flew along a straight track directly upwind. The flight tracks of most female wasps were intermediate between these extremes. The full range of these flight performances was observed to all experimental treatments.  相似文献   

15.
ABSTRACT. Free-flying, wild male and female Glossina pallidipes Aust. and G. m. morsitans Westw. were video-recorded in the field in Zimbabwe as they entered or left the side of a host-odour plume in cross-wind flight, or as they overshot a source of host odour in upwind flight (camera 2.5 m up looking down at a 3 times 2.5 m field of view at ground level). 80% of cross-wind odour leavers turned sharply ( turns 95o), but without regard to wind direction (overshooters behaved essentially the same except that nearly 100% turned). Many fewer flies entering a plume cross wind turned ( c . 60%), and when they did they made much smaller turns ( 58o); these turns were, however, significantly biassed upwind ( c . 70%). All three classes of fly had similar groundspeeds ( 5.5–6.5 m s_1) and angular velocities ( 350–400o s-1). Clear evidence was obtained of in-flight sensitivity to wind direction: significantly more flies entering odour turned upwind than downwind, and odour losers turning upwind made significantly larger turns than average. The main basis for the different sizes of turn was the different durations of the turning flight, rather than changes in angular velocity or speed. No evidence was found of flies landing after losing contact with odour.  相似文献   

16.
Abstract. Peak-to-trough electroantennogram amplitudes (bursts), caused by the individual filaments of a plume of female pheromone, diminish as high-emission-rate sources are approached by male Grapholita molesta , and this reduction is correlated with in-flight arrestment (ceasing to advance upwind). These findings are consistent with the hypothesis that one cause of in-flight arrestment in response to high-concentration point sources is the attenuation of the peak-to- trough amplitudes close to the source. High burst frequency, high pheromone flux, or low levels of continuous neuronal activity all are less well correlated with arrestment. Rather, arrestment appears due to a reduction of chemosensory input to the CNS during flight up the plume, even though the actual molecular concentration continues to increase. In a laboratory wind tunnel, upwind flight initiation by more than 20% of males was elicited only by pheromone source concentrations evoking significant fluctuations in EAG amplitudes at downwind release points. The burst frequencies that evoked high levels of upwind flight initiation ranged from a mean of 0.4-2.2 bursts/s. Because a previous study revealed that flying male G. molesta change their course angle within 0.15 s of losing or contacting pheromone, these EAG burst frequencies indicate that during flight in a pheromone plume, many manoeuvres are probably made in response to contact with individual plume filaments. Thus, upwind flight tracks may be shaped by hundreds of steering reactions in response to encounters with individual pheromone filaments and pockets of clean air. Field-recorded EAGs reveal that burst amplitudes diminish from 3 to 30 m downwind of the source, whereas burst frequencies do not, averaging c. 1/s at 3, 10 and 30 m downwind.  相似文献   

17.
Oriented responses of both R. prolixus and T. infestans adults were recorded on a servosphere to mouse-odour, one of its components (CO2), and to rabbit urine-odour. The volatiles were delivered in an air-stream under controlled conditions which excluded other sensory modalities. In stimulus-free air the triatomines walked preferentially downwind in straight bouts interrupted by stops or periods at relatively low speeds, all of variable duration. In odour-laden air, bugs maintained their typical walking habit but switched from negative to positive anemotaxis. The characteristic response to odour onset was to stop, sample the air with the antennae, turn upwind in situ, and then walk off in the direction of the source for at least a few seconds, i.e., odour mediated anemotaxis. Mouse-odour caused T. infestans to increase its speed to 5.3 cms-1. Both species continued with the upwind response for some time after odour delivery ceased, but the crosswind component of the tracks was more prominent during this period — an effort, we presume, by the bugs to re-contact an odour plume. This investigation provides unequivocal evidence for host finding in triatomines by olfactory cues alone.  相似文献   

18.
Abstract Free-flying wild tsetse flies ( Glossina pallidipes Aust. and G. m. morsitans Westw.) were video recorded in Zimbabwe as they flew within an artificial host odour plume at 3, 7 or 15 m from the source, or in no odour, with and without a 0.75 m2 vertical, black visual target present aligned with the wind. With no visual target present, flights in odour were strongly biased upwind, and in the absence of odour strongly biased downwind. With the target present, between 16% and 40% of the upwind approaching flies responded visually as they passed the target, by circling it, in proportion to the proximity of the source (taken to be proportional to the mean odour concentration). Crosswind approaching flies (for whom the target will have been visible for some metres away) circled more frequently (34–56%), but without obvious correlation with the odour concentration. Circling flies also responded orthokinetically, by slowing down as they passed the target. The departure directions relative to the wind of flies leaving the target were significantly affected by the odour concentration. At 3 m they left the target in all directions, except possibly avoiding due upwind. At 7 m they left with an obliquely upwind bias, but at 15 m and also in no odour, they left with a strong crosswind bias.  相似文献   

19.
ABSTRACT. The flight pattern of mated female navel orangeworm moths, Amyelois transitella (Walker), responding to odour from potential larval hosts is zigzagging upwind flight. However, at times these moths are capable of flying nearly directly upwind towards the odour source (track angles near 0). This response indicates that these females are capable of very accurate anemotactic control of their heading or course angle, since small angular errors in this measure would translate into larger deviations from direct upwind flight. Males of this species exhibit flight patterns similar to those of females, including track angles clustered about 0 when flying upwind to a source of the female-produced pheromone, but under these experimental conditions they flew with a higher average airspeed than the females. When females lose contact with an odour plume they initiate a well-defined programme of cross-wind counterturning or casting, which may normally increase their chances of retrieving contact with that plume when the wind direction shifts. The resultant track angles of females increase significantly by 0.8 s after plume loss, indicating that the female has initiated changes in both her course angle and airspeed. By 1 s after plume loss the females' track angles are no longer unimodally distributed about 0, but are bimodally distributed about -90 and +90. Males responded more rapidly to the loss of a pheromone plume, demonstrating a significant change in track angle 0.4 s after plume loss. Overall, female and male A.transitella exhibited remarkably similar anemotactic flight manoeuvres during upwind flight to odour sources as well as after plume loss.  相似文献   

20.
Abstract The effect of artificial host odour on the landing responses of males of Glossina m.morsitans West, and on their reaction to visual targets has been investigated in a wind tunnel. Landing was induced in flies that traversed steep odour gradients as they flew upwind and downwind across the edge of an odour plume, irrespective of whether visual targets were present or not; the landing response could be elicited over a wide range of odourconcentrations. When targets were present such odour gradients also tended to increase the proportion of landing flies which alighted on or near the targets; and the bigger the target, or the hungrier the flies, the greater was the propensity for target landing. In air which was more uniformly permeated with odour, the propensity to land on targets was increased only at high odour concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号