首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, fast and accurate chemiluminescence (CL) method for the determination of sulphite has been developed, based on its sensitizing effect on the CL reaction between a novel water‐soluble iridium complex, [(dpci)2Ir(bvbbi)](PF6) (dpci = 3,4‐diphenylcinnoline; bvbbi = N,N′‐bivinylester‐1H,1′H‐[2,2′] bibenzimidazole) and cerium(IV). Under the optimal experimental conditions, the increased CL response was linear, with the concentration of sulphite over the range 5.0 × 10–7–5.0 × 10–4 mol/L. The detection limit of the method was 1.6 × 10–7 mol/L, with a relative standard deviation (RSD) of 2.7% for nine repetitive determination of 1.0 × 10–4 mol/L sulphite. The method was successfully applied to the quantitative analysis of sulphite in sugar samples. The possible reaction mechanism of sulphite on the [(dpci)2Ir(bvbbi)](PF6)–cerium(IV) system is also briefly discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A highly selective and simple chemiluminescence (CL) method for determination of penicillin G potassium (PGK) was developed. In the proposed method, CL was elicited from PGK upon its oxidation with H2O2. The light emission was enhanced in the presence of N‐cetyl‐N,N,N‐trimethylammonium bromide (CTMAB). An experimental design, central composite design (CCD), was used to realize the optimized variables, including pH, surfactant (CTMAB) and H2O2 concentrations. Under optimum condition, the calibration graph was linear in the range 3.3 × 10?3–3.3 × 10?1 mmol/L, with a detection limit of 8.8 × 10?4 mmol/L for PGK. The precision was calculated by analysing samples containing 1.6 × 10?1 mmol/L PGK (n = 5) and the relative standard deviation (RSD) was 1.40%. The utility of this method was demonstrated by determining PGK in pharmaceutical formulations for injection. The proposed method was validated by a reference method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A new chemiluminescence (CL) reaction was observed when chloramphenicol solution was injected into the mixture after the end of the reaction of alkaline luminol and sodium periodate or sodium periodate was injected into the reaction mixture of chloramphenicol and alkaline luminol. This reaction is described as an order‐transform second‐chemiluminescence (OTSCL) reaction. The OTSCL method combined with a flow‐injection technique was applied to the determination of chloramphenicol. The optimum conditions for the order‐transform second‐chemiluminescence emission were investigated. A mechanism for OTSCL has been proposed on the basis of the chemiluminescence kinetic characteristics, the UV‐visible spectra and the chemiluminescent spectra. Under optimal experimental conditions, the CL response is proportional to the concentration of chloramphenicol over the range 5.0 × 10?7–5.0 × 10?5 mol/L with a correlation coefficient of 0.9969 and a detection limit of 6.0 × 10?8 mol/L (3σ). The relative standard deviation (RSD) for 11 repeated determinations of 5.0 × 10?6 mol/L chloramphenicol is 1.7%. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
《Luminescence》2005,20(1):20-24
It was found that amoxycillin can react with potassium permanganate in an acidic medium to produce chemiluminescence, which is greatly enhanced by formaldehyde. The optimum conditions for this chemiluminescent reaction were studied in detail using a flow‐injection system. The experimental results indicate that, under optimum conditions, the chemiluminescence intensity is linearly related to the concentration of amoxycillin in the range 5.48 × 10?8–2.74 × 10?6 mol[sol ]L, with a detection limit (3σ) of 4.1 × 10?8 mol[sol ]L. The relative standard deviation was 1.0% at 1.1 × 10?6 mol[sol ]L amoxycillin (n = 11 measurements). This method has the advantages of high sensitivity, fast response and ease of operation. The method was successfully applied to the determination of amoxycillin in raw medicines and capsules. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
A post‐chemiluminescence (PCL) phenomenon was observed when chloramphenicol was injected into a mixture of luminol and potassium periodate after the chemiluminescence (CL) reaction of luminol–potassium periodate had finished. The possible reaction mechanism was proposed based on studies of the CL kinetic characteristics, the CL spectra, the fluorescence spectra and the UV‐vis absorption spectra of the related substances. Based on the PCL reaction, a rapid and sensitive method for the determination of chloramphenicol was established. The linear response range was 6.0 × 10?7–1.0 × 10?5 mol/L, with a correlation coefficient of 0.9986. The relative standard deviation (RSD) for 5.0 × 10?6 mol/L chloramphenicol was 2.3% (n = 11). The detection limit was 1.6 × 10?7 mol/L. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
《Luminescence》2003,18(2):67-71
A flow injection method for the determination of glycerol using a co‐immobilized enzyme reactor containing glycerokinase and glycerol‐3‐phosphate oxidase is described. The hydrogen peroxide produced is monitored by using a luminol chemiluminescence reaction in the presence of catalyst such as Co(II). The detection limit (2.5 × blank noise) for glycerol is 7 × 10?3 mmol/L with a sample throughput of 40/h. The calibration graph is linear over the range studied (0.2–1.0 mmol/L) with relative standard deviation 1.2–2.4%. The method is applied to the determination of glycerol in blood serum produced off‐line from triglycerides using lipase isolated from bovine pancreas. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
A rapid and sensitive flow‐injection chemiluminescence (FI–CL) method is described for the determination of diazepam based on its reaction with N‐bromosuccinimide (NBS) in alkaline medium in the presence of dichlorofluorescein (DCF) as an effective energy‐transfer agent. Under optimum conditions, the proposed method allowed the measurement of diazepam over the range of 2.0 × 10?6 to 2.0 × 10?4 mol/L with a detection limit of 5.0 × 10?7 mol/L. The relative standard deviation for 11 parallel measurements of 2.0 × 10?5 mol/L diazepam was 2.1%. The method was applied satisfactorily for the determination of diazepam in pharmaceutical preparations, and the results agree well with those obtained by spectrophotometry. The use of the proposed system for the determination of diazepam in urine and plasma samples was also tested. The possible mechanism of the chemiluminescence reaction is discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Liu Y  Fu Z  Wang L 《Luminescence》2011,26(6):397-402
A rapid and simple capillary electrophoresis method coupled with chemiluminescent (CL) detection was proposed for analysis of isoniazid (ISO) based on the enhancement effect of ISO to CL emission of luminol‐periodate potassium reaction. Under the optimal conditions, ISO can be assayed in the range of 7.0 × 10?7 to 3.0 × 10?5 g mL?1 (R2 = 0.9990) with a limit of detection of 3.0 × 10?7 g mL?1 (signal‐to‐noise ratio of 3). The whole analysis process can be completed within 2.5 min with a theoretical plate number of 6258. The relative standard deviations of the signal intensity and the migration time were 3.1 and 1.4% for a standard sample at 1.0 × 10?5 g mL?1 (n = 5), respectively. The presented novel strategy was successfully applied to the determination of ISO in commercial pharmaceutical preparations and spiked human serum samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive peroxyoxalate chemiluminescent (PO-CL) assay for activities of oxidases (uricase, choline oxidase, cholesterol oxidase and xanthine oxidase) which catalyse a formation of hydrogen peroxide was developed using 4,4′-oxalyl-bis[(trifluoromethylsulphonyl)imino]trimethylene-bis(4-methylmorpholinium)trifluoromethanesulphonate as a chemiluminogenic reagent and 2,4,6,8-tetramorpholinopyrimido[5,4-d]pyrimidine as a fluorophore. The standard curve for hydrogen peroxide was linear over the range 1 × 10?7-1 × 10?4 mol/L. Relative standard deviations for oxidase assays were 5.1–12.7% (n = 10). Detection limits were 1 × 10?3 U/mL for uricase, 5 × 10?4 U/mL for choline oxidase, 5 × 10?3 U/mL for cholesterol oxidase and 5 × 10?4 U/mL xanthine oxidase (sample to blank ratio, 3).  相似文献   

10.
This paper presents a new application for monolithic columns with low‐pressure chromatographic separation using an flow injection analysis configuration with chemiluminescent detection for the determination of a mixture of phenolic compounds: phloroglucinol, 2,4‐dihydroxybenzoic acid, salicylic acid, methyl paraben and n‐propyl gallate. The procedure consists of the separation of these compounds on a reverse‐phase ultra‐short monolithic column with pH 3.0 acetate buffer and 5% acetonitrile as carrier phase. The detection is based on a chemiluminescence measurement coming from Ce(IV)–Rhodamine 6G chemistry with the incorporation of two different chemiluminescent chemical conditions in the chromatographic setup in order to enhance the sensitivity for the different phenolic compounds. All separation and detection variables were optimized to propose a determination method. The analysis is performed in 280?s, with the sampling frequency being some 13 h?1. The calibration function is a double reciprocal function obtaining good results within two orders of magnitude. The limits of detection were 8.8 × 10 ?8 m (phloroglucinol), 2.7 × 10 ?8 m (2,4‐dihydroxybenzoic acid); 2.3 × 10 ?8 m (salicylic acid); 5.2 × 10 ?8 m (methyl paraben) and 4.1 × 10 ?6 m (n‐propyl gallate), and the relative standard deviations at a medium level of the linear range were 4.4% (phloroglucinol), 2.8% (2,4‐dihydroxybenzoic acid), 5.2% (salicylic acid), 3.6% (methyl paraben) and 6.8% (n‐propyl gallate). The method was applied and validated satisfactorily for the determination of these compounds in healthcare products, comparing the results against an HPLC reference method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A novel chemiluminescence method for the determination of 6‐mercaptopurine was established based on 6‐mercaptopurine inhibition of the chemiluminescence emission of potassium permanganate–thioacetamide–sodium hexametaphosphate system. The peak height was proportional to log 6‐mercaptopurine concentration in the range 7.0 × 10?10 to 1.0 × 10?7 g/mL and the detection limit was 1.9 × 10?11 g/mL (S/N = 3). The relative standard deviation was 1.5% for the determination of 8.0 × 10?8 g/mL 6‐mercaptopurine (n = 11). The proposed sensor was successfully applied to the analysis of 6‐mercaptopurine in human serum samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
《Luminescence》2003,18(6):318-323
It was found that the inhibition and enhancement by phloroglucinol of the chemiluminescence from the luminol–K3Fe(CN)6 system were dependent on the pH of luminol solution and the concentration of phloroglucinol. In Na2CO3–NaHCO3 buffer, phloroglucinol exhibited strong chemiluminescent enhancement at pH 9.4. On this basis, a flow injection method was developed for the determination of phloroglucinol. The method was simple, rapid, convenient and sensitive, with a detection limit of 2.0 × 10?9 mol/L. It is effective for determining phloroglucinol in the range of 1.0 × 10?5–5.0 × 10?9 mol/L. The relative standard deviation is 1.3% within one day and 3.2% between days for the determination of 5.0 × 10?7 mol/L phloroglucinol. The method has been successfully used to determine phloroglucinol in environmental water, with satisfactory results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Chemiluminescence (CL) of the rhodamine 6‐G‐diperiodatonickelate (IV) (Rh6‐G‐Ni(IV) complex) in the presence of Brij‐35 was examined in an alkaline medium and implemented using flow‐injection analysis to analyze Mn(II) in natural waters. Brij‐35 was identified as the surfactant of choice that enhanced CL intensity by about 62% of the reaction. The calibration curves were linear in the range 1.7 × 10?3 – 0.2 (0.9990, n = 7) and 8.0 × 10?4 – 0.1 μg ml?1 (0.9990, n = 7) with limits of detection (LODs) (S:N = 3) of 5.0 × 10?4 and 2.4 × 10?4 μg ml?1 without and with using an in‐line 8‐hydroxyquinoline (8‐HQ) resin mini‐column, respectively. The sample throughput and relative standard deviation were 200 h?1 and 1.7–2.2% in the range studied respectively. Mn(II) concentrations in certified reference materials and natural water samples was successfully determined. A brief discussion about the possible CL reaction mechanism is also given. In addition, analysis of V(III), Cr(III) and Fe(II) was also performed without and with using an in‐line 8–HQ column and selective elution of each metal ion was achieved by adjusting the pH of the sample carrier stream with aqueous HCl solution.  相似文献   

14.
A flow injection chemiluminescence method is described for the determination of subnanomolar concentrations of vanadium in environmental water samples. The procedure is based on the oxidation of luminol in the presence of dissolved oxygen catalyzed by vanadium(IV). Vanadium(V) reduction and preconcentration of vanadium(IV) was carried out using in‐line silver reductor and 8‐hydroxyquinoline chelating columns at pH 3.15, respectively. The calibration graph for vanadium(IV) was linear in the concentration range of 0.025–10 µg/L with relative standard deviation in the range of 0.4–5.58%. The detection limit (3s blank) was 3.8 × 10?3 µg/L without preconcentration; when the vanadium(IV) was preconcentrated with an 8‐HQ column for 1 min (2.0 mL of sample loaded), the detection limit of 5.1 × 10?4 µg/L was achieved. One analytical cycle can be completed in 2.0 min. The analysis of certified reference materials (CASS‐4, NASS‐5 and SLRS‐4) by the proposed method showed good agreement with the certified values. The method was successfully applied to the determination of total dissolved vanadium in environmental water samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A flow injection method with chemiluminescence detection is reported for the determination of vitamin A. The method is based on the enhancement effect of vitamin A on chemiluminescence of tris(2,2′‐bipyridyl)Ru(II)–Ce(IV) in acidic medium. The proposed procedure is used to quantitate vitamin A in the range 1.0–100 × 10?6 mol/L with a correlation coefficient of 0.9991 (n = 9) and relative standard deviation in the range 1.2–2.3% (n = 4). The limit of detection (3 × blank) was 8.0 × 10?8 mol/L with a sample throughput of 100/h. The effect of common excipients used in pharmaceutical formulations and some clinically important compounds was also studied. The method was applied to determine vitamin A in pharmaceutical formulations and the results obtained were in reasonable agreement with the amount quoted. The results were compared using spectrophotometric method and no significant difference was found between the results of the two methods at 95% confidence limit. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The main purpose of this study was to develop an inexpensive, simple, rapid and sensitive chemiluminescence (CL) method for the determination of glutamine (Gln) using a flow‐injection (FI) system. Gln was found to strongly inhibit the CL signal of the luminol–H2O2–CuSO4 system in Na2B4O7 solution. A new FI‐CL method was developed for the determination of Gln. Parameters affecting the reproducibility and CL detection were optimized systematically. Under the optimized conditions, the corresponding linear regression equation was established over the range of 5.0 × 10?7 to 2.5 × 10?6 mol/L with the detection limit of 1.8 × 10?8 mol/L. The relative standard deviation was found to be 1.8% for 11 replicate determinations of 1.5 × 10?6 mol/L Gln. The proposed method has been satisfactorily applied for the determination of Gln in real samples (Marzulene‐s granules) with recoveries in the range of 98.7–108.6%. The minimum sampling rate was about 100 samples/h. The possible mechanism of this inhibitory CL was studied by fluorescence spectrophotometer and UV–vis spectrophotometer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A tris(2,2‐bipyridyl)ruthenium(II) (Ru(bpy)32+)‐based electrochemiluminescence (ECL) detection coupled with capillary electrophoresis (CE) method has been established for the sensitive determination of ephedrine for the first time. Under the optimized conditions [ECL detection at 1.15 V, 25 mmol/L phosphate buffer solution (PBS), pH 8.0, as running buffer, separation voltage 12.5 kV, 5 mmol/L Ru(bpy)32+ with 60 mmol/L PBS, pH 8.5, in the detection cell] linear correlation (r = 0.9987) between ECL intensity and ephedrine concentration was obtained in the range 6.0 × 10–8–6.0 × 10–6 g/mL. The detection limit was 4.5 × 10–9 g/mL (S:N = 3). The developed method was successfully applied to the analysis of ephedrine in human urine and the investigation of its interactions with three proteins, including bovine serum albumin (BSA), cytochrome C (Cyt‐C) and myoglobin (Mb). The number of binding sites and the binding constants between ephedrine and BSA, Cyt‐C and Mb were 8.52, 12.60, 10.66 and 1.55 × 104 mol/L, 6.58 × 103 mol/L and 1.59 × 104 mol/L, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A highly sensitive and simple spectrofluorimetric method for the determination of rutin, based on its activated effect on a haemoglobin‐catalysed reaction, was developed. Under optimum conditions, the concentration of rutin was linear, with decreased fluorescence (ΔF) of the system under optimal experimental conditions. The calibration graph was linear in the range 1.0 × 10–7–3.0 × 10–5 mol/L, with a detection limit of 7.0 × 10–8 mol/L. The relative standard deviation (RSD) was 3.26% for 11 determinations of 1.0 × 10–5 mol/L. This method was used for the determination of rutin in pharmaceuticals with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Based on the catalytic activity of hemin, an efficient biocatalyst, an indirect capillary electrophoresis–chemiluminescence (CE‐CL) detection method for phenols using a hemin–luminol–hydrogen peroxide system was developed. Through a series of static injection experiments, hemin was found to perform best in a neutral solution rather than an acidic or alkaline medium. Although halide ions such as Br? and F? could further enhance the CL signal catalyzed by hemin, it is difficult to apply these conditions to this CE‐CL detection system because of the self‐polymerization of hemin, as it hinders the CE process. The addition of concentrated ammonium hydroxide to an aqueous/dimethyl sulfoxide solution of hemin–luminol afforded a stable CE‐CL baseline. The indirect CE‐CL detection of five phenols using this method gave the following limits of detections: 4.8 × 10?8 mol/L (o‐sec‐butylphenol), 4.9 × 10?8 mol/L (o‐cresol), 5.4 × 10?8 mol/L (m‐cresol), 5.3 × 10?8 mol/L (2,4‐dichlorophenol) and 7.1 × 10?8 mol/L (phenol). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A rapid and sensitive flow injection chemiluminescence (FI–CL) method is described for the determination of 2‐methoxyestradiol (2ME) based on enhancement of the CL intensity from a potassium ferricyanide–calcein system in sodium hydroxide medium. The optimum conditions for the CL emission were investigated. Under optimized conditions, a linear calibration graph was obtained over the range 1.0 × 10‐8 to 1.0 × 10‐6 mol/L (r = 0.998) 2ME with a detection limit (3σ) of 5.4 × 10‐9 mol/L. The relative standard deviation (RSD) for 5.0 × 10‐7 mol/L 2ME was 1.7%. As a preliminary application, the proposed method was successfully applied to the determination of 2ME in injection solutions and serum samples. The possible CL mechanism was also proposed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号