首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Delftia acidovorans P4a (DSMZ 10474) was grown in mineral medium on acetic acid at pH 8.0 without an additional supply of nutrients like yeast extract or polypeptone. Using acetic acid and γ‐butyrolactone (GBL), copolymers with a 4HB content from 2–90 mol % were detected in batch experiments, depending on the ratio of the both carbon substrates. Due to the different consumption rates of the individual carbon substrates a multitude of different target mole fractions were difficult to produce by fed‐batch fermentation. Therefore, the two‐stage continuous cultivation technique was applied with two fermenters connected in series. At stage 2, the optimum PHA productivity of the bioreactor and a target 4HB content of the polymer could be precisely adjusted by the composition of the two substrates. This cultivation strategy was especially convenient when toxic substrates like acetic acid and GBL were employed. Using mixtures of acetic acid and GBL (3.5–23.5 mol % GBL), copolymers with a target mole fraction of 2.7–19 % 4HB could be produced. The PHA content was in the range of 52–60 %. The dilution rates (D) of the first and second fermenter were 0.2 h–1 and 0.06 h–1, respectively.  相似文献   

2.
Pandoraea sp. MA03 wild type strain was subjected to UV mutation to obtain mutants unable to grow on propionic acid (PA) but still able to produce poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(3HB‐co‐3HV)] from glycerol and PA at high 3HV yields. In shake flask experiments, mutant prp25 was selected from 52 mutants affected in the propionate metabolism exhibiting a conversion rate of PA into 3HV units of 0.78 g g?1. The use of crude glycerol (CG) plus PA or valeric acid resulted in a copolymer with 3HV contents varying from 21.9 to 30 mol% and 22.2 to 36.7 mol%, respectively. Fed‐batch fermentations were performed using CG and PA and reached a 3HV yield of 1.16 g g?1, which is 86% of the maximum theoretical yield. Nitrogen limitation was a key parameter for polymer accumulation reaching up to 63.7% content and 18.1 mol% of 3HV. Henceforth, mutant prp25 is revealed as an additional alternative to minimize costs and support the P(3HB‐co‐3HV) production from biodiesel by‐products. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1077–1084, 2017  相似文献   

3.
The capability of different organic acids to produce a derivative of PHB [poly(3-hydroxybutyric-co-3-hydroxyvaleric acid), P(3HB-co-3HV)] was examined in shake flask cultivations. Propionic and valeric acids demonstrated the potential to produce P(3HB-co-3HV) under nitrogen limiting conditions at 30°C. The addition time and the initial concentration of valeric acid needed for a high cellular HV content were identified by extensive experimentation. Fed-batch cultivation in 7-l bioreactor with valeric acid feeding resulted in the production of PHA containing 54% HV units.  相似文献   

4.
Summary Production of poly(3-hydroxybutyric acid) [P(3HB)] by Rhodopseudomonas palustris SP5212 isolated in this laboratory has been optimized under phototrophic microaerophilic conditions. Cells grown in malate medium accumulated 7.7% (w/w) P(3HB) of cellular dry weight at the early stationary phase of growth. The accumulated P(3HB) however, attained 15% (w/w) of cellular dry weight when acetate (1.0%, w/v) was used as the sole carbon source under nitrogen-limiting conditions. Synthesis and accumulation of polymer was favoured by sulphate-free conditions and at a phosphate concentration sub-optimal for growth. The polymer content of cells was increased drastically (34% of cellular dry weight) when the acetate containing medium was supplemented with n-alkanoic acids. Compositional analysis by H1 NMR revealed that these accumulated polymers were composed of 3-hydroxybutyric acid and 3-hydroxyvaleric acid (3HV). The contents of 3HV in these copolymers ranged from 14 to 38 mol%.  相似文献   

5.
Aims: Optimal production conditions of conjugated γ‐linolenic acid (CGLA) from γ‐linolenic acid using washed cells of Lactobacillus plantarum AKU 1009a as catalysts were investigated. Methods and Results: Washed cells of Lact. plantarum AKU 1009a exhibiting a high level of CGLA productivity were obtained by cultivation in a nutrient medium supplemented with 0·03% (w/v) α‐linolenic acid as an inducer. Under the optimal reaction conditions with 13 mg ml?1γ‐linolenic acid as a substrate in 5 ‐ml reaction volume, the washed cells [32% (wet cells, w/v) corresponding to 46 mg ml?1 dry cells] as the catalysts produced 8·8 mg CGLA per millilitre reaction mixture (68% molar yield) in 27 h. The produced CGLA was a mixture of two isomers, i.e., cis‐6,cis‐9,trans‐11‐octadecatrienoic acid (CGLA1, 40% of total CGLA) and cis‐6,trans‐9,trans‐11‐octadecatrienoic acid (CGLA2, 60% of total CGLA), and accounted for 66% of total fatty acid obtained. The CGLA produced was obtained as free fatty acids adsorbed mostly on the surface of the cells of Lact. plantarum AKU1009a. Conclusion: The practical process of CGLA production from γ‐linolenic acid using washed cells of Lact. plantarum AKU 1009a was successfully established. Significance and Impact of the Study: We presented the first example of microbial production of CGLA. CGLA produced by the process is valuable for evaluating their physiological and nutritional effects, and chemical characteristics.  相似文献   

6.
The feeding of propionic acid for production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] by Alcaligenes eutrophus ATCC17697 was optimized using a fed-batch culture system. The concentration of propionic acid was maintained at 3 g l–1 as growth was inhibited by propionic acid in the broth. A pH-stat substrate feeding system was used in which propionic acid was fed automatically to maintain a pH of the culture broth at 7.0. By feeding a substrate solution containing 20% (w/v) propionic acid, 4.9% (w/v) ammonia water [at a molar ratio of carbon to nitrogen (C/N molar ratio) of 10] in cell growth phase, the concentration of propionic acid in the broth was maintained at 3 g l–1 giving a specific growth rate of 0.4 h–1. To promote P(3HB-co-3HV) production, two stage fed-batch culture which consisted of the stage for the cell growth and the stage for the P(3HB-co-3HV) accumulation was carried out. When the substrate solution whose C/N molar ratio was 50 was fed in P(3HB-co-3HV) accumulation phase, the cell concentration and the P(3HB-co-3HV) content in the cells reached 64 g l–1 and 58% (w/w) in 55.5 h, respectively.  相似文献   

7.
A number of taxonomically-related bacteria have been identified which accumulate poly(hydroxyalkanoate) (PHA) copolymers containing primarily 3-hydroxyvalerate (3HV) monomer units from a range of unrelated single carbon sources. One of these, Rhodococcus sp. NCIMB 40126, was further investigated and shown to produce a copolymer containing 75 mol% 3HV and 25 mol% 3-hydroxybutyrate (3HB) from glucose as sole carbon source. Polyesters containing both 3HV and 3HB monomer units, together with 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV) or 3-hydroxyhexanoate (3HHx), were also produced by this organism from certain accumulation substrates. With valeric acid as substrate, almost pure (99 mol% 3HV) poly(3-hydroxyvalerate) was produced. N.m.r. analysis confirmed the composition of these polyesters. The thermal properties and molecular weight of the copolymer produced from glucose were comparable to those of PHB produced by Alcaligenes eutrophus.  相似文献   

8.
Copolyesters of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) were produced by Burkholderia cepacia D1 at 30°C in nitrogen-free culture solutions containing n-butyric acid and/or n-valeric acid. When n-valeric acid was used as the sole carbon source, the 3HV fraction in copolyester increased from 36 to 90 mol% as the concentration of n-valeric acid in the culture solution increased from 1 to 20 g/l. The addition of n-butyric acid to the culture solution resulted in a decrease in the 3HV fraction in copolyester. The copolymers biosynthesized by this method were mixtures of random copolymers having a wide variety of composition of the 3HV component. The melting points of the fractionated copolymers show a concave curve with the minimum at the 3HV content of ≈40 mol%. The a-parameter of lattice indices of the P(3HB) crystal for the fractionated copolymers largely increased as the 3HV composition increased. Biodegradability of the copolymer increased with the lower content of 3HV composition and/or the lower crystallinity.  相似文献   

9.
In search for new drugs lowering arterial blood pressure, which could be applied in anti‐hypertensive therapy, research concerning agents blocking of renin‐angiotensin‐aldosteron system has been conducted. Despite many years of research conducted at many research centers around the world, aliskiren is the only one renin inhibitor, which is used up to now. Four novel potential renin inhibitors, having structure based on the peptide fragment 8–13 of human angiotensinogen, a natural substrate for renin, were designed and synthesized. All these inhibitors contain unnatural moieties that are derivatives of N‐methylleucyl‐β‐hydroxy‐γ‐amino acids at the P2‐P1' position: 4‐[N‐(N‐methylleucyl)‐amino]‐3‐hydroxy‐7‐(3‐nitroguanidino)‐heptanoic acid (AHGHA), 4‐[N‐(N‐methylleucyl)‐amino]‐3‐hydroxy‐5‐phenyl‐pentanoic acid (AHPPA) or 4‐[N‐(N‐methylleucyl)‐amino]‐8‐benzyloxycarbonylamino‐3‐hydroxyoctanoic acid (AAHOA). The previously listed synthetic β‐hydroxy‐γ‐amino acids constitute pseudodipeptidic units that correspond to the P1‐P1' position of the inhibitor molecule. An unnatural amino acid, 4‐methoxyphenylalanin (Phe(4‐OMe)), was introduced at the P3 position of the obtained compounds. Three of these compounds contain isoamylamide of 6‐aminohexanoic acid (ε‐Ahx‐Iaa) at the P2'‐P3' position. The proposed modifications of the selected human angiotensinogen fragment are intended to increase bioactivity, bioavailability, and stability of the inhibitor molecule in body fluids and tissues. The inhibitor Boc‐Phe(4‐OMe)‐MeLeu‐AHGHA‐OEt was obtained in the form of an ethyl ester. The hydrophobicity coefficient, expressed as log P varied between 3.95 and 8.17. In vitro renin inhibitory activity of all obtained compounds was contained within the range 10?6‐10?9 M. The compound Boc‐Phe(4‐OMe)‐MeLeu‐AHPPA‐Ahx‐Iaa proved to be the most active (IC50 = 1.05 × 10?9 M). The compounds Boc‐Phe(4‐OMe)‐MeLeu‐AHGHA‐Ahx‐Iaa and Boc‐Phe(4‐OMe)‐MeLeu‐AHPPA‐Ahx‐Iaa are resistant to chymotrypsin. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
In this study, a newly isolated strain screened from the indoxacarb‐rich agricultural soils, Bacillus cereus WZZ006, has a high stereoselectivity to racemic substrate 5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester. (S)‐5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester was obtained by bio‐enzymatic resolution. After the 36‐hour hydrolysis in 50‐mM racemic substrate under the optimized reaction conditions, the e.e.s was up to 93.0% and the conversion was nearly 53.0% with the E being 35.0. Therefore, B cereus WZZ006 performed high‐level ability to produce (S)‐5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester. This study demonstrates a new biocatalytic process route for preparing the indoxacarb chiral intermediates and provides a theoretical basis for the application of new insecticides in agricultural production.  相似文献   

11.
The ability of Azotobacter chroococcum strain 7B, producer of poly(3-hydroxybutyrate) (PHB), to synthesize its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) was studied. It was demonstrated, for the first time, that A. chroococcum strain 7B was able to synthesize P(3HB-co-3HV) with various molar rates of HV in the polymer chain when cultivated on medium with sucrose and carboxylic acids as precursors of HV elements in the PHB chain, namely, valeric (13.1–21.6 mol %), propanoic (3.1 mol %), and hexanoic (2.1 mol %) acids. Qualitative and functional differences between PHB and P(3HB-co-3HV) were demonstrated by example of the release kinetic of methyl red from films made of synthesized polymers. Maximal HV incorporation into the polymer chain (28.8mol %) was recorded when the nutrient medium was supplemented with 0.1% peptone on the background of 20 mM valerate. These results suggest that that the studied strain can be regarded as a potential producer of not only PHB but also P(3HB-co-3HV).  相似文献   

12.

Background

The application of polyethylenimine (PEI) in gene delivery has been severely limited by significant cytotoxicity that results from a nondegradable methylene backbone and high cationic charge density. It is therefore necessary to develop novel biodegradable PEI derivates for low‐toxic, highly efficient gene delivery.

Methods

A series of novel cationic copolymers with various charge density were designed and synthesized by grafting different kinds of oligoethylenimine (OEI) onto a determinate multi‐armed poly(L ‐glutamic acid) backbone. The molecular structures of multi‐armed poly(L ‐glutamic acid)‐graft‐OEI (MP‐g‐OEI) copolymers were characterized using nuclear magnetic resonance, viscosimetry and gel permeation chromatography. Moreover, the MP‐g‐OEI/DNA complexes were measured by a gel retardation assay, dynamic light scattering and atomic force microscopy to determine DNA binding ability, particle size, zeta potential, complex formation and shape, respectively. MP‐g‐OEI copolymers were also evaluated in Chinese hamster ovary and human embryonic kidney‐293 cells for their cytotoxicity and transfection efficiency.

Results

The particle sizes of MP‐g‐OEI/DNA complexes were in a range of 109.6–182.6 nm and the zeta potentials were in a range of 29.2–44.5 mV above the N/P ratio of 5. All the MP‐g‐OEI copolymers exhibited lower cytotoxicity and higher gene transfection efficiency than PEI25k in the absence and presence of serum with different cell lines. Importantly, the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay revealed that the cytotoxicity of MP‐g‐OEI copolymers varied with their molecular weight and charge density, and two of MP‐g‐OEI copolymers (OEI600‐MP and OEI1800‐MP) could achieve optimal transfection efficiency at a similar low N/P ratio as that for PEI25k.

Conclusions

MP‐g‐OEI copolymers demonstrated considerable potential as nonviral vectors for gene therapy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Fed‐batch synthesis of galacto‐oligosaccharides (GOS) from lactose with β‐galactosidase from Aspergillus oryzae was evaluated experimentally and reaction yield was maximized via optimal control technique. The optimal lactose and enzyme feed flow rate profiles were determined using a model for GOS synthesis previously reported by the authors. Experimentally it was found that fed‐batch synthesis allowed an increase on the maximum total GOS concentration from 115 (batch synthesis) to 218 g L?1 as consequence of the increase in total sugars concentration from 40 to 58% w/w. Such high concentration of total sugars was not attainable in batch operation because of the low solubility of lactose at the reaction temperature (40°C). Simulations predicted a GOS yield of 32.5 g g?1 in fed‐batch synthesis under optimal conditions, while experimentally the same yield as in batch synthesis was obtained (28 g g?1). Besides, an enrichment of total oligosaccharides in GOS with a high polymerization degree (GOS‐5 and GOS‐6) was observed in the fed‐batch synthesis. Experimental profiles for all sugars were similar to the ones predicted by simulation, which supports the use of this methodology for the optimization of GOS synthesis. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:59–67, 2014  相似文献   

14.
A threonine overproducing mutant of Alcaligenes sp. SH-69 was isolated and its ability to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3HB-co-3HV), was investigated. The 3HV fraction in poly(3HB-co-3HV) produced from glucose as the sole carbon source exceeded 22 mol%, which is approximately six times higher than that achieved by the wild type under the same culture conditions. Furthermore, the addition of a relatively low concentration (10 mM) of propionic acid, valeric acid or levulinic acid to the glucose medium greatly increased the molar fraction of 3HV in the copolyester, to 38–77 mol%. The results suggest that metabolic engineering of the biosynthetic pathways supplying polyhydroxyalkanoate monomers, such as the threonine biosynthetic pathway, can lead to new poly(3HB-co-3HV)-producing strains.  相似文献   

15.
Azotobacter salinestris, a sodium-dependent, microaerophilic N2-fixing soil bacterium, formed polyhydroxyalkanoate copolymers comprised of β-hydroxybutyric acid and 9–12 mol% β-hydroxyvaleric acid (HV) during growth on sugars. Increased HV content was achieved by feeding valeric acid to the culture growing on glucose, but propionic acid could be directed to HV formation only when it served as the sole C source. Polymer production in nitrogen-fixing cells was increased at higher aeration, provided that a complex organic nitrogen source was also present, but there was no HV in the polymer. HV production was increased to 28 mol% in nitrogen-fixing cells when aeration was lower and acetate was provided with glucose in the medium. Enzymes leading to the production of polyhydroxyalkanoate copolymers were found to be similar in A. salinestris and Azotobacter vinelandii, but A. vinelandii is unable to form HV from propionate or from sugars without valeric acid addition. A biochemical scheme is proposed for the production of HV in A. salinestris, whereby the glyoxylate bypass assimilates acetate to generate succinate, which may be converted into propionyl-CoA for HV synthesis. The results suggest that it may be possible to control the molar yield of HV formed from sugars by A. salinestris. Received: 21 January 1997 / Received revision: 7 April 1997 / Accepted: 13 April 1997  相似文献   

16.
3‐Fucosyllactose (3‐FL), one of the major oligosaccharides in human breast milk, is produced in engineered Escherichia coli. In order to search for a good α‐1,3‐fucosyltransferase, three bacterial α‐1,3‐fucosyltransferases are expressed in engineered E. coli deficient in β‐galactosidase activity and expressing the essential enzymes for the production of guanosine 5′‐diphosphate‐l ‐fucose, the donor of fucose for 3‐FL biosynthesis. Among the three enzymes tested, the fucT gene from Helicobacter pylori National Collection of Type Cultures 11637 gives the best 3‐FL production in a simple batch fermentation process using glycerol as a carbon source and lactose as an acceptor. In order to use glucose as a carbon source, the chromosomal ptsG gene, considered the main regulator of the glucose repression mechanism, is disrupted. The resulting E. coli strain of ?LP‐YA+FT shows a much lower performance of 3‐FL production (4.50 g L?1) than the ?L‐YA+FT strain grown in a glycerol medium (10.7 g L?1), suggesting that glycerol is a better carbon source than glucose. Finally, the engineered E. coli ?LW‐YA+FT expressing the essential genes for 3‐FL production and blocking the colanic acid biosynthetic pathway (?wcaJ) exhibits the highest concentration (11.5 g L?1), yield (0.39 mol mol?1), and productivity (0.22 g L?1 h) of 3‐FL in glycerol‐limited fed‐batch fermentation.  相似文献   

17.
对Alcaligenes eutrophus进行高密度培养,研究表明在发酵过程中进行有效控制,可以较大幅度地提高3-羟基丁酸和3-羟基戊酸共聚物[P(3HB-co-3HV)]的生产强度。实验中选择使用限氮的方法积累P(3HB-co-3HV),分别采用丙酸和戊酸为3HV前体,对摇瓶种子生长状态,停氮时机对菌体生产P(3HB-co-3HV)的影响以及补酸(3HV前体)策略进行了研究,在6.6L罐中,以葡萄糖为碳源,以丙酸为3HV前体培养50h,细胞干重,PHA产量,PHA含量分别达到149.9g/L,149.9g/L,83.3%(其中3HV组分占PHA的12.4mol%),生产强度达到2.50(g.h^-1.L^-1);以戊酸为3HV前体培养45h,细胞干重,PHA产量,PHA含量分别达到160.2g/L,119.0g/L,74.2%(其中3HV组分占PHA的17.7mol%)生产强度达到2.64(g.h^-1.L^-1)。  相似文献   

18.
Copolyesters of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) were produced by Burkholderia cepacia D1 at 30°C in nitrogen-free culture solutions containing n-butyric acid and/or n-valeric acid. When n-valeric acid was used as the sole carbon source, the 3HV fraction in copolyester increased from 36 to 90 mol% as the concentration of n-valeric acid in the culture solution increased from 1 to 20 g/l. The addition of n-butyric acid to the culture solution resulted in a decrease in the 3HV fraction in copolyester. The copolymers biosynthesized by this method were mixtures of random copolymers having a wide variety of composition of the 3HV component. The melting points of the fractionated copolymers show a concave curve with the minimum at the 3HV content of ≈40 mol%. The a-parameter of lattice indices of the P(3HB) crystal for the fractionated copolymers largely increased as the 3HV composition increased. Biodegradability of the copolymer increased with the lower content of 3HV composition and/or the lower crystallinity.  相似文献   

19.
The biochemical basis for variations in the critical nitrogen‐to‐phosphorus (N:P) ratio, which defines the transition between N‐ and P‐limitation of growth rate, is currently not well understood. To assess this issue, we cultured the cryptophyte Rhinomonas reticulata NOVARINO in chemostats with inflow nitrate‐to‐phosphate ratios ranging from 5 to 60 mol N·(mol P)?1 at two light intensities. The nitrate‐to‐phosphate ratio marking the transition between N‐ and P‐limitation was independent of light intensity and was between 30 and 45 mol N/mol P. In N‐limited cells, the particulate N:P ratio was stable at around 23 mol N/mol P over a range of inflow nitrate‐to‐phosphate from 5 to 30, whereas in P‐limited cells this ratio was around 90 mol N/mol P at inflow nitrate‐to‐phosphate ratios of 45 and 60. Cell phosphorus decreased with increasing nitrate‐to‐phosphate ratio up to the critical nitrate‐to‐phosphate ratio for each light intensity, above which they remained stable. The C:P of R. reticulata cells increased with increasing inflow nitrate‐to‐phosphate from around the Redfield value (106 mol C/mol P) to around 700. There was a significant effect of light on C:P in the N‐ limited cells, with higher C:P under high light conditions that was not observed in the P‐limited chemostats. Cellular RNA was not influenced by light but was greatly influenced by the type of nutrient limitation. In contrast, chl a, C, N, and protein were not influenced by the nitrate‐to‐phosphate in the inflow medium. Total protein per RNA was independent of light intensity but exhibited a maximum at inflow nitrate‐to‐phosphate of 30. Our results suggest a strong “two‐level” homeostatic mechanism of cellular N and P content in R. reticulata with two distinct states that are determined by the type of nutrient limitation and not by light.  相似文献   

20.
In this article we investigate the simultaneous influence of feeding time and amount of urea added as a nitrogen source on the fed‐batch growth and composition of Arthrospira (Spirulina) platensis. Cultivations were performed in 5‐L minitanks at constant temperature (25°C) and light intensity (42 μmol photons/m2s), using exponentially increasing rate of urea addition, and varying the above independent variables in the ranges 9–15 days and 4.6–12.1 mM, respectively. Special emphasis was placed on the content of added high value fatty acids (e.g., γ‐linolenic acid) of concern for the food industry. To this purpose, a 22‐plus star central composite design was employed, and maximum cell concentration, cell productivity, yield of biomass on nitrogen added, protein content and fatty acids profile were evaluated by multiple regression analysis. The highest cell concentration (1759 mg/L) was obtained at feeding time of 14 days and amount of urea per unit reactor volume of 5.8 mM, while the highest contents of γ‐linolenic acid (27.5% of the lipid fraction) and proteins (77.2%) were obtained at 10 and 14 days and 5.8 and 10.8 mM, respectively. The results confirm the possibility of using urea as cheap nitrogen source to culture this nutritionally valuable cyanobacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号