首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
In wheat mitochondria, the gene coding for subunit 2 of the NADH-ubiquinone oxidoreductase (nad2) is divided into five exons located in two distant genomic regions. The first two exons of the gene, a and b, lie 22?kb downstream of exons c, d, and e, on the same DNA strand. All introns of nad2 are group II introns. A trans-splicing event is required to join exons b and c. It involves base pairing of the two precursor RNAs in the stem of domain IV of the intron. A gene coding for tRNATyr is located upstream of exon c. In addition to splicing processes, mRNA editing is also required for the correct expression of nad2. The mature mRNA is edited at 36 positions, distributed over its five exons, resulting in 28 codon modifications. Editing increases protein hydrophobicity and conservation.  相似文献   

2.
In wheat mitochondria, the gene coding for subunit 2 of the NADH-ubiquinone oxidoreductase (nad2) is divided into five exons located in two distant genomic regions. The first two exons of the gene, a and b, lie 22 kb downstream of exons c, d, and e, on the same DNA strand. All introns of nad2 are group II introns. A trans-splicing event is required to join exons b and c. It involves base pairing of the two precursor RNAs in the stem of domain IV of the intron. A gene coding for tRNATyr is located upstream of exon c. In addition to splicing processes, mRNA editing is also required for the correct expression of nad2. The mature mRNA is edited at 36 positions, distributed over its five exons, resulting in 28 codon modifications. Editing increases protein hydrophobicity and conservation. Received: 11 August 1997 / Accepted: 2 February 1998  相似文献   

3.
4.
The RPL10A gene encodes the RPL10 protein, required for joining 40S and 60S subunits into a functional 80S ribosome. This highly conserved gene, ubiquitous across all eukaryotic super-groups, is characterized by a variable number of spliceosomal introns, present in most organisms. These properties facilitate the recognition of orthologs among distant taxa and thus comparative studies of sequences as well as the distribution and properties of introns in taxonomically distant groups of eukaryotes. The present study examined the multiple ways in which RPL10A conservation vs. sequence changes in the gene over the course of evolution, including in exons, introns, and the encoded proteins, can be exploited for evolutionary analysis at different taxonomic levels. At least 25 different positions harboring introns within the RPL10A gene were determined in different taxa, including animals, plants, fungi, and alveolates. Generally, intron positions were found to be well conserved even across different kingdoms. However, certain introns seemed to be restricted to specific groups of organisms. Analyses of several properties of introns, including insertion site, phase, and length, along with exon and intron GC content and exon–intron boundaries, suggested biases within different groups of organisms. The use of a standard primer pair to analyze a portion of the intron-containing RPL10A gene in 12 genera of green algae within Chlorophyta is presented as a case study for evolutionary analyses of introns at intermediate and low taxonomic levels. Our study shows that phylogenetic reconstructions at different depths can be achieved using RPL10A nucleotide sequences from both exons and introns as well as the amino acid sequences of the encoded protein.  相似文献   

5.
The codon structure inside exons imposes a strong modulation with period-3 for genomic composition correlations. A new formalism for calculating nucleotide correlations along DNA sequences in terms of an irreducible set of six correlation functions is presented. New procedures to extract the corresponding period-3 modulations are also developed. These modulations are seen to be stronger for the irreducible self-correlation Czz(k), which accounts only for the binding strength of dinucleotides (z stands for adenine or thymine minus cytosine or guanine concentrations). We investigate and model the relationship between exon distribution and genomic period-3 correlations for the D. melanogaster genome.  相似文献   

6.
《Gene》1997,191(1):31-37
Inhibitors (PLIs) against snake venom gland phospholipases A2 (PLA2s) have been found in their sera. A cDNA encoding a PLI from Trimeresurus flavoviridis (Tf, habu snake, Crotalinae) serum, cPLI-A, was isolated from the Tf liver cDNA library and sequenced. Northern blot analysis with cPLI-A showed that PLIs are expressed only in liver. Genes for PLIs, gPLI-A and gPLI-B, were isolated from the Tf genomic DNA library and their nucleotide (nt) sequences were determined. The genes consisted of four exons and three introns, and exon 4 encoded the carbohydrate recognition domain (CRD)-like motif. Comparison of the nt sequences between gPLI-A and gPLI-B showed that these genes are highly homologous, including introns, except that exon 3 is rich in nonsynonymous nt substitutions which are almost four times as frequent as synonymous nt substitutions. This evolutionary feature of PLI genes is different from that of venom gland PLA2 isozyme genes in which nonsynonymous nt substitutions are spread over the entire mature protein-coding region.  相似文献   

7.
Genomic duplication, followed by divergence, contributes to organismal evolution. Several mechanisms, such as exon shuffling and alternative splicing, are responsible for novel gene functions, but they generate homologous domains and do not usually lead to drastic innovation. Major novelties can potentially be introduced by frameshift mutations and this idea can explain the creation of novel proteins. Here, we employ a strategy using simulated protein sequences and identify 470 human and 108 mouse frameshift events that originate new gene segments. No obvious interspecies overlap was observed, suggesting high rates of acquisition of evolutionary events. This inference is supported by a deficiency of TpA dinucleotides in the protein-coding sequences, which decreases the occurrence of translational termination, even on the complementary strand. Increased usage of the TGA codon as the termination signal in newer genes also supports our inference. This suggests that tolerated frameshift changes are a prevalent mechanism for the rapid emergence of new genes and that protein-coding sequences can be derived from existing or ancestral exons rather than from events that result in noncoding sequences becoming exons.  相似文献   

8.
Conserved sequence elements associated with exon skipping   总被引:11,自引:3,他引:8       下载免费PDF全文
One of the major forms of alternative splicing, which generates multiple mRNA isoforms differing in the precise combinations of their exon sequences, is exon skipping. While in constitutive splicing all exons are included, in the skipped pattern(s) one or more exons are skipped. The regulation of this process is still not well understood; so far, cis- regulatory elements (such as exonic splicing enhancers) were identified in individual cases. We therefore set to investigate the possibility that exon skipping is controlled by sequences in the adjacent introns. We employed a computer analysis on 54 sequences documented as undergoing exon skipping, and identified two motifs both in the upstream and downstream introns of the skipped exons. One motif is highly enriched in pyrimidines (mostly C residues), and the other motif is highly enriched in purines (mostly G residues). The two motifs differ from the known cis-elements present at the 5′ and 3′ splice site. Interestingly, the two motifs are complementary, and their relative positional order is conserved in the flanking introns. These suggest that base pairing interactions can underlie a mechanism that involves secondary structure to regulate exon skipping. Remarkably, the two motifs are conserved in mouse orthologous genes that undergo exon skipping.  相似文献   

9.
Synonymous codon choices vary considerably among Schistosoma mansoni genes. Principal components analysis detects a single major trend among genes, which highly correlates with GC content in third codon positions and exons, but does not discriminate among putatively highly and lowly expressed genes. The effective number of codons used in each gene, and its distribution when plotted against GC3, suggests that codon usage is shaped mainly by mutational biases. The GC content of exons, GC3, 5′, 3′, and flanking (5′+ 3′+ introns) regions are all correlated among them, suggesting that variations in GC content may exist among different regions of the S. mansoni genome. We propose that this genome structure might be among the most important factors shaping codon usage in this species, although the action of selection on certain sequences cannot be excluded. Received: 10 March 1997 / Accepted: 27 June 1997  相似文献   

10.
11.
The first complete mitochondrial genome (mitogenome) of Tachinidae Exorista sorbillans (Diptera) is sequenced by PCR-based approach. The circular mitogenome is 14,960?bp long and has the representative mitochondrial gene (mt gene) organization and order of Diptera. All protein-coding sequences are initiated with ATN codon; however, the only exception is Cox I gene, which has a 4-bp ATCG putative start codon. Ten of the thirteen protein-coding genes have a complete termination codon (TAA), but the rest are seated on the H strand with incomplete codons. The mitogenome of E. sorbillans is biased toward A+T content at 78.4?%, and the strand-specific bias is in reflection of the third codon positions of mt genes, and their T/C ratios as strand indictor are higher on the H strand more than those on the L strand pointing at any strain of seven Diptera flies. The length of the A+T-rich region of E. sorbillans is 106?bp, including a tandem triple copies of a13-bp fragment. Compared to Haematobia irritans, E. sorbillans holds distant relationship with Drosophila. Phylogenetic topologies based on the amino acid sequences, supporting that E. sorbillans (Tachinidae) is clustered with strains of Calliphoridae and Oestridae, and superfamily Oestroidea are polyphyletic groups with Muscidae in a clade.  相似文献   

12.

Background  

The evolution of alternatively spliced exons (ASEs) is of primary interest because these exons are suggested to be a major source of functional diversity of proteins. Many exon features have been suggested to affect the evolution of ASEs. However, previous studies have relied on the K A /K S ratio test without taking into consideration information sufficiency (i.e., exon length > 75 bp, cross-species divergence > 5%) of the studied exons, leading to potentially biased interpretations. Furthermore, which exon feature dominates the results of the K A /K S ratio test and whether multiple exon features have additive effects have remained unexplored.  相似文献   

13.
14.
Abstract

The oligonucleotide d(G5T5) can in principle form a fully matched duplex with G · T pairing and/or a tetraplex. Non-denaturing gel electrophoresis, circular dichroism and NMR experiments show that the tetraplex is exclusively formed by this oligomer in solution. In the presence of its complementary strand d(A5C5) at low temperature, d(G5T5) forms the tetraplex over the normally expected Watson-Crick duplex. However, when d(G5T5) and d(A5C5) are mixed together in equimolar amounts and heated for several minutes at 85°C, and then allowed to cool, the product was essentially the Watson-Crick duplex. The lack of resolution in the 500 MHz 1H NMR spectra and the presence of extensive spin diffusion do not allow us to derive a quantitative structure for the tetraplex from the NMR data. However, we find good qualitative agreement between the NOESY and MINSY data and a theoretically derived stereochemically sound structure in which the G's and T's are part of a parallel tetraplex.  相似文献   

15.
Rat liver nuclei contain a 29-nucleotides-long RNA (fr 3-RNA) which is transcribed from middle repetitive DNA sequences. By Southern analysis of restriction fragments of rat albumin and α-fetoprotein genomic clones, DNA sequences complementary to this RNA were detected on a 4.6 kbp EcoRI fragment located 600 bp downstream from the termination exon of the albumin gene and on a 2 kbp EcoRI-HindIII fragment located 10 kbp downstream from the restriction fragment containing the α-fetoprotein site. No sequence complementary to this RNA was found either in the introns of exons of both genes or in the regions extending 7 kbp upstream from the first albumin exon and 10 kbp upstream of the first α-fetoprotein exon. We concluded that sequences complementary to fr 3-RNA are present at the 3′-end flanking regions of the rat albumin and α-fetoprotein gene complexes.  相似文献   

16.
Our previous work applied neural network techniques to the problem of discriminating open reading frame (ORF) sequences taken from introns versus exons. The method counted the codon frequencies in an ORF of a specified length, and then used this codon frequency representation of DNA fragments to train a neural net (essentially a Perceptron with a sigmoidal, or "soft step function", output) to perform this discrimination. After training, the network was then applied to a disjoint "predict" set of data to assess accuracy. The resulting accuracy in our previous work was 98.4%, exceeding accuracies reported in the literature at that time for other algorithms. Here, we report even higher accuracies stemming from calculations of mutual information (a correlation measure) of spatially separated codons in exons, and in introns. Significant mutual information exists in exons, but not in introns, between adjacent codons. This suggests that dicodon frequencies of adjacent codons are important for intron/exon discrimination. We report that accuracies obtained using a neural net trained on the frequency of dicodons is significantly higher at smaller fragment lengths than even our original results using codon frequencies, which were already higher than simple statistical methods that also used codon frequencies. We also report accuracies obtained from including codon and dicodon statistics in all six reading frames, i.e. the three frames on the original and complement strand. Inclusion of six-frame statistics increases the accuracy still further. We also compare these neural net results to a Bayesian statistical prediction method that assumes independent codon frequencies in each position. The performance of the Bayesian scheme is poorer than any of the neural based schemes, however many methods reported in the literature either explicitly, or implicitly, use this method. Specifically, Bayesian prediction schemes based on codon frequencies achieve 90.9% accuracy on 90 codon ORFs, while our best neural net scheme reaches 99.4% accuracy on 60 codon ORFs. "Accuracy" is defined as the average of the exon and intron sensitivities. Achievement of sufficiently high accuracies on short fragment lengths can be useful in providing a computational means of finding coding regions in unannotated DNA sequences such as those arising from the mega-base sequencing efforts of the Human Genome Project. We caution that the high accuracies reported here do not represent a complete solution to the problem of identifying exons in "raw" base sequences. The accuracies are considerably lower from exons of small length, although still higher than accuracies reported in the literature for other methods. Short exon lengths are not uncommon.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
A genomic DNA fragment (gCORE-1), encoding a portion of the cartilage proteoglycan core protein, has been isolated from a phage library using cDNA as a probe. The genomic insert is about 17 kilobase pairs; two BamHI fragments of the insert (1.3 and 4.8 kilobase pairs) contain most of the hybridizable sequences found in the cDNA. Sequence analysis of these fragments shows that they contain a total of five exons that encompass 216 amino acid residues, all of which are identical to those of the corresponding cDNA sequence. Three of the exons, which are adjacent to one another, are very similar to the corresponding exons in the gene of a rat hepatic lectin as well as to an exon in the gene of human pulmonary surfactant-associated protein. There is a strong degree of conservation of amino acid sequences encoded in the three genes, although there is no similarity between their introns. The sizes of the five exons in gCORE-1, except for one (which is indeterminate because only a partial cDNA sequence is available), are less than 184 base pairs, whereas the sizes of the introns range from 218 to greater than 2629 base pairs. Four of the introns interrupt an exon codon at either their donor or acceptor sites, between the first and second nucleotides. Only one intron does not split a codon. Intron and exon boundary sites are in agreement with known consensus sequences for introns. The dispersed distribution and relatively small size of the exons, if representative of the entire gene, suggest that the complete gene which codes for the core protein may be quite sizable.  相似文献   

18.
The compositional properties of human genes   总被引:8,自引:0,他引:8  
Summary The present work represents the first attempt to study in greater detail previously proposed compositional correlations in genomes, based on a body of additional data relating to gene localizations as well as to extended flanking sequences extracted from gene banks. We have investigated the correlations that exist between (1) the GC levels of exons of human genes, and (2) the GC levels of either intergenic sequences or introns associated with the genes under consideration. In both cases, linear relationships with slopes close to unity were found. The similarity of the linear relationships indicates similar GC levels in intergenic sequences and introns located in the same isochores. Moreover, both intergenic sequences and introns showed GC levels 5–10% lower than the corresponding exons. The above findings considerably strengthen the previously drawn conclusion that coding and noncoding sequences (both inter- and intragenic) from the same isochores of the human genome are compositionally correlated. In addition, we find linear correlations between the GC levels of codon positions and of the intergenic sequences or introns associated with the corresponding genes, as well as among the GC levels of codon positions of genes.  相似文献   

19.
20.
We report studies of two unrelated Japanese patients with 17α-hydroxylase deficiency caused by mutations of the 17α-hydroxylase (CYP17) gene. We amplified all eight exons of the CYP17 gene, including the exon-intron boundaries, by the polymerase chain reaction and determined their nucleotide sequences. Patient 1 had novel, compound heterozygous mutations of the CYP17 gene. One mutant allele had a guanine to thymine transversion at position +5 in the splice donor site of intron 2. This splice-site mutation caused exon 2 skipping, as shown by in vitro minigene expression analysis of an allelic construct, resulting in a frameshift and introducing a premature stop codon (TAG) 60 bp downstream from the exon 1-3 boundary. The other allele had a missense mutation of His (CAC) to Leu (CTC) at codon 373 in exon 6. These two mutations abolished the 17α-hydroxylase and 17,20-lyase activities. Restriction fragment length polymorphism (RFLP) analysis with a mismatch oligonucleotide showed that the patient’s mother and brother carried the splice-site mutation, but not the missense mutation. Patient 2 was homozygous for a novel 1-bp deletion (cytosine) at codon 131 in exon 2. This 1-bp deletion produces a frameshift in translation and introduces a premature stop codon (TAG) proximal to the highly conserved heme iron-binding cysteine at codon 442 in microsomal cytochrome P450 steroid 17α-hydroxylase (P450c17). RFLP analysis showed that the mother was heterozygous for the mutation. Received: 15 November 1997 / Accepted: 15 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号