首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary There is limited hope after some experimental effort put into the work, that the question could be settled, whether the magnetic field in combination with the, electric fields has something to do with the appearance of the chiral biosphere as observed today.  相似文献   

2.
Knowledge of our Planet's biosphere has increased tremendously during the last 10 to 20 years. In the field of Microbiology in particular, scientists have discovered novel "extremophiles", microorganisms capable of living in extreme environments such as highly acidic or alkaline conditions, at high salt concentration, with no oxygen, extreme temperatures (as low as -20 degrees C and as high as 300 degrees C), at high concentrations of heavy metals and in high pressure environments such as the deep-sea. It is apparent that microorganisms can exist in any extreme environment of the Earth, yet already scientists have started to look for life on other planets; the so-called "Exobiology" project. But as yet we have little knowledge of the deep-sea and subsurface biosphere of our own planet. We believe that we should elucidate the Biodiversity of Earth more thoroughly before exploring life on other planets, and these attempts would provide deeper insight into clarifying the existence of extraterrestrial life. We focused on two deep-sea extremophiles in this article; one is "Piezophiles", and another is "Hyperthermophiles". Piezophiles are typical microorganisms adapted to high-pressure and cold temperature environments, and located in deep-sea bottom. Otherwise, hyperthermophiles are living in high temperature environment, and located at around the hydrothermal vent systems in deep-sea. They are not typical deep-sea microorganisms, but they can grow well at high-pressure condition, just like piezophiles. Deming and Baross mentioned that most of the hyperthermophilic archaea isolated from deep-sea hydrothermal vents are able to grow under conditions of high temperature and pressure, and in most cases their optimal pressure for growth was greater than the environmental pressure they were isolated from. It is possible that originally their native environment may have been deeper than the sea floor and that there had to be a deeper biosphere. This implication suggests that the deep-sea hydrothermal vents are the windows to a deep subsurface biosphere. A vast array of chemoautotrophic deep-sea animal communities have been found to exist in cold seep environments, and most of these animals are common with those found in hydrothermal vent environments. Thus, it is possible to consider that the cold seeps are also one of slit windows to a deep subsurface biosphere. We conclude that the deep-sea extremophiles are very closely related into the unseen majority in subsurface biosphere, and the subsurface biosphere probably concerns to consider the "exobiology".  相似文献   

3.
4.
Molecular biophysics is a broad, diverse, and dynamic field that has presented a variety of unique challenges and opportunities for training future generations of investigators. Having been or currently being intimately associated with the Molecular Biophysics Training Program at Northwestern, we present our perspectives on various issues that we have encountered over the years. We propose no cookie-cutter solutions, as there is no consensus on what constitutes the "ideal" program. However, there is uniformity in opinion on some key issues that might be useful to those interested in establishing a biophysics training program.  相似文献   

5.
The Black Sea hollow bottom is a promising research ground in the field of deep-sea radiochemoecology and exobiology. It has turned out to be at the intersection of the earth and cosmic scientific interests such as deep-sea marine radiochemoecology from the perspective of the study of extreme biogeocenological properties of the Earth biosphere and exobiology from the standpoint of the study of life phenomena (living matter) outside the Earth biosphere, i.e. on other planets and during hypothetical transfer of spores in the outer space. The potential of this ground is substantiated with the data published by the author and co-workers on accumulation of 90Sr, 137Cs and Pu isotopes with silts of bathyal pelo-contour, on the quality of deep-sea hydrogen sulphide waters (after their contact with air) for vital functions of planktonic and benthic aerobes, as well as the species composition of marine, freshwater and terrestrial plants grown from the spores collected from the bottom sediments of the Black Sea bathyal. Discussion was based on V.I. Vernadsky's ideas about the living matter and biosphere, which allowed conclusions about the biospheric and outer space role of the described phenomena.  相似文献   

6.
Measurement of bacteria and other microorganisms at the level of single cells has progressed enormously over the last couple of decades. Up to the late 1970s, there were no other means than microscopy for observation of single microorganisms, making any type of measurement very cumbersome and tedious, at best. Today, we measure several parameters simultaneously with a precision of a few per cent, and at a rate of 1000 cells per second. The first papers on the use of flow cytometry to measure bacteria appeared only in 1977, although the method had proved highly successful in studies of mammalian cells for almost a decade. There were several reasons for this relatively late introduction, including technical limitations, problems with adequate staining, and, not least, the human factor. Today, flow cytometry has a wide range of microbiological applications, ranging from studies of the bacterial cell cycle and many other cellular characteristics to assessment of antibiotic susceptibility of clinical samples, and monitoring of bacteria and other microorganisms in anything from sewage to sea water. Still, the potential of flow cytometry in microbiology is far from fully utilised. Better instruments and new stains will provide new opportunities to understand, control and exploit this vital part of the biosphere.  相似文献   

7.
James Hutton (1726-1797) regarded Earth as a super-organism and physiology the science to study it. A strong line of evidence for an intimate relationship of biological and abiotic processes on Earth leads from Hutton to the Gaia theory of J. Lovelock. A less known in the West but important approach to the biosphere as a self-regulating system (the biosphere theory) was proposed V.I. Vernadsky (1863-1945). The main concern of this paper revolves around the question: What is the difference between Gaia and the biosphere? To approach the problem of Earth as a super-organism one can use also the biosphere theory of V. N. Beklemishev (1890-1962), who examined the biosphere from a morphological viewpoint.  相似文献   

8.
The terms biosphere, ecosphere, and Gaia are used as names for the global ecosystem. However, each has more than one meaning. Biosphere can mean the totality of living things residing on the Earth, the space occupied by living things, or life and life-support systems (atmosphere, hydrosphere, lithosphere, and pedosphere). Ecosphere is used as a synonym of biosphere and as a term for zones in the universe where life as we know it should be sustainable. Gaia is similar to biosphere (in the sense of life and life-support systems) and ecosphere (in the sense of biosphere as life and life-support systems), but, in its most extreme form, refers to the entire planet as a living entity. A case is made for avoiding the term Gaia (at least as a name for the planetary ecosystem), restricting biosphere to the totality of living things, and adopting the ecosphere as the most apt name for the global ecosystem.  相似文献   

9.
锡林郭勒草原自然保护区于1988年加入国际生物圈保护区网络,但它在功能格局和管理机构协调等方面仍存在若干问题,尚未是一个功能齐全的生物圈保护区。因此,关于功能格局,作者建议增设湿地生态系统核心区和缓冲区;在草甸草原和典型草原核心区之外设立缓冲区、调整和扩大沙地白扦云杉林与山杨林的缓冲区;重视过渡区的协作。作者并就管理机构协调提出8项建议,强调牧场、保护区管理处、中国科学院内蒙古草原生态系统定位站和牧民之间的协作。  相似文献   

10.
One of the goals of the present Martian exploration is to search for evidence of extinct (or even extant) life. This could be redefined as a search for carbon. The carbon cycle (or, more properly, cycles) on Earth is a complex interaction among three reservoirs: the atmosphere; the hydrosphere; and the lithosphere. Superimposed on this is the biosphere, and its presence influences the fixing and release of carbon in these reservoirs over different time-scales. The overall carbon balance is kept at equilibrium on the surface by a combination of tectonic processes (which bury carbon), volcanism (which releases it) and biology (which mediates it). In contrast to Earth, Mars presently has no active tectonic system; neither does it possess a significant biosphere. However, these observations might not necessarily have held in the past. By looking at how Earth's carbon cycles have changed with time, as both the Earth's tectonic structure and a more sophisticated biology have evolved, and also by constructing a carbon cycle for Mars based on the carbon chemistry of Martian meteorites, we investigate whether or not there is evidence for a Martian biosphere.  相似文献   

11.
Gafni A  Walter NG 《Biopolymers》2008,89(4):256-261
The Michigan Biophysics Graduate Program (MBGP) was established in 1949, making it one of the first such programs in the world. The intellectual base of the program was significantly broadened in the 1980 when faculty members from a number of other units on campus were invited to join. Currently over forty faculty members from a variety of disciplines participate as mentors for the Ph.D. students enrolled in the MBGP providing our students with rich opportunities for academic learning and research. The MBGP has two main objectives: 1) to provide graduate students with both the intellectual and technical training in modern biophysics, 2) to sensitize our students to the power and unique opportunities of interdisciplinary work and thinking so as to train them to conduct research that crosses the boundaries between the biological and physical sciences. The program offers students opportunities to conduct research in a variety of areas of contemporary biophysics including structural biology, single molecule spectroscopy, spectroscopy and its applications, computational biology, membrane biophysics, neurobiophysics and enzymology. The MBGP offers a balanced curriculum that aims to provide our students with a strong academic base and, at the same time, accommodate their different academic backgrounds. Judging its past performance through the success of its former students, the MBGP has been highly successful, and there is every reason to believe that strong training in the biophysical sciences, as provided by the MBGP, will become even more valuable in the future both in the academic and the industrial settings. in the academic and the industrial settings.  相似文献   

12.
Goudriaan  J. 《Plant Ecology》1993,(1):329-337
Increasing atmospheric CO2 induces a net uptake of carbon in the ocean by a shift in chemical equilibrium in seawater, and in the terrestrial biosphere by a stimulated photosynthesis and productivity. The fractions absorbed in both biosphere and ocean decline with increasing dynamics of the release rate of CO2 into the atmosphere. However, the relative portion of ocean absorption descends much faster with annual growth rate of CO2 release than biospheric absorption does, due to a difference in dynamics. The equilibrium absorption capacity of the biosphere is estimated to be only one quarter of that of the ocean, but the current sink size of the biosphere is about half of that of the ocean.Apart from CO2-stimulated carbon fixation, the biosphere releases CO2 as a result of land use changes, in particular after deforestation. Both of these fluxes are of the order of 1–1.5 Pg of carbon per year. The CO2-fertilization effect and regrowth together have turned the terrestrial biosphere as a whole from a source into a sink.  相似文献   

13.
Kukushkin AK 《Biofizika》2003,48(6):977-985
The development of quantum conceptions in biophysics and the role of experimental and theoretical works of L.A. Blumenfeld in this process were considered. The influence of his investigations on the researches of other scientists in the field of quantum biophysics was shown.  相似文献   

14.
In just 20 years, the field of biosphere-atmosphere interactions has gone from a nascent discipline to a central area of modern climate change research. The development of terrestrial biosphere models that predict the responses of ecosystems to climate and increasing CO2 levels has highlighted several mechanisms by which changes in ecosystem composition and function might alter regional and global climate. However, results from empirical studies suggest that ecosystem responses can differ markedly from the predictions of terrestrial biosphere models. As I discuss here, the challenge now is to connect terrestrial biosphere models to empirical ecosystem measurements. Only by systematically evaluating the predictions of terrestrial biosphere models against suites of ecosystem observations and experiments measurements will a true predictive science of the biosphere be achieved.  相似文献   

15.
Kondepudi DK  Durand DJ 《Chirality》2001,13(7):351-356
Spiral galaxies are chiral entities when coupled with the direction of their recession velocity. As viewed from the Earth, the S‐shaped and Z‐shaped spiral galaxies are two chiral forms. What is the nature of chiral symmetry in spiral galaxies? In the Carnegie Atlas of Galaxies that lists photographs of a total of 1,168 galaxies, we found 540 galaxies, classified as normal or barred spirals, that are clearly identifiable as S‐ or Z‐ type. The recession velocities for 538 of these galaxies could be obtained from this atlas and other sources. A statistical analysis of this sample reveals no overall asymmetry but there is a significant asymmetry in certain subclasses: dominance of S‐type galaxies in the Sb class of normal spiral galaxies and a dominance of Z‐type in the SBb class of barred spiral galaxies. Both S‐ and Z‐type galaxies seem to have similar velocity distribution, indicating no spatial segregation of the two chiral forms. Chirality 13:351–356, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

16.
Here we provide a brief review of the rare biosphere from the perspective of ciliates and other microbial eukaryotes. We trace research on rarity from its lack of much in‐depth focus in morphological and Sanger sequencing projects, to its central importance in analyses using high throughput sequencing strategies. The problem that the rare biosphere is potentially comprised of mostly errors is then discussed in the light of asking community‐comparative, novel‐diversity, and ecosystem‐functioning questions.  相似文献   

17.
Imaging polarimetry was demonstrated as a highly parallel method of determining optical rotation of biochemical samples. The imaging polarimeter utilized a bright, uniform light source wavelength-filtered to near the sodium D line, a sample array flanked by inlet and analyzing polarizers, and a CCD camera fitted with an equal-perspective telecentric lens. The prototype apparatus was demonstrated to have an optical resolution better than 0.08 degrees. The potential for high throughput screening was demonstrated by imaging chiral solutions in 1536-well microtiter plates and by real-time monitoring of 30 simultaneous chiral enzymatic reactions. Improvements in polarizer and CCD technology may broadly expand the technique's applicability to fields such as directed evolution and combinatorial chemistry, where screening throughput is currently limiting for chiral applications.  相似文献   

18.
On the occasion of the 40-year anniversary of the Medicobiological Faculty of the Russian State Medical University, the research activity of the biophysics department was summed up. The main result is the creation of medical biophysics as part of the medicobiological science. Scientific investigations of the biophysics department are reviewed. They are presented as follows: chemiluminescence of biological systems; effect of visible light on human and animal molecules and cells; application of luminescence methods in laboratory and clinical investigations; free radicals and their role in cell biology and pathology; medical aspects of molecular biophysics; and biological membranes and cell pathology.  相似文献   

19.
Exploring nitrilase sequence space for enantioselective catalysis   总被引:3,自引:0,他引:3  
Nitrilases are important in the biosphere as participants in synthesis and degradation pathways for naturally occurring, as well as xenobiotically derived, nitriles. Because of their inherent enantioselectivity, nitrilases are also attractive as mild, selective catalysts for setting chiral centers in fine chemical synthesis. Unfortunately, <20 nitrilases have been reported in the scientific and patent literature, and because of stability or specificity shortcomings, their utility has been largely unrealized. In this study, 137 unique nitrilases, discovered from screening of >600 biotope-specific environmental DNA (eDNA) libraries, were characterized. Using culture-independent means, phylogenetically diverse genomes were captured from entire biotopes, and their genes were expressed heterologously in a common cloning host. Nitrilase genes were targeted in a selection-based expression assay of clonal populations numbering 10(6) to 10(10) members per eDNA library. A phylogenetic analysis of the novel sequences discovered revealed the presence of at least five major sequence clades within the nitrilase subfamily. Using three nitrile substrates targeted for their potential in chiral pharmaceutical synthesis, the enzymes were characterized for substrate specificity and stereospecificity. A number of important correlations were found between sequence clades and the selective properties of these nitrilases. These enzymes, discovered using a high-throughput, culture-independent method, provide a catalytic toolbox for enantiospecific synthesis of a variety of carboxylic acid derivatives, as well as an intriguing library for evolutionary and structural analyses.  相似文献   

20.
In previous work, no chiral differences were found between D and L enantiomers of Leu in their ability to displace one another from the acid-extractable pool in mammalian cells. Recent evidence suggested otherwise. Our aim is to examine whether, in physiological range, D-amino acids have an equivalent ability to displace L-amino acids from the acid-extractable pool of HeLa cells, and vice versa. In the millimolar range, D-Leu and L-Leu have similar uptake and displacement properties with regard to the acid-extractable pool in HeLa cells, despite only the latter isomer being incorporated into protein. Below millimolar concentrations however, a distinct difference was found in the displacement of tritium-labelled L-Leu from the pool by unlabelled D-Leu compared with unlabelled L-Leu. Thus, unlabelled L-Leu in the external medium at 10−4 or 10−5 M displaced an equivalent amount of label from the pool as D-Leu introduced at a concentration approx. one order of magnitude higher, respectively. Reciprocal experiments, in which the acid-extractable pool was preloaded with 3H-D-Leu, confirmed this finding. The chirality difference was noted whether pool prelabelling was carried out at 37 or 0°C; but in order to avoid the complications of active transport mechanisms, the competition work reported here was done at 0°C. Similar chirality differences were observed with other hydrophobic amino acids, including His, Ile and Phe, such as, preferential displacement by the L-Leu racemer compared with the D-Leu racemer below mM levels. This was also true for the D and L forms of the non-utilisable isomer of Leu, norleucine (nLeu). We conclude that D-forms of hydrophobic amino acids have lower affinity for similar or the same intracellular binding sites involved in the acid-extractable pool than their L-forms. The significance of these chirality findings to amino acid pools in cells, and to the predominance of L-forms of amino acids in the biosphere is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号