共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the impact of bias in the estimation of the association parameters for longitudinal binary responses when there are drop-outs. A number of different estimating equation approaches are considered for the case where drop-out cannot be assumed to be a completely random process. In particular, standard generalized estimating equations (GEE), GEE based on conditional residuals, GEE based on multivariate normal estimating equations for the covariance matrix, and second-order estimating equations (GEE2) are examined. These different GEE estimators are compared in terms of finite sample and asymptotic bias under a variety of drop-out processes. Finally, the relationship between bias in the estimation of the association parameters and bias in the estimation of the mean parameters is explored. 相似文献
2.
This paper considers a modification of generalized estimating equations (GEE) for handling missing binary response data. The proposed method uses Gaussian estimation of the correlation parameters, i.e., the estimating function that yields an estimate of the correlation parameters is obtained from the multivariate normal likelihood. The proposed method yields consistent estimates of the regression parameters when data are missing completely at random (MCAR). However, when data are missing at random (MAR), consistency may not hold. In a simulation study with repeated binary outcomes that are missing at random, the magnitude of the potential bias that can arise is examined. The results of the simulation study indicate that, when the working correlation matrix is correctly specified, the bias is almost negligible for the modified GEE. In the simulation study, the proposed modification of GEE is also compared to the standard GEE, multiple imputation, and weighted estimating equations approaches. Finally, the proposed method is illustrated using data from a longitudinal clinical trial comparing two therapeutic treatments, zidovudine (AZT) and didanosine (ddI), in patients with HIV. 相似文献
3.
This paper presents a method for analysing longitudinal data when there are dropouts. In particular, we develop a simple method based on generalized linear mixture models for handling nonignorable dropouts for a variety of discrete and continuous outcomes. Statistical inference for the model parameters is based on a generalized estimating equations (GEE) approach (Liang and Zeger, 1986). The proposed method yields estimates of the model parameters that are valid when nonresponse is nonignorable under a variety of assumptions concerning the dropout process. Furthermore, the proposed method can be implemented using widely available statistical software. Finally, an example using data from a clinical trial of contracepting women is used to illustrate the methodology. 相似文献
4.
Missing data are a common problem in longitudinal studies in the health sciences. Motivated by data from the Muscatine Coronary Risk Factor (MCRF) study, a longitudinal study of obesity, we propose a simple imputation method for handling non-ignorable non-responses (i.e., when non-response is related to the specific values that should have been obtained) in longitudinal studies with either discrete or continuous outcomes. In the proposed approach, two regression models are specified; one for the marginal mean of the response, the other for the conditional mean of the response given non-response patterns. Statistical inference for the model parameters is based on the generalized estimating equations (GEE) approach. An appealing feature of the proposed method is that it can be readily implemented using existing, widely-available statistical software. The method is illustrated using longitudinal data on obesity from the MCRF study. 相似文献
5.
Summary . Recently, median regression models have received increasing attention. When continuous responses follow a distribution that is quite different from a normal distribution, usual mean regression models may fail to produce efficient estimators whereas median regression models may perform satisfactorily. In this article, we discuss using median regression models to deal with longitudinal data with dropouts. Weighted estimating equations are proposed to estimate the median regression parameters for incomplete longitudinal data, where the weights are determined by modeling the dropout process. Consistency and the asymptotic distribution of the resultant estimators are established. The proposed method is used to analyze a longitudinal data set arising from a controlled trial of HIV disease ( Volberding et al., 1990 , The New England Journal of Medicine 322, 941–949). Simulation studies are conducted to assess the performance of the proposed method under various situations. An extension to estimation of the association parameters is outlined. 相似文献
6.
Whitney P. Ford Philip M. Westgate 《Biometrical journal. Biometrische Zeitschrift》2017,59(3):478-495
7.
In recent years there has been considerable research devoted to the development of methods for the analysis of incomplete data in longitudinal studies. Despite these advances, the methods used in practice have changed relatively little, particularly in the reporting of pharmaceutical trials. In this setting, perhaps the most widely adopted strategy for dealing with incomplete longitudinal data is imputation by the \"last observation carried forward\" (LOCF) approach, in which values for missing responses are imputed using observations from the most recently completed assessment. We examine the asymptotic and empirical bias, the empirical type I error rate, and the empirical coverage probability associated with estimators and tests of treatment effect based on the LOCF imputation strategy. We consider a setting involving longitudinal binary data with longitudinal analyses based on generalized estimating equations, and an analysis based simply on the response at the end of the scheduled follow-up. We find that for both of these approaches, imputation by LOCF can lead to substantial biases in estimators of treatment effects, the type I error rates of associated tests can be greatly inflated, and the coverage probability can be far from the nominal level. Alternative analyses based on all available data lead to estimators with comparatively small bias, and inverse probability weighted analyses yield consistent estimators subject to correct specification of the missing data process. We illustrate the differences between various methods of dealing with drop-outs using data from a study of smoking behavior. 相似文献
8.
Naiji Lu Wan Tang Hua He Qin Yu Paul Crits‐Christoph Hui Zhang Xin Tu 《Biometrical journal. Biometrische Zeitschrift》2009,51(4):627-643
Models for longitudinal data are employed in a wide range of behavioral, biomedical, psychosocial, and health‐care‐related research. One popular model for continuous response is the linear mixed‐effects model (LMM). Although simulations by recent studies show that LMM provides reliable estimates under departures from the normality assumption for complete data, the invariable occurrence of missing data in practical studies renders such robustness results less useful when applied to real study data. In this paper, we show by simulated studies that in the presence of missing data estimates of the fixed effect of LMM are biased under departures from normality. We discuss two robust alternatives, the weighted generalized estimating equations (WGEE) and the augmented WGEE (AWGEE), and compare their performances with LMM using real as well as simulated data. Our simulation results show that both WGEE and AWGEE provide valid inference for skewed non‐normal data when missing data follows the missing at random, the most popular missing data mechanism for real study data. 相似文献
9.
Sensitivity and specificity are common measures used to evaluate the performance of a diagnostic test. A diagnostic test is often administrated at a subunit level, e.g. at the level of vessel, ear or eye of a patient so that the treatment can be targeted at the specific subunit. Therefore, it is essential to evaluate the diagnostic test at the subunit level. Often patients with more negative subunit test results are less likely to receive the gold standard tests than patients with more positive subunit test results. To account for this type of missing data and correlation between subunit test results, we proposed a weighted generalized estimating equations (WGEE) approach to evaluate subunit sensitivities and specificities. A simulation study was conducted to evaluate the performance of the WGEE estimators and the weighted least squares (WLS) estimators (Barnhart and Kosinski, 2003) under a missing at random assumption. The results suggested that WGEE estimator is consistent under various scenarios of percentage of missing data and sample size, while the WLS approach could yield biased estimators due to a misspecified missing data mechanism. We illustrate the methodology with a cardiology example. 相似文献
10.
Clinical trial designs involving correlated data often arise in biomedical research. The intracluster correlation needs to be taken into account to ensure the validity of sample size and power calculations. In contrast to the fixed-sample designs, we propose a flexible trial design with adaptive monitoring and inference procedures. The total sample size is not predetermined, but adaptively re-estimated using observed data via a systematic mechanism. The final inference is based on a weighted average of the block-wise test statistics using generalized estimating equations, where the weight for each block depends on cumulated data from the ongoing trial. When there are no significant treatment effects, the devised stopping rule allows for early termination of the trial and acceptance of the null hypothesis. The proposed design updates information regarding both the effect size and within-cluster correlation based on the cumulated data in order to achieve a desired power. Estimation of the parameter of interest and its confidence interval are proposed. We conduct simulation studies to examine the operating characteristics and illustrate the proposed method with an example. 相似文献
11.
It is very common in regression analysis to encounter incompletely observed covariate information. A recent approach to analyse such data is weighted estimating equations (Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1994), JASA, 89, 846-866, and Zhao, L. P., Lipsitz, S. R. and Lew, D. (1996), Biometrics, 52, 1165-1182). With weighted estimating equations, the contribution to the estimating equation from a complete observation is weighted by the inverse of the probability of being observed. We propose a test statistic to assess if the weighted estimating equations produce biased estimates. Our test statistic is similar to the test statistic proposed by DuMouchel and Duncan (1983) for weighted least squares estimates for sample survey data. The method is illustrated using data from a randomized clinical trial on chemotherapy for multiple myeloma. 相似文献
12.
Steven Teerenstra Bing Lu John S. Preisser Theo van Achterberg George F. Borm 《Biometrics》2010,66(4):1230-1237
Summary Cluster randomized trials in health care may involve three instead of two levels, for instance, in trials where different interventions to improve quality of care are compared. In such trials, the intervention is implemented in health care units (“clusters”) and aims at changing the behavior of health care professionals working in this unit (“subjects”), while the effects are measured at the patient level (“evaluations”). Within the generalized estimating equations approach, we derive a sample size formula that accounts for two levels of clustering: that of subjects within clusters and that of evaluations within subjects. The formula reveals that sample size is inflated, relative to a design with completely independent evaluations, by a multiplicative term that can be expressed as a product of two variance inflation factors, one that quantifies the impact of within‐subject correlation of evaluations on the variance of subject‐level means and the other that quantifies the impact of the correlation between subject‐level means on the variance of the cluster means. Power levels as predicted by the sample size formula agreed well with the simulated power for more than 10 clusters in total, when data were analyzed using bias‐corrected estimating equations for the correlation parameters in combination with the model‐based covariance estimator or the sandwich estimator with a finite sample correction. 相似文献
13.
We propose methods for regression analysis of repeatedly measured ordinal categorical data when there is nonmonotone missingness in these responses and when a key covariate is missing depending on observables. The methods use ordinal regression models in conjunction with generalized estimating equations (GEEs). We extend the GEE methodology to accommodate arbitrary patterns of missingness in the responses when this missingness is independent of the unobserved responses. We further extend the methodology to provide correction for possible bias when missingness in knowledge of a key covariate may depend on observables. The approach is illustrated with the analysis of data from a study in diagnostic oncology in which multiple correlated receiver operating characteristic curves are estimated and corrected for possible verification bias when the true disease status is missing depending on observables. 相似文献
14.
The generalized estimating equations (GEE) derived by Liang and Zeger to analyze longitudinal data have been used in a wide range of medical and biological applications. To make regression a useful and meaningful statistical tool, emphasis should be placed not only on inference or fitting, but also on diagnosing potential data problems. Most of the usual diagnostics for linear regression models have been generalized for GEE. However, global influence measures based on the volume of confidence ellipsoids are not available for GEE analysis. This article presents an extension of these measures that is valid for correlated‐measures regression analysis using GEEs. The proposed measures are illustrated by an analysis of epileptic seizure count data arising from a study of prograbide as an adjuvant therapy for partial seizures and some simulated data sets. 相似文献
15.
16.
17.
Mancl and DeRouen (2001, Biometrics57, 126-134) and Kauermann and Carroll (2001, JASA96, 1387-1398) proposed alternative bias-corrected covariance estimators for generalized estimating equations parameter estimates of regression models for marginal means. The finite sample properties of these estimators are compared to those of the uncorrected sandwich estimator that underestimates variances in small samples. Although the formula of Mancl and DeRouen generally overestimates variances, it often leads to coverage of 95% confidence intervals near the nominal level even in some situations with as few as 10 clusters. An explanation for these seemingly contradictory results is that the tendency to undercoverage resulting from the substantial variability of sandwich estimators counteracts the impact of overcorrecting the bias. However, these positive results do not generally hold; for small cluster sizes (e.g., <10) their estimator often results in overcoverage, and the bias-corrected covariance estimator of Kauermann and Carroll may be preferred. The methods are illustrated using data from a nested cross-sectional cluster intervention trial on reducing underage drinking. 相似文献
18.
Most statistical methods for the analysis of correlated binary data are based on asymptotic theory. Therefore it is important to generate correlated binary data efficiently for Monte Carlo simulation studies to investigate the finite sample performance of these methods. This article provides a simple method for generating correlated binary data with a given joint distribution. The key idea is to consider k‐variate binary data as a multinomial distribution with 2k possible outcomes. 相似文献
19.
In this paper, we develop a Gaussian estimation (GE) procedure to estimate the parameters of a regression model for correlated (longitudinal) binary response data using a working correlation matrix. A two‐step iterative procedure is proposed for estimating the regression parameters by the GE method and the correlation parameters by the method of moments. Consistency properties of the estimators are discussed. A simulation study was conducted to compare 11 estimators of the regression parameters, namely, four versions of the GE, five versions of the generalized estimating equations (GEEs), and two versions of the weighted GEE. Simulations show that (i) the Gaussian estimates have the smallest mean square error and best coverage probability if the working correlation structure is correctly specified and (ii) when the working correlation structure is correctly specified, the GE and the GEE with exchangeable correlation structure perform best as opposed to when the correlation structure is misspecified. 相似文献
20.
We have developed methods for modeling discrete or grouped time, right-censored survival data collected from correlated groups or clusters. We assume that the marginal hazard of failure for individual items within a cluster is specified by a linear log odds survival model and the dependence structure is based on a gamma frailty model. The dependence can be modeled as a function of cluster-level covariates. Likelihood equations for estimating the model parameters are provided. Generalized estimating equations for the marginal hazard regression parameters and pseudolikelihood methods for estimating the dependence parameters are also described. Data from two clinical trials are used for illustration purposes. 相似文献