首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In general, oxidative stress, the consequence of an aerobic lifestyle, induces bacterial antioxidant defence enzymes. Here we report on a peroxiredoxin of Rhizobium etli, prxS, strongly expressed under microaerobic conditions and during the symbiotic interaction with Phaseolus vulgaris. The microaerobic induction of the prxS-rpoN2 operon is mediated by the alternative sigma factor RpoN and the enhancer-binding protein NifA. The RpoN-dependent promoter is also active under low-nitrogen conditions through the enhancer-binding protein NtrC. An additional symbiosis-specific weak promoter is located between prxS and rpoN2. Constitutive expression of prxS confers enhanced survival and growth to R. etli in the presence of H2O2. Single prxS mutants are not affected in their symbiotic abilities or defence response against oxidative stress under free-living conditions. In contrast, a prxS katG double mutant has a significantly reduced (>40%) nitrogen fixation capacity, suggesting a functional redundancy between PrxS and KatG, a bifunctional catalase-peroxidase. In vitro assays demonstrate the reduction of PrxS protein by DTT and thioredoxin. PrxS displays substrate specificity towards H2O2 (Km = 62 microM) over alkyl hydroperoxides (Km > 1 mM). Peroxidase activity is abolished in both the peroxidatic (C56) and resolving (C156) cysteine PrxS mutants, while the conserved C81 residue is required for proper folding of the protein. Resolving of the R. etli PrxS peroxidatic cysteine is probably an intramolecular process and intra- and intersubunit associations were observed. Taken together, our data support, for the first time, a role for an atypical 2-Cys peroxiredoxin against oxidative stress in R. etli bacteroids.  相似文献   

4.
Rhizobium etli is a Gram-negative root-colonizing soil bacterium capable of fixing nitrogen while living in symbiosis with its leguminous host Phaseolus vulgaris. A genome-wide screening for R. etli symbiotic mutants revealed a R. etli operon encoding an oligopeptide ABC-transporter (Opt), two redA homologous genes and one redB gene. Expression analysis showed this opt operon to be transcribed both under free-living and symbiotic conditions and expression levels were demonstrated to be growth-phase-dependent. Plants nodulated by R. etli opt mutants showed a reduced symbiotic nitrogen fixation activity (approximately 50% reduction). Growth experiments with opt mutants in the presence of oligopeptides as the sole nitrogen source confirmed the involvement of the opt genes in oligopeptide uptake. Further phenotypic analysis of the opt mutants revealed them to display an enhanced resistance to the oligopeptide antibiotic bacitracin, an increased susceptibility to the beta-lactam antibiotic ampicillin and a decreased osmotolerance. In conclusion, our results demonstrate that the opt operon plays a crucial role during symbiosis and stress resistance.  相似文献   

5.
Deletion analysis studies have been carried out on the nifHDK promoter (P1) of R. meliloti in an attempt to determine sequences involved in the expression of this promoter under both free-living microaerobic and symbiotic conditions. Deletion of a region downstream (+17 to +61) from the promoter element resulted in low levels of expression under free-living microaerobic conditions. However, wild-type levels of expression were obtained during symbiosis with Alfalfa plants. The sequences in this region were designated the "downstream sequences'. The pattern of expression observed when the downstream sequences were deleted was similar to that observed when a previously identified upstream activator sequence (UAS) was deleted. Only when both the downstream sequences and the UAS were deleted, did activity from the P1 promoter become significantly decreased during symbiosis. Expression studies of the P1 promoter in a nifA mutant background indicate that nifA is required for symbiotic expression of P1 which is enhanced by the presence of the downstream sequences.  相似文献   

6.
7.
Cascade regulation of nif gene expression in Rhizobium meliloti   总被引:63,自引:0,他引:63  
  相似文献   

8.
9.
10.
11.
Rhizobium leguminosarum bv. viciae UPM791 induces hydrogenase activity in pea (Pisum sativum L.) bacteroids but not in free-living cells. The symbiotic induction of hydrogenase structural genes (hupSL) is mediated by NifA, the general regulator of the nitrogen fixation process. So far, no culture conditions have been found to induce NifA-dependent promoters in vegetative cells of this bacterium. This hampers the study of the R. leguminosarum hydrogenase system. We have replaced the native NifA-dependent hupSL promoter with the FnrN-dependent fixN promoter, generating strain SPF25, which expresses the hup system in microaerobic free-living cells. SPF25 reaches levels of hydrogenase activity in microaerobiosis similar to those induced in UPM791 bacteroids. A sixfold increase in hydrogenase activity was detected in merodiploid strain SPF25(pALPF1). A time course induction of hydrogenase activity in microaerobic free-living cells of SPF25(pALPF1) shows that hydrogenase activity is detected after 3 h of microaerobic incubation. Maximal hydrogen uptake activity was observed after 10 h of microaerobiosis. Immunoblot analysis of microaerobically induced SPF25(pALPF1) cell fractions indicated that the HupL active form is located in the membrane, whereas the unprocessed protein remains in the soluble fraction. Symbiotic hydrogenase activity of strain SPF25 was not impaired by the promoter replacement. Moreover, bacteroids from pea plants grown in low-nickel concentrations induced higher levels of hydrogenase activity than the wild-type strain and were able to recycle all hydrogen evolved by nodules. This constitutes a new strategy to improve hydrogenase activity in symbiosis.  相似文献   

12.
13.
Sequence analysis of the rpoN (2)- fixA intergenic region in the genome of Rhizobium etli CNPAF512 has uncovered three genes involved in nitrogen fixation, namely nifU, nifS and nifW. These genes are preceded by an ORF that is highly conserved among nitrogen-fixing bacteria. It encodes a putative gene product of 105 amino acids, belonging to the HesB-like protein family. A phylogenetic analysis of members of the HesB-like protein family showed that the R. etli HesB-like protein clusters with polypeptides encoded by ORFs situated upstream of the nifUS nitrogen fixation regions in the genomes of other diazotrophs. The R. etli ORF that encodes the HesB-like protein was designated iscN. iscN is co-transcribed with nifU and nifS, and is preferentially expressed under free-living microaerobic conditions and in bacteroids. Expression is regulated by the alternative sigma factor RpoN and the enchancer-binding protein NifA. A R. etli iscN mutant displays a reduction in nitrogen fixation capacity of 90% compared to the wild-type strain. This Nif(-) phenotype could be complemented by the introduction of intact copies of R. etli iscN.  相似文献   

14.
The deduced amino acid sequences of four open reading frames identified upstream of the fixGHI region in Azorhizobium caulinodans are very similar to the putative terminal oxidase complex coded by the fixNOQP operons from Rhizobium meliloti and Bradyrhizobium japonicum. The expression of the A. caulinodans fixNOQP genes, which was maximal under microaerobiosis, was positively regulated by FixK and independent of NifA. In contrast to the Fix- phenotype of B. japonicum and R. meliloti fixN mutants, an A. caulinodans fixNO-deleted mutant strain retained 50% of the nitrogenase activity of the wild type in the symbiotic state. In addition, the nitrogenase activity was scarcely reduced under free-living conditions. Analysis of membrane fractions of A. caulinodans wild-type and mutant strains suggests that the fixNOQP region encodes two proteins with covalently bound hemes, tentatively assigned to fixO and fixP. Spectral analysis showed a large decrease in the c-type cytochrome content of the fixN mutant compared with the wild type. These results provide evidence for the involvement of FixNOQP proteins in a respiratory process. The partial impairment in nitrogen fixation of the fixN mutant in planta may be due to the activity of an alternative terminal oxidase compensating for the loss of the oxidase complex encoded by fixNOQP.  相似文献   

15.
16.
Molecular mechanisms behind adaptations in the cyanobacterium (Nostoc sp.) to a life in endosymbiosis with plants are still not clarified, nor are the interactions between the partners. To get further insights, the proteome of a Nostoc strain, freshly isolated from the symbiotic gland tissue of the angiosperm Gunnera manicata Linden, was analyzed and compared with the proteome of the same strain when free-living. Extracted proteins were separated by two-dimensional gel electrophoresis and were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry combined with tandem mass spectrometry. Even when the higher percentage of differentiated cells (heterocysts) in symbiosis was compensated for, the majority of the proteins detected in the symbiotic cyanobacteria were present in the free-living counterpart, indicating that most cellular processes were common for both stages. However, differential expression profiling revealed a significant number of proteins to be down-regulated or missing in the symbiotic stage, while others were more abundant or only expressed in symbiosis. The differential protein expression was primarily connected to i) cell envelope-associated processes, including proteins involved in exopolysaccharide synthesis and surface and membrane associated proteins, ii) to changes in growth and metabolic activities (C and N), including upregulation of nitrogenase and proteins involved in the oxidative pentose phosphate pathway and downregulation of Calvin cycle enzymes, and iii) to the dark, microaerobic conditions offered inside the Gunnera gland cells, including changes in relative phycobiliprotein concentrations. This is the first comprehensive analysis of proteins in the symbiotic state.  相似文献   

17.
18.
Xie F  Cheng G  Xu H  Wang Z  Lei L  Li Y 《PloS one》2011,6(12):e28995
Ubiquinone (UQ) has been considered as an electron mediator in electron transfer that generates ATP in Rhizobium under both free-living and symbiosis conditions. When mutated, the dmtH gene has a symbiotic phenotype of forming ineffective nodules on Astragalus sinicus. The gene was isolated from a Mesorhizobium huakuii 7653R transposon-inserted mutant library. The DNA sequence and conserved protein domain analyses revealed that dmtH encodes demethylmenaquinone (DMK) methyltransferase, which catalyzes the terminal step of menaquinone (MK) biosynthesis. Comparative analysis indicated that dmtH homologs were present in only a few Rhizobia. Real-time quantitative PCR showed dmtH is a bacteroid-specific gene. The highest expression was seen at 25 days after inoculation of strain 7653R. Gene disruption and complementation tests demonstrated that the dmtH gene was essential for bacteroid development and symbiotic nitrogen fixation ability. MK and UQ were extracted from the wild type strain 7653R and mutant strain HK116. MK-7 was accumulated under microaerobic condition and UQ-10 was accumulated under aerobic condition in M. huakuii 7653R. The predicted function of DmtH protein was confirmed by the measurement of methyltransferase activity in vitro. These results revealed that MK-7 was used as an electron carrier instead of UQ in M. huakuii 7653R bacteroids.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号