首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overdispersion is a common phenomenon in Poisson modeling, and the negative binomial (NB) model is frequently used to account for overdispersion. Testing approaches (Wald test, likelihood ratio test (LRT), and score test) for overdispersion in the Poisson regression versus the NB model are available. Because the generalized Poisson (GP) model is similar to the NB model, we consider the former as an alternate model for overdispersed count data. The score test has an advantage over the LRT and the Wald test in that the score test only requires that the parameter of interest be estimated under the null hypothesis. This paper proposes a score test for overdispersion based on the GP model and compares the power of the test with the LRT and Wald tests. A simulation study indicates the score test based on asymptotic standard Normal distribution is more appropriate in practical application for higher empirical power, however, it underestimates the nominal significance level, especially in small sample situations, and examples illustrate the results of comparing the candidate tests between the Poisson and GP models. A bootstrap test is also proposed to adjust the underestimation of nominal level in the score statistic when the sample size is small. The simulation study indicates the bootstrap test has significance level closer to nominal size and has uniformly greater power than the score test based on asymptotic standard Normal distribution. From a practical perspective, we suggest that, if the score test gives even a weak indication that the Poisson model is inappropriate, say at the 0.10 significance level, we advise the more accurate bootstrap procedure as a better test for comparing whether the GP model is more appropriate than Poisson model. Finally, the Vuong test is illustrated to choose between GP and NB2 models for the same dataset.  相似文献   

2.
Binomial regression models are commonly applied to proportion data such as those relating to the mortality and infection rates of diseases. However, it is often the case that the responses may exhibit excessive zeros; in such cases a zero‐inflated binomial (ZIB) regression model can be applied instead. In practice, it is essential to test if there are excessive zeros in the outcome to help choose an appropriate model. The binomial models can yield biased inference if there are excessive zeros, while ZIB models may be unnecessarily complex and hard to interpret, and even face convergence issues, if there are no excessive zeros. In this paper, we develop a new test for testing zero inflation in binomial regression models by directly comparing the amount of observed zeros with what would be expected under the binomial regression model. A closed form of the test statistic, as well as the asymptotic properties of the test, is derived based on estimating equations. Our systematic simulation studies show that the new test performs very well in most cases, and outperforms the classical Wald, likelihood ratio, and score tests, especially in controlling type I errors. Two real data examples are also included for illustrative purpose.  相似文献   

3.
When analyzing Poisson count data sometimes a high frequency of extra zeros is observed. The Zero‐Inflated Poisson (ZIP) model is a popular approach to handle zero‐inflation. In this paper we generalize the ZIP model and its regression counterpart to accommodate the extent of individual exposure. Empirical evidence drawn from an occupational injury data set confirms that the incorporation of exposure information can exert a substantial impact on the model fit. Tests for zero‐inflation are also considered. Their finite sample properties are examined in a Monte Carlo study.  相似文献   

4.
In this paper, a Bayesian method for inference is developed for the zero‐modified Poisson (ZMP) regression model. This model is very flexible for analyzing count data without requiring any information about inflation or deflation of zeros in the sample. A general class of prior densities based on an information matrix is considered for the model parameters. A sensitivity study to detect influential cases that can change the results is performed based on the Kullback–Leibler divergence. Simulation studies are presented in order to illustrate the performance of the developed methodology. Two real datasets on leptospirosis notification in Bahia State (Brazil) are analyzed using the proposed methodology for the ZMP model.  相似文献   

5.
Several analysis of the geographic variation of mortality rates in space have been proposed in the literature. Poisson models allowing the incorporation of random effects to model extra‐variability are widely used. The typical modelling approach uses normal random effects to accommodate local spatial autocorrelation. When spatial autocorrelation is absent but overdispersion persists, a discrete mixture model is an alternative approach. However, a technique for identifying regions which have significant high or low risk in any given area has not been developed yet when using the discrete mixture model. Taking into account the importance that this information provides to the epidemiologists to formulate hypothesis related to the potential risk factors affecting the population, different procedures for obtaining confidence intervals for relative risks are derived in this paper. These methods are the standard information‐based method and other four, all based on bootstrap techniques, namely the asymptotic‐bootstrap, the percentile‐bootstrap, the BC‐bootstrap and the modified information‐based method. All of them are compared empirically by their application to mortality data due to cardiovascular diseases in women from Navarra, Spain, during the period 1988–1994. In the small area example considered here, we find that the information‐based method is sensible at estimating standard errors of the component means in the discrete mixture model but it is not appropriate for providing standard errors of the estimated relative risks and hence, for constructing confidence intervals for the relative risk associated to each region. Therefore, the bootstrap‐based methods are recommended for this matter. More specifically, the BC method seems to provide better coverage probabilities in the case studied, according to a small scale simulation study that has been carried out using a scenario as encountered in the analysis of the real data.  相似文献   

6.
We present two tests for seasonal trend in monthly incidence data. The first approach uses a penalized likelihood to choose the number of harmonic terms to include in a parametric harmonic model (which includes time trends and autogression as well as seasonal harmonic terms) and then tests for seasonality using a parametric bootstrap test. The second approach uses a semiparametric regression model to test for seasonal trend. In the semiparametric model, the seasonal pattern is modeled nonparametrically, parametric terms are included for autoregressive effects and a linear time trend, and a parametric bootstrap test is used to test for seasonality. For both procedures, a null distribution is generated under a null Poisson model with time trends and autoregression parameters.We apply the methods to skin melanoma incidence rates collected by the surveillance, epidemiology, and end results (SEER) program of the National Cancer Institute, and perform simulation studies to evaluate the type I error rate and power for the two procedures. These simulations suggest that both procedures are alpha-level procedures. In addition, the harmonic model/bootstrap test had similar or larger power than the semiparametric model/bootstrap test for a wide range of alternatives, and the harmonic model/bootstrap test is much easier to implement. Thus, we recommend the harmonic model/bootstrap test for the analysis of seasonal incidence data.  相似文献   

7.
We analyze a real data set pertaining to reindeer fecal pellet‐group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi‐Poisson hierarchical generalized linear model (HGLM), zero‐inflated Poisson (ZIP), and hurdle models. The quasi‐Poisson HGLM allows for both under‐ and overdispersion with excessive zeros, while the ZIP and hurdle models allow only for overdispersion. In analyzing the real data set, we see that the quasi‐Poisson HGLMs can perform better than the other commonly used models, for example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We develop R codes for fitting these models using a unified algorithm for the HGLMs. Spatial count response with an extremely high proportion of zeros, and underdispersion can be successfully modeled using the quasi‐Poisson HGLM with spatial random effects.  相似文献   

8.
Count data often exhibit more zeros than predicted by common count distributions like the Poisson or negative binomial. In recent years, there has been considerable interest in methods for analyzing zero-inflated count data in longitudinal or other correlated data settings. A common approach has been to extend zero-inflated Poisson models to include random effects that account for correlation among observations. However, these models have been shown to have a few drawbacks, including interpretability of regression coefficients and numerical instability of fitting algorithms even when the data arise from the assumed model. To address these issues, we propose a model that parameterizes the marginal associations between the count outcome and the covariates as easily interpretable log relative rates, while including random effects to account for correlation among observations. One of the main advantages of this marginal model is that it allows a basis upon which we can directly compare the performance of standard methods that ignore zero inflation with that of a method that explicitly takes zero inflation into account. We present simulations of these various model formulations in terms of bias and variance estimation. Finally, we apply the proposed approach to analyze toxicological data of the effect of emissions on cardiac arrhythmias.  相似文献   

9.
The assessment of population trends is a key point in wildlife conservation. Survey data collected over long period may not be comparable due to the presence of environmental biases (i.e. inadequate representation of the variability of environmental covariates in the study area). Moreover, count data may be affected by both overdispersion (i.e. the variance is larger than the mean) and excess of zero counts (potentially leading to zero inflation). The aim of this study was to define a modelling procedure to assess long-term population trends that addressed these three issues and to shed light on the effects of environmental bias, overdispersion, and zero inflation on trend estimates. To test our procedure, we used six bird species whose data were collected in northern Italy from 1992 to 2019. We designed a multi-step approach. First, using generalised additive models (GAMs), we implemented a full factorial design of models (eight models per species) taking or not into account the environmental bias (including or not including environmental covariates, respectively), overdispersion (using a negative binomial distribution or a Poisson distribution, respectively), and zero inflation (using or not using zero-inflated models, respectively). Models were ranked according to the Akaike Information Criterion. Second, annual population indices (median and 95% confidence interval of the number of breeding pairs per point count) were predicted through a parametric bootstrap procedure. Third, long-term population trends were assessed and tested for significance fitting weighted least square linear regression models to the predicted annual indices. To evaluate the effect of environmental bias, overdispersion, and zero inflation on trend estimates, an average discrepancy index was calculated for each model group. The results showed that environmental bias was the most important driver in determining different trend estimates, although overlooking overdispersion and zero inflation could lead to misleading results. For five species, zero-inflated GAMs resulted the best models to predict annual population indices. Our findings suggested a mutual interaction between zero inflation and overdispersion, with overdispersion arising in non-zero-inflated models. Moreover, for species having flocking foraging and/or colonial breeding behaviours, overdispersed and zero-inflated models may be more adequate. In conclusion, properly handling environmental bias, which may affect several data sets coming from long-term monitoring programs, is crucial to obtain reliable estimates of population trends. Furthermore, the extent to which overdispersion and zero inflation may affect trend estimates should be assessed by comparing different models, rather than presumed using statistical assumption.  相似文献   

10.
The problem of testing treatment difference in the occurrence of a safety parameter in a randomized parallel‐group comparative clinical trial under the assumption that the number of occurrence follows a zero‐inflated Poisson (ZIP) distribution is considered. Likelihood ratio tests (LRT) for homogeneity of two ZIP populations are derived under the hypotheses that (i) there is no difference in inflation parameters, (ii) there is no difference in non‐zero means; and (iii) there is no difference in both inflation parameters and non‐zero means. Approximate formulas for sample size calculation are also obtained for achieving a desired power for detecting a clinically meaningful difference under the corresponding alternative hypotheses. An example concerning the assessment of the gastrointestinal (GI) safety in terms of the number of erosion counts of a newly developed compound for the treatment of osteoarthritis and rheumatoid arthritis is given for illustration purpose (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We consider models for hierarchical count data, subject to overdispersion and/or excess zeros. Molenberghs et al. ( 2007 ) and Molenberghs et al. ( 2010 ) extend the Poisson‐normal generalized linear‐mixed model by including gamma random effects to accommodate overdispersion. Excess zeros are handled using either a zero‐inflation or a hurdle component. These models were studied by Kassahun et al. ( 2014 ). While flexible, they are quite elaborate in parametric specification and therefore model assessment is imperative. We derive local influence measures to detect and examine influential subjects, that is subjects who have undue influence on either the fit of the model as a whole, or on specific important sub‐vectors of the parameter vector. The latter include the fixed effects for the Poisson and for the excess‐zeros components, the variance components for the normal random effects, and the parameters describing gamma random effects, included to accommodate overdispersion. Interpretable influence components are derived. The method is applied to data from a longitudinal clinical trial involving patients with epileptic seizures. Even though the data were extensively analyzed in earlier work, the insight gained from the proposed diagnostics, statistically and clinically, is considerable. Possibly, a small but important subgroup of patients has been identified.  相似文献   

12.
Jung BC  Jhun M  Lee JW 《Biometrics》2005,61(2):626-628
Ridout, Hinde, and Demétrio (2001, Biometrics 57, 219-223) derived a score test for testing a zero-inflated Poisson (ZIP) regression model against zero-inflated negative binomial (ZINB) alternatives. They mentioned that the score test using the normal approximation might underestimate the nominal significance level possibly for small sample cases. To remedy this problem, a parametric bootstrap method is proposed. It is shown that the bootstrap method keeps the significance level close to the nominal one and has greater power uniformly than the existing normal approximation for testing the hypothesis.  相似文献   

13.
A common feature of ecological data sets is their tendency to contain many zero values. Statistical inference based on such data are likely to be inefficient or wrong unless careful thought is given to how these zeros arose and how best to model them. In this paper, we propose a framework for understanding how zero-inflated data sets originate and deciding how best to model them. We define and classify the different kinds of zeros that occur in ecological data and describe how they arise: either from 'true zero' or 'false zero' observations. After reviewing recent developments in modelling zero-inflated data sets, we use practical examples to demonstrate how failing to account for the source of zero inflation can reduce our ability to detect relationships in ecological data and at worst lead to incorrect inference. The adoption of methods that explicitly model the sources of zero observations will sharpen insights and improve the robustness of ecological analyses.  相似文献   

14.
In microarray studies it is common that the number of replications (i.e. the sample size) is small and that the distribution of expression values differs from normality. In this situation, permutation and bootstrap tests may be appropriate for the identification of differentially expressed genes. However, unlike bootstrap tests, permutation tests are not suitable for very small sample sizes, such as three per group. A variety of different bootstrap tests exists. For example, it is possible to adjust the data to have a common mean before the bootstrap samples are drawn. For small significance levels, which can occur when a large number of genes is investigated, the original bootstrap test, as well as a bootstrap test suggested for the Behrens-Fisher problem, have no power in cases of very small sample sizes. In contrast, the modified test based on adjusted data is powerful. Using a Monte Carlo simulation study, we demonstrate that the difference in power can be huge. In addition, the different tests are illustrated using microarray data.  相似文献   

15.
Researchers are often interested in predicting outcomes, detecting distinct subgroups of their data, or estimating causal treatment effects. Pathological data distributions that exhibit skewness and zero‐inflation complicate these tasks—requiring highly flexible, data‐adaptive modeling. In this paper, we present a multipurpose Bayesian nonparametric model for continuous, zero‐inflated outcomes that simultaneously predicts structural zeros, captures skewness, and clusters patients with similar joint data distributions. The flexibility of our approach yields predictions that capture the joint data distribution better than commonly used zero‐inflated methods. Moreover, we demonstrate that our model can be coherently incorporated into a standardization procedure for computing causal effect estimates that are robust to such data pathologies. Uncertainty at all levels of this model flow through to the causal effect estimates of interest—allowing easy point estimation, interval estimation, and posterior predictive checks verifying positivity, a required causal identification assumption. Our simulation results show point estimates to have low bias and interval estimates to have close to nominal coverage under complicated data settings. Under simpler settings, these results hold while incurring lower efficiency loss than comparator methods. We use our proposed method to analyze zero‐inflated inpatient medical costs among endometrial cancer patients receiving either chemotherapy or radiation therapy in the SEER‐Medicare database.  相似文献   

16.
Unlike zero‐inflated Poisson regression, marginalized zero‐inflated Poisson (MZIP) models for counts with excess zeros provide estimates with direct interpretations for the overall effects of covariates on the marginal mean. In the presence of missing covariates, MZIP and many other count data models are ordinarily fitted using complete case analysis methods due to lack of appropriate statistical methods and software. This article presents an estimation method for MZIP models with missing covariates. The method, which is applicable to other missing data problems, is illustrated and compared with complete case analysis by using simulations and dental data on the caries preventive effects of a school‐based fluoride mouthrinse program.  相似文献   

17.
Phenotypes measured in counts are commonly observed in nature. Statistical methods for mapping quantitative trait loci (QTL) underlying count traits are documented in the literature. The majority of them assume that the count phenotype follows a Poisson distribution with appropriate techniques being applied to handle data dispersion. When a count trait has a genetic basis, “naturally occurring” zero status also reflects the underlying gene effects. Simply ignoring or miss-handling the zero data may lead to wrong QTL inference. In this article, we propose an interval mapping approach for mapping QTL underlying count phenotypes containing many zeros. The effects of QTLs on the zero-inflated count trait are modelled through the zero-inflated generalized Poisson regression mixture model, which can handle the zero inflation and Poisson dispersion in the same distribution. We implement the approach using the EM algorithm with the Newton-Raphson algorithm embedded in the M-step, and provide a genome-wide scan for testing and estimating the QTL effects. The performance of the proposed method is evaluated through extensive simulation studies. Extensions to composite and multiple interval mapping are discussed. The utility of the developed approach is illustrated through a mouse F2 intercross data set. Significant QTLs are detected to control mouse cholesterol gallstone formation.  相似文献   

18.
We present the one‐inflated zero‐truncated negative binomial (OIZTNB) model, and propose its use as the truncated count distribution in Horvitz–Thompson estimation of an unknown population size. In the presence of unobserved heterogeneity, the zero‐truncated negative binomial (ZTNB) model is a natural choice over the positive Poisson (PP) model; however, when one‐inflation is present the ZTNB model either suffers from a boundary problem, or provides extremely biased population size estimates. Monte Carlo evidence suggests that in the presence of one‐inflation, the Horvitz–Thompson estimator under the ZTNB model can converge in probability to infinity. The OIZTNB model gives markedly different population size estimates compared to some existing truncated count distributions, when applied to several capture–recapture data that exhibit both one‐inflation and unobserved heterogeneity.  相似文献   

19.
Count data are very common in health services research, and very commonly the basic Poisson regression model has to be extended in several ways to accommodate several sources of heterogeneity: (i) an excess number of zeros relative to a Poisson distribution, (ii) hierarchical structures, and correlated data, (iii) remaining “unexplained” sources of overdispersion. In this paper, we propose hierarchical zero‐inflated and overdispersed models with independent, correlated, and shared random effects for both components of the mixture model. We show that all different extensions of the Poisson model can be based on the concept of mixture models, and that they can be combined to account for all different sources of heterogeneity. Expressions for the first two moments are derived and discussed. The models are applied to data on maternal deaths and related risk factors within health facilities in Mozambique. The final model shows that the maternal mortality rate mainly depends on the geographical location of the health facility, the percentage of women admitted with HIV and the percentage of referrals from the health facility.  相似文献   

20.
Methods for making inferences about the Poisson plus added zeros distribution and the truncated Poisson distribution are presented and illustrated with bacteriological data. Some of the methods are designed for testing the compatibility of the zero frequency with the Poisson distribution, whereas others are given for testing the goodness of fit for the truncated Poisson. In particular, a modified form of the Fisher index of dispersion is presented which is suitable for the truncated case. It is shown that the use of the usual expression of the index of dispersion for testing the adequacy of the truncated Poisson is not correct and leads to accepting inadequate fits more frequently than expected on the basis of test of significance. Furthermore, three test statistics are presented for testing the compatability of the zero frequency with the Poisson distribution. The results of the simulation show that two test statistics, one due to Cochran (W. G. Cochran, Biometrics 10:417-451, 1954) and the other to Rao and Chakravarti (C. R. Rao and I. M. Chakravarti, Biometrics 12:264-282, 1956), are preferable to those from the likelihood ratio test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号