首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Belknap WR 《Plant physiology》1983,72(4):1130-1132
Partially purified intact chloroplasts were prepared from batch cultures of both wild type (Wt) and a mutant strain of Chlamydomonas reinhardtii. Protoplasts were generated from log phase cultures of Wt (137c) and the phosphoribulokinase-deficient mutant F60 by incubation of the cells in autolysine. These protoplasts were suspended in an osmoticum, cooled, and then subjected to a 40 pounds per square inch pressure shock using a Yeda pressure bomb. The resulting preparation was fractionated on a Percoll step gradient which separated the intact chloroplasts from both broken chloroplasts and protoplasts.

The chloroplast preparation was not significantly contaminated with the cytoplasmic enzyme activity phosphoenolpyruvate carboxylase (>5%), and contained (100%) stromal enzyme activity ribulose-1,5-bisphosphate carboxylase. The chloroplast preparation is significantly contaminated by mitochondria, as determined by succinate dehydrogenase activity. Chloroplasts prepared from Wt cells retained CO2-dependent O2 photoevolution at rates in excess of 60 micromoles per milligram chlorophyll per hour, an activity which is severely inhibited by the addition of 10 millimolar KH2PO4. The chloroplasts are osmotically sensitive as determined by ferricyanide-dependent O2 photoevolution.

  相似文献   

2.
Inorganic Carbon Uptake by Chlamydomonas reinhardtii   总被引:3,自引:12,他引:3  
The rates of CO2-dependent O2 evolution by Chlamydomonas reinhardtii, grown with either air levels of CO2 or air with 5% CO2, were measured at varying external pH. Over a pH range of 4.5 to 8.5, the external concentration of CO2 required for half-maximal rates of photosynthesis was constant, averaging 25 micromolar for cells grown with 5% CO2. This is consistent with the hypothesis that these cells take up CO2 but not HCO3 from the medium and that their CO2 requirement for photosynthesis reflects the Km(CO2) of ribulose bisphosphate carboxylase. Over a pH range of 4.5 to 9.5, cells grown with air required an external CO2 concentration of only 0.4 to 3 micromolar for half-maximal rates of photosynthesis, consistent with a mechanism to accumulate external inorganic carbon in these cells. Air-grown cells can utilize external inorganic carbon efficiently even at pH 4.5 where the HCO3 concentration is very low (40 nanomolar). However, at high external pH, where HCO3 predominates, these cells cannot accumulate inorganic carbon as efficiently and require higher concentrations of NaHCO3 to maintain their photosynthetic activity. These results imply that, at the plasma membrane, CO2 is the permeant inorganic carbon species in air-grown cells as well as in cells grown on 5% CO2. If active HCO3 accumulation is a step in CO2 concentration by air-grown Chlamydomonas, it probably takes place in internal compartments of the cell and not at the plasmalemma.  相似文献   

3.
A simple procedure that yields highly purified intact chloroplasts from Chlamydomonas reinhardtii is described. This procedure involves breakage of cell wall-deficient cells by passing them through a narrow bore syringe needle. The intact chloroplasts are then purified from the crude homogenate by differential centrifugation and Percoll gradient centrifugation. This procedure generates relatively high yields of chloroplasts capable of CO2 fixation. These chloroplasts were characterized by electron microscopy, marker enzyme analysis, and ferricyanide exclusion. Transmission electron microscopy indicates that these chloroplasts retain their pyrenoids and eyespots. Scanning electron microscopy confirms that the characteristic cup shape of C. reinhardtii chloroplasts persists in vitro. This rapid, inexpensive procedure produces chloroplasts that should be useful for researchers studying the biochemistry and cell biology of C. reinhardtii chloroplasts.  相似文献   

4.
The effect of carbonic anhydrase (CA) on time courses of photosynthetic14C incorporation in the presence of 14CO2 or NaH14CO3 was studiedwith cells of Chlamydomonas reinhardtii which had been grownunder ordinary air (low-CO2 cells) or air enriched with 4% CO2(high-CO2 cells). Experimental data obtained at 20°C andpH 8.0 suggested that the major form of inorganic carbon utilizedby high-CO2 cells was CO2, while that utilized by low-CO2 cellswas HCO3. The cell suspension showed CA activity which was comparableto that observed in the sonicate of cells. Both activities werehigher in low-CO2 cells than in high-CO2 cells. The mechanism by which HCO3 is utilized by low-CO2 cellsof C. reinhardtii is discussed. 3Present address: Department of Biology, Faculty of Science,University of Niigata, Niigata 950-21, Japan. (Received August 4, 1982; Accepted January 19, 1983)  相似文献   

5.
Membrane-permeable and impermeable inhibitors of carbonic anhydrase have been used to assess the roles of extracellular and intracellular carbonic anhydrase on the inorganic carbon concentrating system in Chlamydomonas reinhardtii. Acetazolamide, ethoxzolamide, and a membrane-impermeable, dextran-bound sulfonamide were potent inhibitors of extracellular carbonic anhydrase measured with intact cells. At pH 5.1, where CO2 is the predominant species of inorganic carbon, both acetazolamide and the dextran-bound sulfonamide had no effect on the concentration of CO2 required for the half-maximal rate of photosynthetic O2 evolution (K0.5[CO2]) or inorganic carbon accumulation. However, a more permeable inhibitor, ethoxzolamide, inhibited CO2 fixation but increased the accumulation of inorganic carbon as compared with untreated cells. At pH 8, the K0.5(CO2) was increased from 0.6 micromolar to about 2 to 3 micromolar with both acetazolamide and the dextran-bound sulfonamide, but to a higher value of 60 micromolar with ethoxzolamide. These results are consistent with the hypothesis that CO2 is the species of inorganic carbon which crosses the plasmalemma and that extracellular carbonic anhydrase is required to replenish CO2 from HCO3 at high pH. These data also implicate a role for intracellular carbonic anhydrase in the inorganic carbon accumulating system, and indicate that both acetazolamide and the dextran-bound sulfonamide inhibit only the extracellular enzyme. It is suggested that HCO3 transport for internal accumulation might occur at the level of the chloroplast envelope.  相似文献   

6.
Singh KK  Chen C  Gibbs M 《Plant physiology》1992,100(1):327-333
The role of an electron transport pathway associated with aerobic carbohydrate degradation in isolated, intact chloroplasts was evaluated. This was accomplished by monitoring the evolution of 14CO2 from darkened spinach (Spinacia oleracea) and Chlamydomonas reinhardtii chloroplasts externally supplied with [14C]fructose and [14C]glucose, respectively, in the presence of nitrite, oxaloacetate, and conventional electron transport inhibitors. Addition of nitrite or oxaloacetate increased the release of 14CO2, but it was shown that O2 continued to function as a terminal electron acceptor. 14CO2 evolution was inhibited up to 30 and 15% in Chlamydomonas and spinach, respectively, by 50 μm rotenone and by amytal, but at 500- to 1000-fold higher concentrations, indicating the involvement of a reduced nicotinamide adenine dinucleotide phosphate-plastoquinone oxidoreductase. 14CO2 release from the spinach chloroplast was inhibited 80% by 25 μm 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone. 14CO2 release was sensitive to propylgallate, exhibiting approximately 50% inhibition in Chlamydomonas and in spinach chloroplasts of 100 and 250 μm concentrations, respectively. These concentrations were 20- to 50-fold lower than the concentrations of salicylhydroxamic acid (SHAM) required to produce an equivalent sensitivity. Antimycin A (100 μm) inhibited approximately 80 to 90% of 14CO2 release from both types of chloroplast. At 75 μm, sodium azide inhibited 14CO2 evolution about 50% in Chlamydomonas and 30% in spinach. Sodium azide (100 mm) combined with antimycin A (100 μm) inhibited 14CO2 evolution more than 90%. 14CO2 release was unaffected by uncouplers. These results are interpreted as evidence for a respiratory electron transport pathway functioning in the darkened, isolated chloroplast. Chloroplast respiration defined as 14CO2 release from externally supplied [1-14C]glucose can account for at least 10% of the total respiratory capacity (endogenous release of CO2) of the Chlamydomonas reinhardtii cell.  相似文献   

7.
Singh KK  Chen C  Gibbs M 《Plant physiology》1993,101(4):1289-1294
The photoregulation of chloroplastic respiration was studied by monitoring in darkness and in light the release of 14CO2 from whole chloroplasts of Chlamydomonas reinhardtii F-60 and spinach (Spinacia oleracea L.) supplied externally with [14C] glucose and [14C]-fructose, respectively. CO2 release was inhibited more than 90% in both chloroplasts by a light intensity of 4 W m-2. Oxidants, oxaloacetate in Chlamydomonas, nitrite in spinach, and phenazine methosulfate in both chloroplasts, reversed the inhibition. The onset of the photoinhibitory effect on CO2 release was relatively rapid compared to the restoration of CO2 release following illumination. In both darkened chloroplasts, dithiothreitol inhibited release. Of the four enzymes (fructokinase, phosphoglucose isomerase, glucose-6-P dehydrogenase, and gluconate-6-P dehydrogenase) in the pathway catalyzing the release of CO2 from fructose, only glucose-6-P dehydrogenase was deactivated by light and by dithiothreitol.  相似文献   

8.
Chloroplastic respiration was monitored by measuring 14CO2 from 14C glucose in the darkened Chlamydomonas reinhardtii F-60 chloroplast. The patterns of 14CO2 evolution from labeled glucose in the absence and presence of the inhibitors iodoacetamide, glycolate-2-phosphate, and phosphoenolpyruvate were those expected from the oxidative pentose phosphate cycle and glycolysis. The Km for glucose was 56 micromolar and for MgATP was 200 micromolar. Release of 14CO2 was inhibited by phloretin and inorganic phosphate. Comparing the inhibition of CO2 evolution generated by pH 7.5 with respect to pH 8.2 (optimum) in chloroplasts given C-1, C-2, and C-6 labeled glucose indicated that a suboptimum pH affects the recycling of the pentose phosphate intermediates to a greater extent than CO2 evolution from C-1 of glucose. Respiratory inhibition by pH 7.5 in the darkened chloroplast was alleviated by NH4Cl and KCl (stromal alkalating agents), iodoacetamide (an inhibitor of glyceraldehyde 3-phosphate dehydrogenase), or phosphoenolpyruvate (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiration in the darkened Chlamydomonas chloroplast is the fructose-1,6-bisphosphatase/phosphofructokinase junction. The respiratory pathways described here can account for the total oxidation of a hexose to CO2 and for interactions between carbohydrate metabolism and the oxyhydrogen reaction in algal cells adapted to a hydrogen metabolism.  相似文献   

9.
10.
The external inorganic carbon pool (CO2 + HCO3) was measured in both high and low CO2-grown cells of Chlamydomonas reinhardtii, using a silicone oil layer centrifugal filtering technique. The average internal pH values were measured for each cell type using [14C]dimethyloxazolidinedione, and the internal inorganic carbon pools were recalculated on a free CO2 basis. These measurements indicated that low CO2-grown cells were able to concentrate CO2 up to 40-fold in relation to the external medium. Low and high CO2-grown cells differed in their photosynthetic affinity for external CO2. These differences could be most readily explained as being due to the relative CO2-concentrating capacity of each cell type. This physiological adaptation appeared to be based on changes in the abilities of the cells actively to accumulate inorganic carbon using an energy-dependent transport system.  相似文献   

11.
Klein U 《Plant physiology》1987,85(4):892-897
Using enzymic and isotope techniques the intracellular partitioning of newly fixed carbon was studied in synchronized cells of Chlamydomonas reinhardtii. Starch and growth metabolism, i.e. the use of carbon in biosynthesis, were found to be the major sinks for photosynthetically fixed carbon in the alga. Sucrose does not accumulate in significant quantities. The amount of carbon partitioned either into starch or growth varies during the 12 hour light/12 hour dark cell cycle. Starch is accumulated at the beginning and at the end of the light period while a net breakdown is observed in the middle of the light period and in the dark. In contrast, nonsynchronized cells accumulate starch all the time in the light which suggests that carbon partitioning is controlled by the cell cycle. Labeled bicarbonate is incorporated into starch even at times when the total intracellular level of starch is decreasing. This indicates a turnover of the starch pool in the light with synthesis and degradation occurring simultaneously and at different rates.  相似文献   

12.
The induction of a dissolved inorganic carbon (DIC) accumulating mechanism in the two algal species Scenedesmus obliquus (WT) and Chlamydomonas reinhardtii (137 c+) was physiologically characterized by monitoring DIC uptake kinetics at a low and constant DIC concentration (120-140 micromolar), after transfer from high-DIC culturing conditions. A potentiometric titration method was used to measure and calculate algal DIC uptake. Full acclimation to low-DIC conditions was obtained within a period of 90 min, after which time the DIC uptake had been increased 7 to 10 times. Experiments were also conducted in the presence of inhibitors against DIC accumulation. The inhibitor of extracellular carbonic anhydrase (CA), acetazolamide (50 micromolar), inhibited the adaptation partly, while the inhibitor of both extra- and intracellular CA, ethoxyzolamide (50 micromolar) totally inhibited the acclimation. Cycloheximide (10 micrograms per milliliter), which inhibits protein synthesis on cytoplasmic ribosomes, and vanadate (180 micromolar), which inhibits the plasmamembrane bound ATPase, also inhibited the acclimation totally. These results taken together suggest that the algae are dependent on intracellular CA, plasmamembrane bound ATPase, and de novo protein synthesis for DIC accumulation. Also, these components are more important than extracellular CA for the overall function of the DIC-accumulating mechanism.  相似文献   

13.
The extracellular carbonic anhydrase of Chlamydomonas reinhardtii is dissociated from either intact or lysed cells by treatment with a 20 millimolar potassium phosphate buffer containing 0.4 molar KCI at pH 7.4. Electrophoretic analysis of proteins dissociated by the high salt treatment reveals that carbonic anhydrase comprises over 70% of the total released. These results suggest that the extracellular carbonic anhydrase in C. reinhardtii is bound to either the cell wall or plasma membrane through ionic interactions.  相似文献   

14.
15.
Cells of the unicellular green algae Chlamydomonas reinhardtii were grown in high dissolved inorganic carbon (DIC) concentrations (supplied with 50 milliliters per liter CO2[g]) and transferred to low DIC concentrations (supplied with ≤ 100 microliters per liter CO2[g]). Immediately after transfer from high to low DIC the emission of photosystem II related chlorophyll a fluorescence was substantially quenched. It is hypothesized that the suddenly induced inorganic carbon limitation of photosynthesis resulted in a phosphorylation of LHCII, leading to the subsequent state 1 to state 2 transition. After 2 hours of low-DIC acclimation, 77 K fluorescence measurements revealed an increase in the fluorescence emitted from photosystem I, due to direct excitation, suggesting a change in photosystem II/photosystem I stoichiometry or an increased light harvesting capacity of photosystem I. After 5 to 6 hours of acclimation a considerable increase in spillover from photosystem II to photosystem I was observed. These adjustments of the photosynthetic light reactions reached steady-state after about 12 hours of low DIC treatment. The quencher of fluorescence could be removed by 5 minutes of dark treatment followed by 5 minutes of weak light treatment, of any of four different light qualities. It is hypothesized that this restoration of fluorescence was due to a state 2 to state 1 transition in low-DIC acclimated cells. A decreased ratio of violaxanthin to zeaxanthin was also observed in 12 hour low DIC treated cells, compared with high DIC grown cells. This ratio was not coupled to the level of fluorescence quenching. The role of different processes during the induction of a DIC accumulating mechanism is discussed.  相似文献   

16.
The permeability of the plasmalemma of Chlamydomonas reinhardtiicells was increased by treatment with poly-L-lysine or dimethylsulphoxideas indicated by 3-phosphoglyceric acid dependent O2 evolution.These treatments decreased the ability of the cells to accumulateinorganic carbon internally and hence their photosynthetic affinityfor inorganic carbon in the medium. With saturating light andinorganic carbon, the photosynthetic rate was less affectedby the poly-L-lysine and dimethylsulphoxide treatments. Thusthe poly-L-lysine and dimethylsulphoxide did not alter the activityof the chloroplasts but rather made the intracellular inorganiccarbon pool more freely exchangeable with the medium. It isconcluded that the transporting system for inorganic carbonis located at the plasmalemma. Treatment with Diamox, an inhibitor of carbonic anhydrase, didnot affect photosynthetic rate and accumulation of inorganiccarbon when CO2 was supplied but strongly inhibited both parameterswhen HCO3 was supplied. In a mutant of Chlamydomonasreinhardtii lacking a cell wall, carbonic anhydrase leaks tothe medium and uptake of inorganic carbon is much faster whenCO2 is supplied than when HCO3 is supplied. These resultssuggest that CO2 rather than HCO3 is the inorganic carbonspecies that is actively translocated across the plasmalemma. Key words: Chlamydomonas, Inorganic carbon uptake  相似文献   

17.
A method for isolating intact chloroplasts from Chlamydomonas reinhardtii F-60 was developed from the Klein, Chen, Gibbs, Platt-Aloia procedure ([1983] Plant Physiol 72: 481-487). Protoplasts, generated by treatment with autolysine, were lysed with a solution of digitonin and fractionated on Percoll step gradients. The chloroplasts were assessed to be 90% intact (ferricyanide assay) and free from cytoplasmic contamination (NADP isocitrate dehydrogenase activity) and to range from 2 to 5% in mitochondrial contamination (cytochrome c oxidase activity). About 25% of the cellular succinate dehydrogenase activity (21.6 micromoles per milligram chlorophyll per hour, as determined enzymically) was placed within the chloroplast. Chloroplastic succinate dehydrogenase had a Km for succinate of 0.55 millimolar and was associated with the thylakoidal material derived from the intact chloroplasts. This same thylakoidal material, with an enzymic assay of 21.6 micromoles per milligram chlorophyll per hour was able to initiate a light-dependent uptake of oxygen at a rate of 16.4 micromoles per milligram chlorophyll per hour when supplied with succinate and methyl viologen. Malonate was an apparent competitive inhibitor of this reaction. The succinate dehydrogenase activity present in the chloroplast was sufficient to account for the photoanaerobic rate of acetate dissimilation in H2 adapted Chlamydomonas (M Gibbs, RP Gfeller, C Chen [1986] Plant Physiol 82: 160-166).  相似文献   

18.
Chlamydomonas reinhardtii cells consumed hypoxanthine and xanthine by means of active systems which promoted purine intracellular accumulation against a high concentration gradient. Both uptake and accumulation were also observed in mutant strains lacking xanthine dehydrogenase activity. Xanthine and hypoxanthine uptake systems exhibited very similar Michaelis constants for transport and pH values, and both systems were induced by either hypoxanthine or xanthine. However, they differed greatly in the length of the lag phase before uptake induction, which was longer for hypoxanthine than for xanthine. Cells grown on ammonium and transferred to hypoxanthine media consumed xanthine before hypoxanthine, whereas cells transferred to xanthine media did not take up hypoxanthine until 2 hours after commencing xanthine consumption. Metabolic and photosynthetic inhibitors such as 2,4-dinitrophenol, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea, and carbonylcyanide m-chlorophenylhydrazone inhibited to a different extent the hypoxanthine and xanthine uptake. Similarly, N-ethylmaleimide abolished xanthine uptake but slightly affected that of hypoxanthine. Hypoxanthine consumption was inhibited by adenine and guanine whereas that of xanthine was inhibited only by urate. We conclude that hypoxanthine and xanthine in C. reinhardtii are taken up by different active transport systems which work independently of the intracellular enzymatic oxidation of these purines.  相似文献   

19.
Mass spectrometric measurements of dissolved free 13CO2 were used to monitor CO2 uptake by air grown (low CO2) cells and protoplasts from the green alga Chlamydomonas reinhardtii. In the presence of 50 micromolar dissolved inorganic carbon and light, protoplasts which had been washed free of external carbonic anhydrase reduced the 13CO2 concentration in the medium to close to zero. Similar results were obtained with low CO2 cells treated with 50 micromolar acetazolamide. Addition of carbonic anhydrase to protoplasts after the period of rapid CO2 uptake revealed that the removal of CO2 from the medium in the light was due to selective and active CO2 transport rather than uptake of total dissolved inorganic carbon. In the light, low CO2 cells and protoplasts incubated with carbonic anhydrase took up CO2 at an apparently low rate which reflected the uptake of total dissolved inorganic carbon. No net CO2 uptake occurred in the dark. Measurement of chlorophyll a fluorescence yield with low CO2 cells and washed protoplasts showed that variable fluorescence was mainly influenced by energy quenching which was reciprocally related to photosynthetic activity with its highest value at the CO2 compensation point. During the linear uptake of CO2, low CO2 cells and protoplasts incubated with carbonic anhydrase showed similar rates of net O2 evolution (102 and 108 micromoles per milligram of chlorophyll per hour, respectively). The rate of net O2 evolution (83 micromoles per milligram of chlorophyll per hour) with washed protoplasts was 20 to 30% lower during the period of rapid CO2 uptake and decreased to a still lower value of 46 micromoles per milligram of chlorophyll per hour when most of the free CO2 had been removed from the medium. The addition of carbonic anhydrase at this point resulted in more than a doubling of the rate of O2 evolution. These results show low CO2 cells of Chlamydomonas are able to transport both CO2 and HCO3 but CO2 is preferentially removed from the medium. The external carbonic anhydrase is important in the supply to the cells of free CO2 from the dehydration of HCO3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号