首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
The influence of sub-optimal temperatures (T) on the microbial growth rate (μ) has been assessed by means of dimensionless variables: Tdim = [T−Tmin]/[Topt−Tmin] and μdim = μ/μopt. Tmin represents the temperature at which there is no growth, Topt the optimum temperature at which the growth rate, μopt, is maximum. Data sets, growth rate vs temperature, have been taken from the literature for 12 organisms (psychrotrophs, mesophiles and thermophiles). In order to compare these organisms, the power law function has been used: [μdim] = [Tdim]α. The parameters μopt and Topt are determined from direct readings whereas Tmin and αare estimated by means of a non-linear regression. An accurate estimation of Tmin is obtained providing low growth rate data are available. A wide range of optimal temperatures where the growth rate almost equals μopt prevents one from obtaining a narrow confidence interval forα. On the basis of the analysis hereafter developed, thermophiles are characterized by values of the power α less than mesophiles and psychrotrophs. Almost all of these values are significantly different from two, previously determined for Staphylococcus xylosus and widely used for predicting the microbial growth in foods. Received 15 May 1998/ Accepted in revised form 25 September 1998  相似文献   

3.
For the model y0 + β1 x + e (model I of linear regression) in the literature confidence estimators of an unknown position x0 are given at which either the expectation of y is given (see FIELLER, 1944; FINNEY, 1952), or realizations of y are given (see GRAYBILL, 1961). These confidence regions with level 1—α need not be intervals. The occurrence of interval shape is a random event. Its probability is equal to the power of the t test for the examination of the hypothesis H: β1 = 0. The papers mentioned above claim to provide confidence intervals with level 1 ? α. But because of the restriction of (1 —α)—confidence regions to intervals the true confidence probability is the conditional probability Wc: Wc = P (the confidence region covers x0| the region has interval shape). Here this conditional probability is shown to be less than 1 —α. Evidence on the possible deviations from 1 —α has been obtained by simulations.  相似文献   

4.
Abstract The effect of seven constant temperatures of 15, 20, 25, 27, 30, 35 and 37°C on developmental time of Neoseiulus barkeri Hughes were determined in laboratory conditions under 65%± 5% RH and a photoperiod of 12 : 12 (L : D) h on nymphal stages of Tetranychus urticae Koch. Total developmental time of females (from egg to adult emergence) at the above‐mentioned temperatures was 26.59, 14.43, 6.32, 5.64, 4.59, 3.98 and 4.67 days, respectively. Developmental rate of the N. barkeri increased as temperature increased from 15 to 35°C, but declined at 37°C. A linear and two nonlinear models were fitted to developmental rate of immature stages of N. barkeri to predict the developmental rate as a function of temperature, as well as to estimate the thermal constant (K) and critical temperatures (i.e., Tmin, Topt and Tmax). The estimated values of the Tmin and K for total developmental time using the linear model were 12.07°C and 86.20 degree‐days (DD), respectively. The Tmin and Tmax estimated by the Sharpe‐Schoolfield‐Ikemoto (SSI) model were 11.90°C and 37.41°C, respectively. The estimated Topt for overall immature stage development of N. barkeri by the Lactin and SSI models were 33.89°C and 24.51°C, respectively. Based on the biological criteria of model evaluation, the linear and SSI models were found to be the best models for describing the developmental rate of overall immature stages of N. barkeri and estimating the temperature thresholds.  相似文献   

5.
Daily minimum temperature (Tmin) has increased faster than daily maximum temperature (Tmax) in many parts of the world, leading to decreases in diurnal temperature range (DTR). Projections suggest that these trends are likely to continue in many regions, particularly in northern latitudes and in arid regions. Despite wide speculation that asymmetric warming has different impacts on plant and ecosystem production than equal‐night‐and‐day warming, there has been little direct comparison of these scenarios. Reduced DTR has also been widely misinterpreted as a result of night‐only warming, when in fact Tmin occurs near dawn, indicating higher morning as well as night temperatures. We report on the first experiment to examine ecosystem‐scale impacts of faster increases in Tmin than in Tmax, using precise temperature controls to create realistic diurnal temperature profiles with gradual day–night temperature transitions and elevated early morning as well as night temperatures. Studying a constructed grassland ecosystem containing species native to Oregon, USA, we found that the ecosystem lost more carbon at elevated than ambient temperatures, but remained unaffected by the 3 °C difference in DTR between symmetric warming (constantly ambient + 3.5 °C) and asymmetric warming (dawn Tmin = ambient + 5 °C, afternoon Tmax = ambient + 2 °C). Reducing DTR had no apparent effect on photosynthesis, probably because temperatures were most different in the morning and late afternoon when light was low. Respiration was also similar in both warming treatments, because respiration temperature sensitivity was not sufficient to respond to the limited temperature differences between asymmetric and symmetric warming. We concluded that changes in daily mean temperatures, rather than changes in Tmin/Tmax, were sufficient for predicting ecosystem carbon fluxes in this reconstructed Mediterranean grassland system.  相似文献   

6.
Over the last century the Northern Hemisphere has experienced rapid climate warming, but this warming has not been evenly distributed seasonally, as well as diurnally. The implications of such seasonal and diurnal heterogeneous warming on regional and global vegetation photosynthetic activity, however, are still poorly understood. Here, we investigated for different seasons how photosynthetic activity of vegetation correlates with changes in seasonal daytime and night‐time temperature across the Northern Hemisphere (>30°N), using Normalized Difference Vegetation Index (NDVI) data from 1982 to 2011 obtained from the Advanced Very High Resolution Radiometer (AVHRR). Our analysis revealed some striking seasonal differences in the response of NDVI to changes in day‐ vs. night‐time temperatures. For instance, while higher daytime temperature (Tmax) is generally associated with higher NDVI values across the boreal zone, the area exhibiting a statistically significant positive correlation between Tmax and NDVI is much larger in spring (41% of area in boreal zone – total area 12.6 × 10km2) than in summer and autumn (14% and 9%, respectively). In contrast to the predominantly positive response of boreal ecosystems to changes in Tmax, increases in Tmax tended to negatively influence vegetation growth in temperate dry regions, particularly during summer. Changes in night‐time temperature (Tmin) correlated negatively with autumnal NDVI in most of the Northern Hemisphere, but had a positive effect on spring and summer NDVI in most temperate regions (e.g., Central North America and Central Asia). Such divergent covariance between the photosynthetic activity of Northern Hemispheric vegetation and day‐ and night‐time temperature changes among different seasons and climate zones suggests a changing dominance of ecophysiological processes across time and space. Understanding the seasonally different responses of vegetation photosynthetic activity to diurnal temperature changes, which have not been captured by current land surface models, is important for improving the performance of next generation regional and global coupled vegetation‐climate models.  相似文献   

7.
Ultrasonic telemetry was used to compare post‐release survival and movements of Atlantic sharpnose sharks Rhizoprionodon terraenovae in a coastal area of the north‐east Gulf of Mexico. Ten fish were caught with standardized hook‐and‐line gear during June to October 1999. Atlantic sharpnose sharks were continuously tracked after release for periods of 0·75 to 5·90 h and their positions recorded at a median interval of 9 min. Individual rate of movement was the mean of all distance and time measurements for each fish. Mean ± s.e . individual rate of movement was 0·45 ± 0·06 total lengths per second (LT s?1) and ranged from 0·28 to 0·92 LT s?1 over all fish. Movement patterns did not differ between jaw and internally hooked Atlantic sharpnose sharks. Individual rate of movement was inversely correlated with bottom water temperature at capture (r2 = 0·52, P ≤ 0·05). No consistent direction in movement was detected for Atlantic sharpnose sharks after release, except that they avoided movement towards shallower areas. Capture‐release survival was high (90%), with only one fish not surviving, i.e. this particular fish stopped movement for a period of 10 min. Total rate of movement was total distance over total time (m min?1) for each Atlantic sharpnose shark. Mean total rate of movement was significantly higher immediately after release at 21·5 m min?1 over the first 1·5 h of tracking, then decreased to 11·2 m min?1 over 1·5–6 h, and 7·7 m min?1 over 3–6 h (P ≤ 0·002), which suggested initial post‐release stress but quick recovery from capture. Thus, high survival (90%) and quick recovery indicate that the practice of catch‐and‐release would be a viable method to reduce capture mortality for R. terraenovae.  相似文献   

8.
Terrestrial biogeochemical feedbacks to the climate are strongly modulated by the temperature response of soil microorganisms. Tropical forests, in particular, exert a major influence on global climate because they are the most productive terrestrial ecosystem. We used an elevation gradient across tropical forest in the Andes (a gradient of 20°C mean annual temperature, MAT), to test whether soil bacterial and fungal community growth responses are adapted to long‐term temperature differences. We evaluated the temperature dependency of soil bacterial and fungal growth using the leucine‐ and acetate‐incorporation methods, respectively, and determined indices for the temperature response of growth: Q10 (temperature sensitivity over a given 10oC range) and Tmin (the minimum temperature for growth). For both bacterial and fungal communities, increased MAT (decreased elevation) resulted in increases in Q10 and Tmin of growth. Across a MAT range from 6°C to 26°C, the Q10 and Tmin varied for bacterial growth (Q10–20 = 2.4 to 3.5; Tmin = ?8°C to ?1.5°C) and fungal growth (Q10–20 = 2.6 to 3.6; Tmin = ?6°C to ?1°C). Thus, bacteria and fungi did not differ significantly in their growth temperature responses with changes in MAT. Our findings indicate that across natural temperature gradients, each increase in MAT by 1°C results in increases in Tmin of microbial growth by approximately 0.3°C and Q10–20 by 0.05, consistent with long‐term temperature adaptation of soil microbial communities. A 2°C warming would increase microbial activity across a MAT gradient of 6°C to 26°C by 28% to 15%, respectively, and temperature adaptation of microbial communities would further increase activity by 1.2% to 0.3%. The impact of warming on microbial activity, and the related impact on soil carbon cycling, is thus greater in regions with lower MAT. These results can be used to predict future changes in the temperature response of microbial activity over different levels of warming and over large temperature ranges, extending to tropical regions.  相似文献   

9.
Understanding vegetation responses to climate change on the Tibetan Plateau (TP) helps in elucidating the land–atmosphere energy exchange, which affects air mass movement over and around the TP. Although the TP is one of the world's most sensitive regions in terms of climatic warming, little is known about how the vegetation responds. Here, we focus on how spring phenology and summertime greenness respond to the asymmetric warming, that is, stronger warming during nighttime than during daytime. Using both in situ and satellite observations, we found that vegetation green‐up date showed a stronger negative partial correlation with daily minimum temperature (Tmin) than with maximum temperature (Tmax) before the growing season (‘preseason’ henceforth). Summer vegetation greenness was strongly positively correlated with summer Tmin, but negatively with Tmax. A 1‐K increase in preseason Tmin advanced green‐up date by 4 days (P < 0.05) and in summer enhanced greenness by 3.6% relative to the mean greenness during 2000–2004 (< 0.01). In contrast, increases in preseason Tmax did not advance green‐up date (> 0.10) and higher summer Tmax even reduced greenness by 2.6% K?1 (< 0.05). The stimulating effects of increasing Tmin were likely caused by reduced low temperature constraints, and the apparent negative effects of higher Tmax on greenness were probably due to the accompanying decline in water availability. The dominant enhancing effect of nighttime warming indicates that climatic warming will probably have stronger impact on TP ecosystems than on apparently similar Arctic ecosystems where vegetation is controlled mainly by Tmax. Our results are crucial for future improvements of dynamic vegetation models embedded in the Earth System Models which are being used to describe the behavior of the Asian monsoon. The results are significant because the state of the vegetation on the TP plays an important role in steering the monsoon.  相似文献   

10.
Aphidophagous and coccidophagous ladybirds, similar to their prey, show marked differences in their pace of life (Dixon, 2000), in particular in their rate of development, with all stages of aphidophagous species developing much faster than those of coccidophagous species. Two hypotheses are proposed to account for the large difference in the pace of life of these two groups. These are that differences in the rate of development are a result of differences in lower temperature thresholds for development or the quality of their respective prey as food (Dixon et al., 2011). Analysis of published results on the rates of development of the eggs of ladybirds indicates that the inverse relationships between the number of day‐degrees required for development (K) and the lower temperature threshold for development (tdmin) of these two groups are significantly different. In particular, the respective tdmin overlap and K of the aphidophagous and coccidophagous species with a similar tdmin are, on average, 38 and 117 day‐degrees (Do). The relationship between the rate of development (R) and temperature (T) for aphids reared on poor‐ or high‐quality foods indicates that, although the value of tdmin of a species depends on food quality, K does not, showing that it is unlikely that K is governed by food quality. Thus, there is little support for differences in either the tdmin or food quality governing the difference in the pace of life of these two groups of ladybirds. The results indicate that the physiological mechanism that may govern the difference in the pace of life between these two groups is the number of day‐degrees (K) needed to complete their development. The possible evolutionary reason for this is discussed.  相似文献   

11.
Much of the original U.S. grassland has undergone conversion to cropland. During the last few years, large first‐ and second‐order watershed scale projects have begun to reconstruct the native tallgrass prairie cover and biodiversity. The effect on watershed hydrological budget is largely unknown, especially concerning storm run‐off. Curve number variability is used to estimate the uncertainty of peak run‐off following the change in cover, given rainfall recurrence and watershed size. The method involves three steps: (1) estimate the time‐of‐concentration for many similar sized watersheds in the region, (2) define the probability distribution for time‐of‐concentration, curve numbers, and watershed area, (3) with these data, generate input variables for a Monte Carlo analysis, which can then be used to predict the mean and confidence interval of peak run‐off. As an example, spatial and hydrological characteristics of first‐ and second‐order watersheds ranging from 2 to 50 km2 in the Red River of the North basin provide a log normal probability distribution for time‐of‐concentration. Using the range of watershed area and a β probability distribution for curve number uncertainty, the analysis predicts the change in peak run‐off from an ensemble of watershed realizations that characterize cropland to grassland conversion. Results suggest that given five‐ and 25‐year, 24‐hour rainfall recurrence, average reduction in peak run‐off will range from 50 to 55% and 40 to 45%, respectively, for the basin. A large range of uncertainty at the 80% confidence interval, however, indicates that an accurate prediction requires analysis for specific watersheds.  相似文献   

12.
Since it can account for both the strength of the association between exposure to a risk factor and the underlying disease of interest and the prevalence of the risk factor, the attributable risk (AR) is probably the most commonly used epidemiologic measure for public health administrators to locate important risk factors. This paper discusses interval estimation of the AR in the presence of confounders under cross‐sectional sampling. This paper considers four asymptotic interval estimators which are direct generalizations of those originally proposed for the case of no confounders, and employs Monte Carlo simulation to evaluate the finite‐sample performance of these estimators in a variety of situations. This paper finds that interval estimators using Wald's test statistic and a quadratic equation suggested here can consistently perform reasonably well with respect to the coverage probability in all the situations considered here. This paper notes that the interval estimator using the logarithmic transformation, that is previously found to consistently perform well for the case of no confounders, may have the coverage probability less than the desired confidence level when the underlying common prevalence rate ratio (RR) across strata between the exposure and the non‐exposure is large (≥4). This paper further notes that the interval estimator using the logit transformation is inappropriate for use when the underlying common RR ≐ 1. On the other hand, when the underlying common RR is large (≥4), this interval estimator is probably preferable to all the other three estimators. When the sample size is large (≥400) and the RR ≥ 2 in the situations considered here, this paper finds that all the four interval estimators developed here are essentially equivalent with respect to both the coverage probability and the average length.  相似文献   

13.
The purpose of this work was to integrate a new mathematical model with a bioheat model, based on physiology and first principles, to predict thermoregulatory arterio-venous anastomoses (AVA) and cold-induced vasodilation (CIVD) reaction to local cooling. The transient energy balance equations of body segments constrained by thermoregulatory controls were solved numerically to predict segmental core and skin temperatures, and arterial blood flow for given metabolic rate and environmental conditions. Two similar AVACIVD mechanisms were incorporated. The first was activated during drop in local skin temperature (<32 °C). The second mechanism was activated at a minimum finger skin temperature, T CIVD, min, where the AVA flow is dilated and constricted once the skin temperature reached a maximum value. The value of T CIVD,min was determined empirically from values reported in literature for hand immersions in cold fluid. When compared with published data, the model predicted accurately the onset time of CIVD at 25 min and T CIVD,min at 10 °C for hand exposure to still air at 0 °C. Good agreement was also obtained between predicted finger skin temperature and experimentally published values for repeated immersion in cold water at environmental conditions of 30, 25, and 20 °C. The CIVD thermal response was found related to core body temperature, finger skin temperature, and initial finger sensible heat loss rate upon exposure to cold fluid. The model captured central and local stimulations of the CIVD and accommodated observed variability reported in literature of onset time of CIVD reaction and T CIVD,min.  相似文献   

14.
Behavioral thermoregulation of New Zealand sea lions (Phocarctos hookeri) was studied at a male haul‐out ground at Papanui Beach, Otago Peninsula, New Zealand. The proportion of time spent by sea lions in each of five postures (prone, curled, oblique, ventral‐up, dorsal‐up) and also with the number of flippers exposed or tucked (hind and fore) at different black‐bulb temperature (Tbb°C) ranges was recorded. Use of prone and curled postures (0–1 flippers exposed) declined as Tbb increased, suggesting that these are adopted to conserve heat; oblique and dorsal‐up postures (3–4 flippers exposed) use increased with Tbb indicating a role in heat dissipation. The transition between heat conserving and heat dissipating postures occurred at about 14°–20°C (Tbb). Both foreflipper and hind flipper exposure increased with Tbb and the trends were similar, but overall hind flipper exposure was 89% of foreflipper exposure. The results show that surface area of flippers exposed to air is largely controlled by postural adjustment. The increase in flipper exposure with Tbb provides evidence of behavioral thermoregulation and that flippers are major sites for heat loss in the New Zealand sea lion, as observed for other otariid species. Nonpostural thermoregulatory behaviors such as flipper waving and sand flipping increased with Tbb, and may provide additional means of dissipating heat. Total body surface areas of six sea lions ranged from 1.72 to 3.39 m2 (curvilinear length range from 1.60 to 2.35 m), and total flipper surface area averaged 22.7% of total body surface area. As otariids do not employ their hind limbs for aquatic propulsion, their role in behavioral thermoregulation may provide an explanation for the relatively large size of the hind flippers of the New Zealand sea lion.  相似文献   

15.
Biological control of Botrytis cinerea by Clonostachys rosea is an alternative to chemical control of rose Botrytis blight in greenhouses. Environmental conditions affect the colonization of senescing and dead tissues by both fungi. The contribution of microclimatic variables to debris colonization/sporulation by both fungi was estimated by path coefficient analysis. We monitored daily values of: maximum, average, and minimum temperatures (T max, T ave, and T min), and relative humidity (RHmax, RHave, and RHmin); accumulated rainfall; vapour pressure deficit average; hours with RH?>?90% (RH90); and average temperature during RH90 (T ave90). Association of variables accumulated between the first and seventh day before sampling explained colonization/sporulation variation: R 2=0.81–0.86 for B. cinerea and 0.91–0.96 for C. rosea. RHmax and RH90 were the main factors that directly favoured colonization/sporulation of both fungi. Colonization/sporulation negatively correlated with RHmin, T min, and T ave for B. cinerea and T min, T ave, and T ave90 for C. rosea. The antagonist can suppress B. cinerea colonization/sporulation on rose debris under a wide range of environmental conditions.  相似文献   

16.
Summary Photoperiodic induction occurs in Japanese quail after exposure to a single long day and this leads to a wave of pituitary LH secretion which lasts for up to 10 days. Pharmacological doses of thyroid hormones mimic this photoperiodic response if given to quail on short days, the magnitude and duration of the rise in LH and FSH output being dose-dependent. Thyroxine (T4) is some 7 times more potent than tri-iodothyronine (T3). There is no effect of T4 on LH secretion in quail already on long days although such birds can increase LH output markedly if treated with Gn-RH. Testosterone prevents the initial rise in LH secretion following T4 but does not block the long-term effect, suggesting that T4 acts high in the photoneuroendocrine chain to mimic long days. The first rise in LH secretion following T4 injection takes place about 24 h after the injection and the time-scale of secretion is quite similar to that seen when quail are exposed to a long day. T4 elicits a rise in LH secretion even if the quail are maintained in darkness. However, T4 does not act simply as light for if it is given at the exact time when birds are in a photoinducible state (i.e. 12–16 h after dawn) the rise in LH secretion still occurs 24 h later.Abbreviations FSH follicle stimulating hormone - Gn-RH gonadotropin releasing hormone - LH luteinizing hormone - T 4 thyroxine - T 3 tri-iodothyronine  相似文献   

17.
In a previous study we have shown that triiodothyronine (T3) added to a serum-free medium supplemented with insulin, transferrin, and selenous acid (ITS) can stimulate Caco-2 cell differentiation. In this study we have focused on the effects of T3on sucrase activity. The results obtained demonstrate that T3(50 nM) does not change Caco-2 cell proliferation but enhances sucrase activity from 50 to 80%. Similar increases were observed whether or not insulin was present in the culture medium, showing that there was no synergistic effect between T3and insulin on sucrase activity. Moreover, T3acts specifically during the differentiation period since addition of T3to the defined TS medium before confluency is reached does not stimulate sucrase activity. Sucrase kinetic parameters were evaluated for the first time in Caco-2 cells under various culture conditions. The presence of a single enzyme was verified, with aKmof about 7 mMand aVmaxaround 20 nmol of substrate hydrolyzed min−1mg−1of protein. Our results showed that T3did not change the enzyme's affinity for sucrose but doubled theVmax. Moreover, immunoblotting using anti-sucrase–isomaltase (SI) antibodies revealed an approximately twofold increase in the relative amount of SI immunoreactive protein in T3-stimulated cells compared to untreated cells. Results obtained by both Northern hybridization and RT-PCR amplification showed a significant increase in SI mRNA contents. These results suggest that T3acts primarily on sucrase expression at the mRNA level.  相似文献   

18.
Summary Heat tolerance limits for a variety of vascular plant leaves were determined both with the conventional post-culture necrosis method and by measurements of the heat-induced increase in chlorophyll fluorescence (F-T curves). The reliability of the fluorescence test was improved with the addition of far-red background light which counteracts dark reduction of the Photosystem II acceptor pool by heat-stimulated endogenous electron donors. This was of particular importance in the case of xeromorphic leaves in which the diffusion barrier for oxygen is high. A satisfactory correlation was found between T L50, the temperature at which a 30 min exposure results in 50% necrotic leaf area following post culture, and the critical temperature, T c ,the temperature at which the dark fluorescence level begins to increase during slow heating of a leaf sample at a rate of 0.7 K min-1, in the fluorescence test. The correlation can be described by a linear function, T L50=1.12 T c -5.37,with a correlation coefficient, r=0.87. Maximal deviation of the regression line from the line T L50=T c was 1.2 K, with 22 determinations for leaves with widely varying heat tolerance limits. This shows that heat-induced fluorescence changes within the thylakoid membrane may be connected with the irreversible leaf tissue damage which occurs following prolonged exposure to high temperature. On the basis of the heat dosage equation of Lepeschkin, a more general expression can be obtained which allows calculation of the accumulated heat dosage under the experimental conditions of the standard fluorescence test (slow heating, 0.7 K min-1). Such calculations reveal that for a given species the fraction of critical dosage begins to increase, i.e. accumulating heat reaches an injurious level, at a temperature which approximately coincides both with T L50, obtained with the necrosis method, and with T c ,the critical temperature derived from the fluorescence test. Hence, the increase in fraction of critical dosage and the rise in chlorophyll fluorescence seem to concur. It is concluded that the fluorescence assay provides a rapid and reliable means of determining the heat tolerance limit of leaf tissue.  相似文献   

19.
Data‐mining techniques play an important role in hyperparameter optimization of heterogeneous environmental factors and their relative contribution as determinants of incidences in insect pest ecological studies. A multidimensional field‐based surveillance was conducted in two seasons (24 months), July–June of each season (2015/2016 ‐ season 1 and 2016/2017 ‐ season 2) using sex‐pheromone‐baited traps and Thermocron i‐Buttons to identify key determinants of population abundance of diamondback moth, Plutella xylostella L., across spatial horticultural hotspots of Botswana. The moth is a notorious global brassica pest. Pearson's product moment correlation matrix showed month of the year (M), mean temperature (Tmean) and maximum temperature (Tmax) as positively correlated (p < 0.001) to number of moths (N), while minimum temperature (Tmin), minimum relative humidity (RHmin), mean relative humidity (RHmean), maximum relative humidity (RHmax) and host plant (h) were negatively correlated (p < 0.001) to N. Using Waikato Environment for Knowledge Analysis (WEKA) data‐mining techniques, two models were developed: (a) M5P decision‐tree algorithm associated with nine linear models (LMs) and (b) principal component analysis (PCA) based on four principal components. Both approaches identified M as the major predictor of moth abundance, followed by h and farming region (R). However, R was a function of Tmax (positive auto‐correlation) and RHmax (negative auto‐correlation). These results provide simplified relative contribution of heterogeneous factors in influencing P. xylostella spatio‐temporal abundance, essential for early warning systems in pest management. This is an important component of sustainable pest management aimed at managing insect pests and minimizing pesticides abuse in brassica production systems.  相似文献   

20.
In the case of model I of linear regression there is derived a confidence interval for that xo where the “true line” will reach a given value yo. The interval can be given by the intersections between the line y = yo and the hyperbolas providing pointwise confidence intervals of the expectations of y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号