首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinoic acid (RA) has dramatic effects on the pattern of developing and regenerating vertebrate limbs. These effects are considered to result from RA-induced changes in the positional identity of limb cells, and involve the formation of extra structures. Whether the growth required to form the supernumerary parts of the pattern is a primary effect of RA treatment or a secondary effect that follows after a change in positional identity is not at present known. In this paper we have investigated the effects of RA treatment on the growth of cells from anterior and posterior halves of mouse limb buds in vitro. We observed that under our culture conditions, limb bud cells treated with 1 nM to 1 microM RA (0.3 ng/ml to 300 ng/ml) continue to grow but do so at a significantly slower rate than control cultures. There is a maximum inhibition of growth (50% of controls) between 10 nM and 100 nM RA, which corresponds to the measured range of concentrations of RA in vivo. Our observation of a significant decrease in growth rate over a wide range of RA concentrations is consistent with comparable reports of growth inhibition for a large number of other cell types in vitro as well as with the observation that exogenous RA inhibits blastemal growth in amphibians during the period of exposure to RA. We propose that the effects of RA on growth, either enhancement in vivo or reduction in vitro, can be seen as consequences of the ability of RA to alter positional identity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Retinoic acid (RA) is known to have dramatic effects on limb pattern formation and has been shown to exert its effects on limbs by converting anterior limb bud cells into cells with posterior positional properties. In this study we find that dissociated posterior limb bud cells from chick and mouse embryos cultured at high density (micromass cultures) are able to stimulate the formation of supernumerary digits when grafted into developing wing buds and that the positional identity of both chick and mouse limb bud cells can be maintained for finite periods of time in vitro. Furthermore, using this assay system we have tested whether anterior cells from mouse and chick limb buds can be converted into cells with posterior identity by exposure to RA in vitro. We find that anterior limb bud cells acquire posterior properties after culture in the presence of RA.  相似文献   

3.
Limb Development and Regeneration   总被引:1,自引:0,他引:1  
Experiments on developing and regenerating vertebrate limbshave led to the idea that pattern formation and growth controlare causally linked. The mechanism by which position-specificgrowth occurs is termed intercalation, and evidence is presentedthat implicates intercalation in the initiation, maintenanceand cessation of growth during limb formation. We conclude thatamong the variety of cell types present in limbs, only fibroblastshave been shown to possess the positional information necessaryfor intercalation. Hence we propose that the limb pattern isgenerated by intercalation between fibroblasts to give riseto a connective tissue scaffold, which in turn dictates thepositioning and morphogenesis of all of the differentiated celltypes of the limb. Finally, we review evidence that regenerativefailure among higher vertebrates is linked to defects in theintrinsic cellular mechanisms of growth control (intercalation)and conclude that progress towards the goal of stimulating regenerativelimb outgrowth in non-regenerating vertebrates will be contingentupon a better understanding of these intrinsic mechanisms.  相似文献   

4.
有尾两栖类(蝾螈和美西螈)是脊椎功物中仅有的具备再生出失去肢体能力的动物。维生素A 酸(Retinoic Acid,简称RA)存在于鸡的发育中的肢芽,局部使用可模拟极化区的作用,因而被认为可能是形态发生素。作为  相似文献   

5.
Urodele amphibians are unique adult vertebrates because they are able to regenerate body parts after amputation. Studies of urodele limb regeneration, the key model system for vertebrate regeneration, have led to an understanding of the origin of blastema cells and the importance of positional interactions between blastema cells in the control of growth and pattern formation. Progress is now being made in the identification of the signaling pathways that regulate dedifferentiation, blastema morphogenesis, growth and pattern formation. Members of the Wnt family of secreted proteins are expressed in developing and regenerating limbs, and have the potential to control growth, pattern formation and differentiation. We have studied the expression of two non-canonical Wnt genes, Wnt-5a and Wnt-5b . We report that they are expressed in equivalent patterns during limb development and limb regeneration in the axolotl ( Ambystoma mexicanum ), and during limb development in other tetrapods, implying conservation of function. Our analysis of the effects of ectopic Wnt-5a expression is consistent with the hypothesis that canonical Wnt signaling functions during the early stages of regeneration to control the dedifferentiation of stump cells giving rise to the regeneration-competent cells of the blastema.  相似文献   

6.
7.
Cells of the amphibian limb regeneration blastema inherit memories of their level of origin (positional memory) along the limb axes. These memories serve as boundaries of what is to be regenerated, thus preventing regeneration of any but the missing structures. Because of its importance in determining the boundaries of regenerate pattern, it is essential to understand the cellular and molecular basis of positional memory. One approach to this problem is to look for position-related differences in a cell or molecular property along a limb axis and then show, using an agent that modifies regenerate pattern, that the cell or molecular property and the pattern are coordinately modified. We have done this using retinoic acid (RA) as a pattern-modifying agent and an in vivo assay that detects position-related differences in a cell recognition-affinity property along the proximodistal (PD) axis of the regenerating axolotl limb. RA proximalizes positional memory in the PD axis, posteriorizes it in the anteroposterior axis, and ventralizes it in the dorsoventral axis. The level-specific PD cell recognition-affinity property is proximalized by RA, indicating that this property and positional memory are causally related. The effects of RA on positional memory may be mediated through a cellular RA-binding protein (CRABP), since the concentration of unbound (apo) CRABP molecules is highest during early stages of regeneration when the proximalizing effects of RA are greatest.  相似文献   

8.
The developing limb is one of the first systems where it was proposed that a signalling gradient is involved in pattern formation. This gradient for specifying positional information across the antero-posterior axis is based on Sonic hedgehog signalling from the polarizing region. Recent evidence suggests that Sonic hedgehog signalling also specifies positional information across the antero-posterior axis by a timing mechanism acting in parallel with graded signalling. The progress zone model for specifying proximo-distal pattern, involving timing to provide cells with positional information, continues to be challenged, and there is further evidence that graded signalling by retinoic acid specifies the proximal part of the limb. Other recent papers present the first evidence that gradients of signalling by Wnt5a and FGFs govern cell behaviour involved in outgrowth and morphogenesis of the developing limb.  相似文献   

9.
Intrinsic and extrinsic control of growth in developing organs   总被引:10,自引:0,他引:10  
The growth rate and final size of developing organs is controlled by organ-intrinsic mechanisms as well as by hormones and growth factors that originate outside the target organ. Recent work on Drosophila imagined discs and other regenerating systems has led to the conclusion that the intrinsic growth-control mechanism that controls regenerative growth depends on position-specific interactions between cells and their neighbors, and that these interactions also control pattern formation. According to this interpretation, local growth by cell proliferation is stimulated when cells with disparate positional information are confronted as a result of grafting or wound healing. This local growth leads to intercalation of cells with intervening positional values until the positional information discontinuity is eliminated. When all discontinuities have been eliminated from a positional field, growth stops. In this article we consider the possibility that organ growth during normal development may be controlled by an intercalation mechanism similar to that proposed for regenerative growth. Studies of imaginal disc growth are consistent with this suggestion, and in addition they show that the cell interactions thought to control growth are independent of cell lineage. Developing organs of vertebrates also show intrinsic growth-control mechanisms, as demonstrated by the execution of normal growth programs by immature organs that are transplanted to fully grown hosts or to hosts with genetically different growth parameters. Furthermore, these organ-intrinsic mechanisms also appear to be based on position-specific cell interactions, as suggested by the growth stimulation seen after partial extirpation or rearrangement by grafting. In organs of most adult vertebrates, the organ-intrinsic growth-control system seems to be suppressed as shown by the loss of regenerative ability, although it is clearly retained in the limbs, tails and other organs of salamanders. The clearest example of an extrinsic growth regulator is growth hormone, which plays a dominant role along with insulin-like growth factors, thyroid hormone and sex hormones in supporting the growth of bones and other organs in postnatal mammals. These hormones do not appear to regulate prenatal growth, but other hormones and insulin-like growth factors may be important prenatally. The importance of other growth factors in regulating organ growth in vivo remains to be established. It is argued that both intrinsic and extrinsic factors control organ growth, and that there may be important interactions between the two types of control during development.  相似文献   

10.
The objective of this study was to determine whether retinoic acid (RA) coordinately proximalizes positional memory and the cellular recognition system that detects pattern discontinuity in regenerating amphibian limbs. The strategy was to test the capacity of RA-treated blastemas to evoke intercalary regeneration when grafted to an amputation level proximal to their level of origin. Control wrist and ankle, or elbow and knee blastemas treated with the retinoid solvent, dimethylsulphoxide, evoked intercalary regeneration as effectively as untreated blastemas, when grafted to the midstylopodial amputation surface of host limbs. RA-treated wrist and ankle or elbow and knee blastemas were proximalized and formed complete limbs that were at an angle to, or continuous with, the midstylopodium of the host limb. No intercalary regeneration, from either graft or host, was observed in these cases. The results indicate that the cellular mechanism that recognizes disparities between non-neighbouring cells and initiates intercalary regeneration is coordinately proximalized with positional memory. Thus the recognition mechanism and positional memory are directly related. Intercalary regeneration and corrective displacement (affinophoresis), both of which restore a pattern of normal cell neighbours by different means in regenerating axolotl limbs, appear to use the same mechanism to recognize pattern discontinuity.  相似文献   

11.
We review embryological as well as molecular evidence that emphasizes the idea that both the regenerate and the developing vertebrate limb bud utilize a similar set of signals that regulate pattern formation. Evidence is presented to implicate the Hox-7.1 gene in the developmental regulation of growth, differentiation, and positional assignment during limb outgrowth and the proposal is made that the expression of this gene governs the cellular activities within the progress zone during limb outgrowth. Finally, we review the limited information known about the regenerative capabilities of limb buds in organisms that cannot regenerate as adults. We content that a solution to the problem of regenerative failure among higher vertebrates will come progressively through a stepwise analysis of impaired regeneration associated with increasing developmental age.  相似文献   

12.
Retinoic acid (RA) has been detected in the regenerating limb of the axolotl, and exogenous RA can proximalize, posteriorize, and ventralize blastemal cells. Thus, RA may be an endogenous regulatory factor during limb regeneration. We have investigated whether endogenous retinoids are essential for patterning during axolotl (Ambystoma mexicanum) limb regeneration by using retinoid antagonists that bind to specific RAR (retinoic acid receptor) or RXR (retinoid X receptor) retinoid receptor subtypes. Retinoid antagonists (Ro41-5253, Ro61-8431, LE135, and LE540) were administered to regenerating limbs using implanted silastin blocks loaded with each antagonist. The skeletal pattern of regenerated limbs treated with Ro41-5253 or Ro61-8431 differed only slightly from control limbs. Treatment with LE135 inhibited limb regeneration, while treatment with LE540 allowed relatively normal limb regeneration. When LE135 and LE540 were implanted together, regeneration was not completely inhibited and a hand-like process regenerated. These results demonstrate that interfering with retinoid receptors can modify pattern in the regenerating limb indicating that endogenous retinoids are important during patterning of the regenerating limb.  相似文献   

13.
Cell interactions and regeneration control   总被引:1,自引:0,他引:1  
This paper is a review of the main findings of our laboratory on the control of regeneration by cell interactions. These include results related to the role of both cell contact and local soluble factors in regeneration of the legs of insects and newts and of the parapodia and segments of nereis. The pattern of these structures is considered to be defined by positional information distributed as longitudinal and transverse positional value sequences carried by epidermal (insect) or mesenchymal (newt) cells. By associating tissues to create transverse and longitudinal discontinuities in these sequences, single or multiple regenerating structures were obtained. These structures are formed by the intercalation of cells characterized by intermediate positional values which fill the gap between the tissues in contact. Positional information may also be changed during regeneration by the nerve cord in nereis and retinoids in the newts. We describe additional cases where morphogenesis occurs without any overt discontinuity in positional information, such as from a locally injured or non-injured insect trochanter, or after deflection of nerves in nereis and newt. Regeneration following an amputation may be considered as a special case of intercalary regeneration, the first stage being the juxtaposition of normally non-contiguous cells resulting in a longitudinal or/and a transverse gap. We also report studies on local factors produced by nerves and the blastema during newt limb regeneration. The nerve factor is necessary for the division of blastemal cells. After denervation, mesenchyme differentiates in an abnormal way. The mitogenic signal from the nerves is mediated by the PKC pathway. Its production is enhanced by regeneration of cut nerve fibers. The blastema also produces growth factors. We show that the epidermal cap and mesenchyme contain acidic FGF-like factor, and that the proliferating mesenchyme stimulates nerve fibers to regrow into the blastema.  相似文献   

14.
When retinoic acid (RA) is applied to the regenerating limb the positional information of blastemal cells is respecified and extra limb segments develop. We are trying to elucidate the molecular basis of the action of RA and report here experiments focused on the role that fibronectin (FN) might play in the process. The FN distribution in stump tissues, regeneration blastemas and RA-treated blastemas was investigated by immunocytochemistry. Two effects of RA were observed. Firstly, excessive dedifferentiation of the severed cartilage at the amputation plane, resulting in lumps of FN-positive matrix being released into the blastema; secondly, blastemal cells tend to aggregate together into FN-positive accumulations. Excessive dedifferentiation of the cartilage plays no role in the RA-induced respecification of pattern, because we show that extra segments are still produced in RA-treated limbs from which all the cartilage has been removed. The effect on blastemal cell FN distribution was investigated in several ways. Axolotl plasma FN and cellular FN were characterised on immunoblots, and no obvious change was observed after RA treatment; neither were there changes in amounts of FN detected by ELISA. Levels of FN synthesis were measured by [35S]-methionine labelling and again no change observed after RA treatment. We conclude that the change in FN distribution observed by immunocytochemistry after RA treatment may be due to the retention of FN on the surface of the blastemal cells rather than to any effect on the levels of synthesis of this molecule.  相似文献   

15.
The hypothesis that a specialized polarizing zone controls the pattern of the anterior-posterior axis during limb development in Xenopus has been tested by analysing the cellular contribution to supernumerary limbs. Supernumerary limbs were generated by grafting hindlimb buds contralaterally between X. borealis and X. laevis to appose anterior and posterior limb tissues. Cells derived from these two species of Xenopus are readily identified by staining with quinacrine. The analysis of cellular contribution showed that supernumerary limbs consist of approximately half anterior-derived (57%) and half posterior-derived (43%) cells. These data are not consistent with the polarizing zone theory but are consistent with the hypothesis that both supernumerary limbs and normally developing limbs arise from intercalary interactions between limb bud cells with different positional values.  相似文献   

16.
Maden M 《Current biology : CB》2002,12(22):R773-R775
In the regenerating amphibian limb, positional information has traditionally been considered in terms of short-range cell-cell interactions, not long-range diffusion gradients. A molecule discovered in a differential screen of regenerating limbs turns out to be precisely such a cell surface component, the newt ortholog of mouse CD59.  相似文献   

17.
The development of the vertebrate limb involves the production of a specific external form arising from cell division and other growth processes at the cellular level, and the origin within it of specific patterns of tissues arising by cellular differentiation, of which the pattern of cartilages which pre-figure the limb skeleton is the most striking.In this paper we propose a model for the differentiation (or the preceding determination) process that, using only localized cell to cell interactions, can approximate the cartilage pattern in any limb shape. The model requires cells to modify their metabolism irreversibly at critical threshold levels of a diffusible morphogen which may be made or destroyed by these cells. Restrictions inherent in the successful development of a total limb pattern using this system lead to the prediction that the process is confined to a distal band which has no significant interaction with more proximal regions but within this band the characteristic features of the anterior-posterior axis of the limb develop without additional interactions. Cartilage elements are initiated as single “cells” and expand centrifugally to their final size; these elements developing sequentially along the anterior-posterior axis, showing a distinct polarity of size. The model also predicts that equivalent cartilage elements in all vertebrate limbs will be roughly the same relative size at determination, the extensive range of adult structures arising by differential growth and fusion, possibly controlled by global aspects of the model.It must be emphasized that this model only satisfactorily simulates the anterior-posterior patterning of cartilage elements, the disto-proximal pattern being externally imposed.The final cartilage pattern is shown to be a function of (1) the developing shape of the limb, (2) the position of an initiator region that starts the patterning process and (3) the rate of production of the diffusible morphogen. Using parameters selected with as much realism as possible the model gives a good approximation to the pattern of c cartilages found in the normal chick limb; modifying the shape of the limb to that of the talpid3 mutant produces the characteristics features of the cartilage pattern found in that mutant and modifying the rate of morphogen production simulates patterns resembling those found in some ancestral vertebrate fossil forms.  相似文献   

18.
We have used the phenomenon of position-dependent growth stimulation, brought about by the confrontation of cells with dissimilar positional values, to reveal the organization of positional information in the center of the upper and lower arms of axolotls. When either humerus or radius was transplanted into either dorsal or posterior positions, extra growth leading to the formation of supernumerary digits occurred following amputation through the graft. However, transplants of humerus or radius into anterior or ventral positions did not lead to the formation of any additional digits. The ulna by contrast was capable of stimulating supernumerary digit formation when transplanted into anterior, posterior, dorsal, or ventral positions. We interpret these results to indicate that the humerus and radius are surrounded by symmetrically arranged anterior and ventral positional values, whereas the ulna is surrounded by a complete asymmetrical set of angular positional values. We use our proposed arrangement for the positional information in the limb center to explain a number of previous experimental findings. In addition, we provide an explanation, in terms of the underlying positional information, for the structural and developmental relationships between the different skeletal elements of the vertebrate limb, and in particular for the anatomical pattern known as Gregory's pyramid.  相似文献   

19.
Summary Previous grafting experiments have demonstrated that cells from non-contiguous positions within developing and regenerating limbs differ in a property referred to as positional identity. The goal of this study was to determine how long the positional identity of axolotl limb blastema cells is stable during culture in vitro. We have developed an assay for posterior positional properties such that blastema cells can be cultured and then grafted into anterior positions in host blastemas, to determine if they can stimulate supernumerary digit formation. We report that posterior blastema cells are able to maintain their positional identities for at least a week in culture. In addition, we observed that blastema cells are able to rapidly degrade collagenous substrates in vitro, a property that apparently distinguishes them from limb cells of other vertebrates. These results provide information regarding the time boundaries within which the positional properties of blastema cells can be studied and manipulated in vitro. Correspondence to: S.V. Bryant  相似文献   

20.
Retinoic acid (RA) is thought to play a role in embryonic pattern formation in vertebrates. A naturally occurring gradient of endogenous RA has been demonstrated in the developing chick limb bud, while local application of RA leads to the formation of additional digits. In mammals, a well-defined spectrum of birth defects has been reported as a result of fetal exposure to excess RA. In analogy to the chick limb bud, it may be speculated that these malformations are the result of disturbance of morphogenetic RA concentration gradients. A candidate gene involved in the regulation of endogenous RA concentrations is the gene encoding cellular RA binding protein (CRABP). We have isolated a partial cDNA clone corresponding to the chicken homolog of CRABP, and performed in situ hybridization experiments on sections of embryos at various stages of development. CRABP expression was detected in the CNS, the craniofacial mesenchyme, ganglia of the peripheral nervous system, the limb bud, and the visceral arch area. Our results indicate that the spatiotemporally specified expression pattern displayed by the CRABP gene exhibits a striking correspondence to the tissues that are affected by exposure of avian or mammalian embryos to RA. We hypothesize that CRABP plays an important role in normal embryogenesis and that embryonic tissues showing high CRABP expression are susceptible to the adverse effects of excess RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号