首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
The effects of somatostatin and thyroliberin (thyrotropin-releasing hormone; TRH) on growth hormone (GH) and prolactin (PRL) secretion were studied in short-term (0.5-3h) or long-term (21-24h) incubations using monolayer cell cultures of somatotropin obtained from surgical material of patients with acromegaly. High sensitivity of both GH and PRL release to inhibitory action of somatostatin (10(-11) M) was established. We could not reveal the unambiguous influence of TRH on somatotropic function in the in vivo and in vitro conditions, as compared to the action of this tripeptide on PRL secretion. The results obtained permit us to propose that cell cultures of pituitary adenomata represent adequate and convenient models for studying the pathogenesis of tumor processes in the pituitary gland and for the development of new procedures of pharmacotherapy.  相似文献   

3.
4.
Recently, ghrelin (Ghr), a new peptide which specifically stimulates growth hormone (GH) release from the pituitary, was identified in the rat and human stomach. Ghrelin has been shown to stimulate GH release by acting through a growth hormone secretagogue (GHS) receptor in the rat. The present study describes the in vitro effect of rat Ghr on the release of GH and two forms of prolactin (PRL(177) and PRL(188)) in the tilapia, Oreochromis mossambicus. Rat Ghr stimulated the release of GH in a dose-related manner after 8 and 24 hr of incubation. Rat Ghr also significantly stimulated the release of PRL(177) and PRL(188) in a dose-related manner after 24 hr. Rat Ghr had no effect on the pituitary content of GH or PRL(188), but significantly increased PRL(177) content. These results show for the first time that rat Ghr significantly stimulates GH and PRL release in teleosts, and suggest that Ghr and a GHS receptor are present in fish.  相似文献   

5.
H E Carlson 《Life sciences》1984,35(17):1747-1754
Nickel (Ni++) is a potent inhibitor of prolactin (PRL) secretion from isolated rat pituitary quarters in vitro, suppressing both basal PRL release and the stimulation of PRL secretion due to theophylline and dibutyryl cyclic AMP. Stimulation of growth hormone (GH) secretion by synthetic GHRH is also blunted by Ni++, although basal GH release and stimulated GH release due to theophylline or dibutyryl cyclic AMP are not suppressed. Ni++ antagonizes the stimulation of both PRL and GH secretion by barium (Ba++) ion, suggesting that the inhibitory effects of Ni++ on hormone release are due to an antagonism of calcium uptake or redistribution.  相似文献   

6.
Considerable progress has been made in study of the physiology of avian growth hormone (GH) and prolactin (PRL) following their purification and the consequent development of radioimmunoassay systems. Plasma GH concentrations are consistently high in the early rapid phase of growth while PRL levels are related to both reproductive and salt/water status. In the chicken, GH secretion appears to be under dual stimulatory and inhibitory hypothalamic influences while PRL is under predominantly stimulatory control. Stress can affect both GH PRL release, normally decreasing GH and elevating PRL levels.  相似文献   

7.
DBcAMP significantly increased the release of GH but not of LH, FSH, TSH, or PRL, except in the presence of hypothalamic extract when it augmented the release of LH, FSH, and GH, reversed the inhibition of PRL, but did not further influence TSH release. Theophylline increased release of GH and PRL while inducing increased tissue content of cAMP without consistently increasing the release of TSH, LH, or FSH. Hypothalamic extractor K+-stimulated hormone rel-ase was consistently and significantly potentiated by theophylline. Neither hypothalamic extract, increased [K+], or synthetic TRH and LRH were able to raise tissue content of cAMP while producing their expected effects on hormone release. Cholera enterotoxin produced a highly significant increase in tissue content of the cyclic nucleotide but increased the release of GH only, and not that of LH, FSH, TSH, or PRL. DBcAMP was able to lower the threshold concentration of K+ required to stimulate release of GH, LH, and FSH and also to augment K+-stimulated release to the higher levels induced by the hypothalamic releasing hormones. It did not augment K+-induced release of TSH.  相似文献   

8.
We recently discovered a new role for insulin-like growth factor-I (IGF-I) as a specific and direct stimulator of prolactin (PRL) release in addition to its recognized function as an inhibitor of growth hormone (GH) release and synthesis. Little is known of the mechanisms that transduce the actions of IGF-I on PRL and GH release in vertebrates. The present study was undertaken to determine the cellular pathways that mediate the disparate actions of IGF-I on PRL and GH release in hybrid striped bass (Morone saxatilis X M. chrysops). When regulating cellular function, IGF-I may activate two primary pathways, phosphatidylinositol 3-kinase (PI 3-K) and mitogen-activated protein kinase (MAPK). The specific MAPK inhibitor, PD98059, blocked IGF-I-evoked PRL release as well as GH release inhibition over an 18-20-h incubation. LY294002, a specific PI 3-K inhibitor, overcame IGF-I's inhibition of GH release but was ineffective in blocking PRL release stimulated by IGF-I. These studies suggest IGF-I disparately alters PRL and GH by activating distinct as well as overlapping signaling pathways central for mediating actions of growth factors on secretory activity as well as cell proliferation. These results further support a role for IGF-I as a physiological regulator of PRL and GH.  相似文献   

9.
Inhibitory effects of cysteamine on neuroendocrine function   总被引:1,自引:0,他引:1  
The action of cysteamine on anterior pituitary hormone secretion was studied in vivo using conscious, freely moving male rats and in vitro using anterior pituitary cells in monolayer culture. Administration of 500 micrograms cysteamine into the lateral cerebral ventricles of normal rats caused the complete inhibition of pulsatile GH secretion for a minimum of 6 h. This treatment also significantly decreased plasma concentrations of LH for at least 6 h in orchiectomized rat, TSH in short-term (0.5 month) thyroidectomized rats, and PRL in long-term (6 months) thyroidectomized rats. The in vivo stimulation of GH, LH, TSH and PRL with their respective releasing hormones 60 min after administration of cysteamine was not different from the response observed in rats pretreated with saline except for PRL where cysteamine pretreatment significantly inhibited the expected PRL increase. In vitro, 1 mM cysteamine decreased basal and TRH stimulated PRL release while not affecting basal or stimulated GH, LH, TSH and ACTH secretion. These data demonstrate the dramatic and wide-ranging effects of cysteamine on anterior pituitary hormone secretion. This action appears to be mediated through hypothalamic pathways for GH, LH and TSH and through a pituitary pathway for PRL.  相似文献   

10.
We investigated whether serum growth hormone (GH) concentration changes in association with the rise in serum prolactin (PRL) concentration known to occur during the early morning hours in the pregnant rat. Animals were kept in a room with the lights on from 0500 to 1900 hours (hr) daily and decapitated for the collection of trunk blood at 2200 or 2400 hr on Day 6 of pregnancy or at 0200, 0400, 0800 or 1000 hr on Day 6 of pregnancy. Serum GH concentration rose more than 4-fold from low levels at 2200 and 2400 hr to higher levels at 0400 and 0800 hr and then declined by 1000 hr. Serum prolactin (PRL) concentration followed a similar pattern except that it returned to low levels earlier, by 0800 hr. Serum luteinizing hormone, follicle-stimulating hormone and thyroid-stimulating hormone concentrations showed no significant changes. Serum GH levels at 0800 hr in pregnant rats were higher than those observed in cyclic rats (13 time periods sampled). The results demonstrate that serum GH concentration is elevated during a circumscribed period in the 6- to 7-day pregnant rat. The time of onset of the rise is similar to that for serum PRL but the elevation in GH levels persists longer than that for PRL.  相似文献   

11.
Control of growth hormone (GH) and prolactin (PRL) release was investigated in hypophysial stalk-transected (HST) and stalk-intact pigs by determining the effects of analogs of GH-releasing factors (GHRF), somatostatin (SRIF), arginine, thyrotropin-releasing hormone, alpha-methyl-rho-tyrosine, and haloperidol. HST and control gilts were challenged with intravenous injections of human pancreatic GHRF(1-40)OH, thyrotropin-releasing hormone, and analogs of rat hypothalamic GHRF. HST animals remained acutely responsive to GHRF by releasing 2-fold greater quantities of GH than seen in controls. This occurred in spite of a 38% reduction in pituitary gland weight and a 32 and 55% decrease in GH concentration and total content. During SRIF infusion, GH remained at similar basal concentrations in HST and control gilts, but increased immediately after stopping SRIF infusion only in the controls. Releasable pituitary GH appears to accumulate during SRIF infusion. GHRF given during SRIF infusion caused a 2-fold greater release of GH than seen in animals receiving only GHRF. Arginine increased (P less than 0.05) GH release in controls, but not in HST gilts, which suggests that it acts through the central nervous system. Basal PRL concentrations were greater (P less than 0.05) in HST gilts than in control gilts. TRH acutely elevated circulating PRL (P less than 0.001) in HST gilts, suggesting that it acts directly on the pituitary gland. Haloperidol, a dopamine receptor antagonist, increased circulating PRL in controls but not in HST animals. alpha-Methyl-rho-tyrosine did not consistently increase circulating PRL, however, suggesting that it did not sufficiently alter turnover rate of the tyrosine hydroxylase pool. The results indicate that the isolated pituitary after HST remains acutely responsive to hypothalamic releasing and inhibiting factors for both GH and PRL release in the pig.  相似文献   

12.
Secretory granules containing prolactin (PRL) and growth hormone (GH) as essentially the only proteins were isolated by centrifugation. PRL and GH varied reciprocally in the granule preparations with the seasons. During winter PRL content was lowest (20%) and GH highest (80%); during summer the converse obtained: PRL, 70% and GH,, 30%. Both hormones were in almost equal proportion during the spring. The amount of either hormone released from granules and pituitary slices was directly related to its relative content in the gland. The pattern of PRL release from secretory granules and pituitary tissue in vitro was similar to that reported for blood levels in ruminants: low during winter and high during summer. It is concluded that seasonal factors affect primarily the synthesis and/or storage of PRL and GH, and there exists a direct relationship between intracellular stores and release.  相似文献   

13.
Cells were dispersed from bovine anterior pituitary glands, by digestion with collagenase, and cultured. After 4 days the cell monolayers were incubated with fresh medium containing synthetic hypophysiotropic peptides for 2, 6, or 20 h, and hormone released into the medium was estimated by radioimmunoassay. After 2 h, thyroid releasing hormone (TRH) stimulated the release of thyroid-stimulating hormone (TSH) up to eightfold, and of prolactin (PRL) and follicle-stimulating hormone (FSH) about twofold at a minimal effective concentration of 1 ng/ml; enhanced growth hormone (GH) release was not apparent until 20 h, and release of luteinizing hormone (LH) and adrenocorticotrophic hormone (ACTH) was unaffected. Luteinizing hormone releasing hormone (LH-RH) enhanced release of LH maximally (three- to fourfold) during a 2 h incubation and was effective at 0.1 ng/ml; FSH release was significantly enhanced by about 50% above control level. Growth hormone release inhibiting hormone (GH-RIH)(somatostatin) showed significant effects only in the 20 h incubation; GH release was inhibited by 50% and release of PRL was slightly, but significantly, enhanced. Pituitary cell monolayers apparently permit maximal expression of releasing activities inherent in the hypothalamic hormones.  相似文献   

14.
R.L. Reid  S.S.C. Yen 《Life sciences》1981,29(25):2641-2647
β-endorphin administration via constant infusion inhibited the release of growth hormone (GH) and augmented the release of prolactin (PRL) induced by arginine in normal female subjects. Although β-endorphin infusion also induced hyperglycemia, the increment in plasma glucose was insufficient to account for the observed suppression of arginine-initiated GH release. These studies demonstrate that β-endorphin influences, in opposed directions, the secretion of PRL and GH in women.  相似文献   

15.
Morphine and the endogenous opioid peptides (EOP) exert similar effects on the neuroendocrine system. When adminstered acutely, they stimulate growth hormone (GH), prolactin (PRL), and adrenocorticotropin (ACTH) release, and inhibit release of luteinizing hormone (LH), follicle stimulating hormone (FSH),and thyrotropin (TSH). Recent studies indicate that the EOP probably have a physiological role in regulating pituitary hormone secretion. Thus injection of naloxone (opiate antagonist) alone in rats resulted in a rapid fall in serum concentrations of GH and PRL, and a rise in serum LH and FSH, suggesting that the EOP help maintain basal secretion of these hormones. Prior administration of naloxone or naltrexon inhibited stress-induced PRL release, and elevated serum LH in castrated male rats to greater than normal castrate levels. Studies on the mechanisms of action of the EOP and morphine on hormone secretion indicate that they have no direct effect on the pituitary, but act via the hypothalamus. There is no evidence that the EOP or morphine alter the action of the hypothalamic hypophysiotropic hormones on pituitary hormone secretion; they probably act via hypothalamic neurotransmitters to influence release of the hypothalamic hormones into the pituitary portal vessels. Preliminary observations indicate that they may increase serotonin and decrease dopamine metabolism in the hypothalamus, which could account for practically all of their effects on pituitary hormone secretion.  相似文献   

16.
Summary Effects of medium osmotic pressure on the release of prolactin (PRL) and growth hormone (GH) from the pituitary of the Japanese eel, Anguilla japonica, were examined during long-term organ culture in a defined medium. Prolactin and GH release, as measured by homologous radioimmunoassays, increased gradually for 7 days during incubation in isosmotic medium (295 mOsmolal). On day 7, 3 to 5 times more PRL and GH were released than on day 1. The amount of GH released was about 100 times greater than that of PRL. Electron microscopic observation revealed that both PRL and GH cells were in good condition after 7 days incubation. The reduction of medium osmotic pressure from 295 (isosmotic) to 235 or 260 mOsmolal significantly stimulated PRL release for 4 days. By contrast, an increase in medium osmolality from 295 to 360 mOsmolal was without effect. These treatments produced no significant alterations in GH release. The stimulatory effect of hyposmotic medium (235 mOsmolal) was no longer evident by 12 h after the pituitaries were returned to isosmotic medium. The isosmotic but low-sodium medium, prepared by adding mannitol to the hyposmotic medium, did not stimulate PRL release from the pituitary. These results indicate that plasma osmolality may be an important physiological factor controlling PRL release during freshwater adaptation of the eel.Abbreviations GH growth hormone - OAPBS PBS with 1% ovalbumin - PAGE polyacrylamide gel electrophoresis - PBS phosphatebuffered saline - PRL prolactin - rER rough endoplasmic reticulum  相似文献   

17.
Six GH adenomas and three prolactinomas were investigated by light- and electron-microscopic morphological and immunocytochemical methods and the effect of vasoactive intestinal polypeptide (VIP) on growth hormone (GH) and prolactin (PRL) secretion was tested in vitro. The tumour cells of the acromegalic patients revealed both GH and PRL immunoreactivity while prolactinomas showed only PRL activity. All the adenomas stained immunocytochemically also for VIP. By electron microscopy, the tumours included two densely and two sparsely granulated GH, two mixed GH/PRL, and three sparsely granulated PRL adenomas. The dissociated cells were explanted, and cultured in vitro. The cultures in micro test plates were treated with VIP at different concentrations between 10(-5)-10(-12) M. GH and PRL contents in the culture media were measured by radioimmunoassay. GH release was significantly stimulated by VIP in a dose-dependent manner over the whole concentration range, while VIP was effective on the PRL release only at 10(-6)-10(-7) M concentration. The cells of a mixed adenoma were grown in Petri dishes and used for ultrastructural and immunocytochemical studies. The cytoplasmic structure of the cells treated with VIP corresponded to that of active hormone-secreting cells with large ergastoplasmic fields and Golgi zones containing secretory granules. Massive exocytotic events were encountered mainly in the GH-type cells. GH and PRL double immunocytochemistry showed the predominance of GH cells, many of them containing low amounts of PRL as well. Cells predominantly containing PRL were spread among them, they also might contain GH as well. Some of the cells contained only a single immunoreactive hormone. The intensity of gold labelling of the secretory granules appeared higher in the VIP-treated cells than in the untreated control ones which showed a cytoplasmic structure characteristic of glandular cells with low secretory activity. As all the adenoma cells both contained and reacted to VIP, our results are in agreement with an autocrine or paracrine effect of this peptide. The fine structure of the cells in the cultures treated with VIP supply an additional argument to the assumption that VIP may serve as a growth factor for these cell types.  相似文献   

18.
Divalent cations inhibited in vitro release of growth hormone (GH) and prolactin (PRL) from bovine adenohypophysial secretory granules. Zinc, nickel, and cadmium were most potent, exerting 50% inhibition of protein release near 0.1 mM; relative potency was Ni2+ greater than or equal to Zn2+ greater than Cd2+ much greater than Mn2+ greater than Co2+ greater than Cu2+ much greater than Mg2+ greater than Ca2+. The pH optimum for inhibition, 8.0, was lower than that for stimulation of release by thiols. EDTA augmented release and reversed metal inhibition. Both immunoassay and polyacrylamide gel electrophoresis results indicated that metals inhibited both PRL and GH release in a dose-related fashion, and that PRL was more sensitive to all cations tested. With zinc present, known stimulators of release (reduced glutathione, ATP, and bicarbonate) restored GH release, but only ATP restored PRL release. Bicarbonate potently stimulated GH release, but only affected PRL when Mg2+ and ATP were present. We suggest that divalent cations influence GH and PRL release in a reversible fashion and at multiple sites. Some loci may be common to both lactotrope and somatotrope granules; however, the different sensitivities to metals and differential reversal by stimulators of release indicate that metal-protein interactions may also be specific for either granule, or for the hormones themselves.  相似文献   

19.
Summary In previous work we have shown that perifused GH3 cells exhibit spontaneously accelerating growth hormone (GH) and prolactin (PRL) secretory rates. This behavior contrasts with GH and PRL secretion rates that are decreasing or stable over the same 3-d period in static cell culture. We now report that GH3 cells maintained in serum-supplemented medium produce an autocrine-paracrine factor(s) which inhibits GH secretion in plate culture; PRL release is frequently reduced as well. The inhibitory effect of conditioned medium on GH secretion was concentration dependent, whereas PRL release was stimulated at low and inhibited at high concentrations over the same range. Extensive dialysis of conditioned medium using membranes with a molecular weight cut-off of 12 000–14 000 did not remove GH inhibition but produced a retentate that stimulated PRL secretion. Heat-inactivation of conditioned medium did not abolish inhibition of GH release but did remove the PRL-stimulatory effect. IGF-I added to fresh culture medium did not reproduce the GH-inhibitory effects of conditioned medium. We conclude that GH3 cell secretory behavior in perifusion and plate culture systems may be partially explained by the production of an autocrine-paracrine factor: its accumulation in plate culture inhibits GH and PRL secretion whereas its removal, by perifusing medium, allows GH and PRL secretion to accelerate. Supported by grant DK33388 to M. E. S. from the National Institute of Health, Bethesda, MD, and in part by the Medical Research Service of the Veterans Administration, Washington, DC.  相似文献   

20.
The effect of Leu5-enkephalin on growth hormone (GH) and prolactin (PRL) release was studied in vivo in the infant rat and compared to that of morphine. In 10 day-old pups, intracerebroventricular injection of Leu5-enkephalin (50, 75 and 100 μg) resulted in a dose-related increase in plasma GH; morphine was active as GH releaser at the dose of 5 and 10 μg, but not at 2.5 μg. Pretreatment with naloxone (2 mg/kg ip) suppressed the GH-releasing effect of either Leu5-enkephalin (100 μg) or morphine (10 μg). Leu5-enkephalin (75 and 100 μg) induced a rise in plasma PRL which was neither dose-related nor antagonized by naloxone; morphine (5 and 10 μg) was active as PRL releaser and its effect was antagonized by naloxone. These results indicate that: 1) Leu5-enkephalin stimulates both GH and PRL release; 2) the release of GH by Leu5-enkephalin but likely not that of PRL involves specific opiate receptors; 3) morphine releases GH and PRL through specific opiate receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号