首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
The Edmonston strain of measles virus caused neurologic disease in athymic nude mice by intracerebral inoculation. The incubation periods of the disease, however, were extremely long, ranging from 59 to 140 days when the mice were inoculated with 10(4) plaque forming units (PFU) of the virus. The Edmonston strain was highly infectious in the nude mouse brain since virus infection was established even with 1 PFU of the virus. Virus titers in the brains of infected mice increased with the time of incubation. These results indicate that the extremely long incubation period of the disease is ascribed to very slow development of virus infection in the mouse brain. On the other hand, the incubation periods of the Biken strain of SSPE virus were very short (generally within 2 weeks) even with inoculations of 1 PFU of the virus. However, the extent of the dissemination of infection in brains was not significantly different between the two viruses as examined by immunofluorescent staining.  相似文献   

2.
Sheep can be experimentally infected with bovine spongiform encephalopathy (BSE), and the ensuing disease is similar to scrapie in terms of pathogenesis and clinical signs. BSE infection in sheep is an animal and human health concern. In this study, the transmission in BoPrP-Tg110 mice of prions from BSE-infected sheep was examined and compared to the transmission of original cattle BSE in cattle and sheep scrapie prions. Our results indicate no transmission barrier for sheep BSE prions to infect BoPrP-Tg110 mice, but the course of the disease is accelerated compared to the effects of the original BSE isolate. The shortened incubation period of sheep BSE in the model was conserved in subsequent passage in BoPrP-Tg110 mice, indicating that it is not related to infectious titer differences. Biochemical signature, lesion profile, and PrP(Sc) deposition pattern of both cattle and sheep BSE were similar. In contrast, all three sheep scrapie isolates tested showed an evident transmission barrier and further adaptation in subsequent passage. Taken together, those data indicate that BSE agent can be altered by crossing a species barrier, raising concerns about the virulence of this new prion towards other species, including humans. The BoPrP-Tg110 mouse bioassay should be considered as a valuable tool for discriminating scrapie and BSE in sheep.  相似文献   

3.
The susceptibility of sheep to scrapie is known to involve, as a major determinant, the nature of the prion protein (PrP) allele, with the VRQ allele conferring the highest susceptibility to the disease. Transgenic mice expressing in their brains three different ovine PrP(VRQ)-encoding transgenes under an endogenous PrP-deficient genetic background were established. Nine transgenic (tgOv) lines were selected and challenged with two scrapie field isolates derived from VRQ-homozygous affected sheep. All inoculated mice developed neurological signs associated with a transmissible spongiform encephalopathy (TSE) disease and accumulated a protease-resistant form of PrP (PrPres) in their brains. The incubation duration appeared to be inversely related to the PrP steady-state level in the brain, irrespective of the transgene construct. The survival time for animals from the line expressing the highest level of PrP was reduced by at least 1 year compared to those of two groups of conventional mice. With one isolate, the duration of incubation was as short as 2 months, which is comparable to that observed for the rodent TSE models with the briefest survival times. No survival time reduction was observed upon subpassaging of either isolate, suggesting no need for adaptation of the agent to its new host. Overexpression of the transgene was found not to be required for transmission to be accelerated compared to that observed with wild-type mice. Conversely, transgenic mice overexpressing murine PrP were found to be less susceptible than tgOv lines expressing ovine PrP at physiological levels. These data argue that ovine PrP(VRQ) provided a better substrate for sheep prion replication than did mouse PrP. Altogether, these tgOv mice could be an improved model for experimental studies on natural sheep scrapie.  相似文献   

4.
Summary The intracerebral inoculation of cynomolgus monkeys with Columbia SK virus (mouse brain suspension) produced flaccid paralysis after an incubation period of 3 to 5 days. In the spinal cord leucocytic infiltrations, acute necrosis and neuronophagia of anterior horn cells were found. Similar lesions, but far less extensive were found in the medulla and the brain stem, whereas leucocytic perivascular infiltrations were present in the motor area of the cerebral cortex. Small accumulations of leucocytes were observed in the heart muscle and in the epicardium. The Lansing strain of poliomyelitis virus produced essentially similar lesions, though less extensive, and the incubation period was 14 days. In the heart muscle and the epicardium of a Lansing-infected monkey small mononuclear infiltrations were found. The mouse infectivity titer of the ColSK virus decreased rapidly after monkey passage, and there was a simultaneous decrease of the hemagglutination titer with sheep red cells. No close antigenic relationship between the Y-SK and the ColSK virus was demonstrated by the hemagglutination inhibition reaction with sera from monkeys immunized against Y-SK and ColSK virus. The question is discussed, whether or not the ColSK group of viruses, which should be considered to be of animal origin, has to be classed into the family of poliomyelitis viruses as a fourth immunological type.  相似文献   

5.
Borna disease virus is an uncharacterized agent that causes sporadic but fatal neurological disease in horses and sheep in Europe. Studies of the infection in rats have shown that the agent has a strict tropism for neural tissues, in which it persists indefinitely. Inoculated rats developed encephalitis after an incubation period of 17 to 90 days. This report shows that the incubation period is the time required for transport of the agent in dendritic-axonal processes from the site of inoculation to the hippocampus. The immune responses to the agent had no effect on replication or transport of the virus. The neural conduit to the brain was proven by intranasal inoculation of virus that resulted in rapid transport of the agent via olfactory nerves to the hippocampus and in development of disease in 20 days. Virus inoculation into the feet resulted in spread along nerve fibers from neuron to neuron. There was sequential replication in neurons of the dorsal root ganglia adjacent to the lumbar spinal cord, the gracilis nucleus in the medulla, and pyramidal cells in the cerebral cortex, followed by infection of the hippocampal neurons and onset of disease. This progression required 50 to 60 days. The exclusiveness of the neural conduit was proven by failure to cause infection after injection of the virus intravenously or into the feet of neurectomized rats.  相似文献   

6.
Human CJD, endemic sheep scrapie, epidemic bovine spongiform encephalopathy (BSE), and other transmissible spongiform encephalopathies (TSEs), are caused by a group of related but molecularly uncharacterized infectious agents. The UK‐BSE agent infected many species, including humans where it causes variant CJD (vCJD). As in most viral infections, different TSE disease phenotypes are determined by both the agent strain and the host species. TSE strains are most reliably classified by incubation time and regional neuropathology in mice expressing wild‐type (wt) prion protein (PrP). We compared vCJD to other human and animal derived TSE strains in both mice and neuronal cultures expressing wt murine PrP. Primary and serial passages of the human vCJD agent, as well as the highly selected mutant 263K sheep scrapie agent, revealed profound strain‐specific characteristics were encoded by the agent, not by host PrP. Prion theory posits that PrP converts itself into the infectious agent, and thus short incubations require identical PrP sequences in the donor and recipient host. However, wt PrP mice injected with human vCJD brain homogenates showed dramatically shorter primary incubation times than mice expressing only human PrP, a finding not in accord with a PrP species barrier. All mouse passage brains showed the vCJD agent derived from a stable BSE strain. Additionally, both vCJD brain and monotypic neuronal cultures produced a diagnostic 19 kDa PrP fragment previously observed only in BSE and vCJD primate brains. Monotypic cultures can be used to identify the intrinsic, strain‐determining molecules of TSE infectious particles. J. Cell. Biochem. 106: 220–231, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
The Tg(OvPrP4) mouse line, expressing the sheep prion protein, is a sensitive model crucial for the identification of the bovine spongiform encephalopathy agent possibly present in natural sheep spongiform encephalopathies. It was also previously demonstrated as susceptible to infection with natural scrapie isolates from sheep harbouring various genotypes. The performance of this new transgenic mouse line in scrapie strain characterization was further assessed by intracranial inoculation of five groups of Tg(OvPrP4) mice with brain homogenate of the wild type mouse-adapted scrapie strains, C506M3, 22A, 79A, 87V, or Chandler. The Tg(OvPrP4) mice were susceptible to the scrapie agent transmitted using mouse-adapted scrapie strains but not equivalently. Strains 87V and Chandler were most readily transmissible followed by 79A and C506M3. Strain 22A was the least transmissible. Clinical signs, survival data, spongiosis, and PrPsc distribution were also reported. These various data demonstrate the possibility of distinguishing between scrapie strains. Our findings are discussed with regard to agent strain and host factors and already demonstrate the dissimilar susceptibilities of Tg(OvPrP4) mice to the different murine strains studied, thus, reinforcing their potential use in strain typing studies.  相似文献   

8.
Molecular features of the proteinase K-resistant prion protein (PrP res) may discriminate among prion strains, and a specific signature could be found during infection by the infectious agent causing bovine spongiform encephalopathy (BSE). To investigate the molecular basis of BSE adaptation and selection, we established a model of coinfection of mice by both BSE and a sheep scrapie strain (C506M3). We now show that the PrP res features in these mice, characterized by glycoform ratios and electrophoretic mobilities, may be undistinguishable from those found in mice infected with scrapie only, including when mice were inoculated by both strains at the same time and by the same intracerebral inoculation route. Western blot analysis using different antibodies against sequences near the putative N-terminal end of PrP res also demonstrated differences in the main proteinase K cleavage sites between mice showing either the BSE or scrapie PrP res profile. These results, which may be linked to higher levels of PrP res associated with infection by scrapie, were similar following a challenge by a higher dose of the BSE agent during coinfection by both strains intracerebrally. Whereas PrP res extraction methods used allowed us to distinguish type 1 and type 2 PrP res, differing, like BSE and scrapie, by their electrophoretic mobilities, in the same brain region of some patients with Creutzfeldt-Jakob disease, analysis of in vitro mixtures of BSE and scrapie brain homogenates did not allow us to distinguish BSE and scrapie PrP res. These results suggest that the BSE agent, the origin of which remains unknown so far but which may have arisen from a sheep scrapie agent, may be hidden by a scrapie strain during attempts to identify it by molecular studies and following transmission of the disease in mice.  相似文献   

9.
目的分析博尔纳病病毒(Borna disease virus,BDV)H1766株对BALB/c小鼠的感染性。方法选择病毒滴度为2.0×107FFU/ml的BDV病毒液分别对新生和成年BALB/c小鼠进行脑内接种,并用相同病毒液对原代培养的新生BALB/c小鼠脑细胞进行接种。经过一定时间的病毒作用后分别提取总RNA,采用巢式RT-PCR方法检测BDV-p40基因,并通过免疫组化方法检测脑内接种脑组织中BDV-P40蛋白。结果脑内接种病毒的小鼠脑组织中可以检测到BDV-p40基因和BDV-P40蛋白,培养的小鼠脑细胞中可以检测到BDV-p40基因。结论BDVH1766株可以感染新生和成年的BALB/c小鼠。  相似文献   

10.
The risk of the transmission of ruminant transmissible spongiform encephalopathy (TSE) to humans was thought to be low due to the lack of association between sheep scrapie and the incidence of human TSE. However, a single TSE agent strain has been shown to cause both bovine spongiform encephalopathy (BSE) and human vCJD, indicating that some ruminant TSEs are transmissible to humans. While the transmission of cattle BSE to humans in transgenic mouse models has been inefficient, indicating the presence of a significant transmission barrier between cattle and humans, BSE has been transmitted to a number of other species. Here, we aimed to further investigate the human transmission barrier following the passage of BSE in a sheep. Following inoculation with cattle BSE, gene-targeted transgenic mice expressing human PrP showed no clinical or pathological signs of TSE disease. However, following inoculation with an isolate of BSE that had been passaged through a sheep, TSE-associated vacuolation and proteinase K-resistant PrP deposition were observed in mice homozygous for the codon 129-methionine PRNP gene. This observation may be due to higher titers of the BSE agent in sheep or an increased susceptibility of humans to BSE prions following passage through a sheep. However, these data confirm that, contrary to previous predictions, it is possible that a sheep prion is transmissible to humans and that BSE from other species is a public health risk.  相似文献   

11.
Propagation of MM Virus in Continuous Cell Lines   总被引:2,自引:1,他引:1       下载免费PDF全文
Baby hamster kidney (BHK), McCoy, and L cell lines were found to be suitable for isolation of MM virus from infected mouse brain tissue. The virus was recovered in high titer in the first passage in BHK and McCoy cells, with concomitant cytopathic effect (CPE). In L cells, virus yield was lower than in the other two cell lines and CPE was incomplete. Adaptation of the virus to BHK and McCoy cells by serial passages was evidenced by accelerated development of the CPE and increase in the virus titer. Plaques were obtained in all three cell lines when inoculated with infected mouse brain or with the tissue culture-propagated virus. In the BHK cells, the virus release preceded the appearance of CPE and maximal yield of virus was obtained after 1 to 3 days of incubation, depending on the size of inoculum. The BHK-propagated virus had the same lethality for mice as did the mouse brain-propagated stock, and there was no difference in the course of the disease caused by the two preparations.  相似文献   

12.
Ibaraki virus multiplied and induced cytopathic effects in primary cell cultures of bovine, sheep and hamster kidney and chick embryo, and cultures of BHK21-WI2 cells of baby hamster kidney origin and mouse fibroblastic L cells, but did not in primary cultures of horse and swine kidney cells and HeLa cell cultures. The virus was readily passaged serially in 4 to 5-day-old eggs using the yolk sac inoculation and incubation at 33.5 C. The viral growth was better in eggs incubated at 33.5 C than 37 C, and in younger eggs, with high yields in yolk, yolk sac and embryo. The virus was passaged serially in newborn mice by the intracerebral route. The virus multiplied in the brain of mice of any age, but younger mice supported better viral growth and developed encephalitis. As the age of mice increased, the morbidity and mortality became lower, no deaths being observed in 2 to 3-week-old mice. These observations in cell cultures, embryonated eggs and mice emphasize the similarity of Ibaraki virus to bluetongue virus. No evidence was obtained that young adult rabbits and weanling guinea pigs are susceptible to Ibaraki virus. The virus seemed to have little if any pathogenicity but infectivity of a low grade for sheep, while the virus is capable of inducing clinical illness, even severe in some instances, in cattle. This is in contrast to bluetongue virus which is highly pathogenic for sheep and much less so for cattle. Serial passages in embryonated eggs and suckling mice resulted in attenuation for cattle of Ibaraki virus.  相似文献   

13.
Sheep scrapie is a prototypical transmissible spongiform encephalopathy (TSE), and the most widespread of these diseases. Experimental study of TSE infectious agents from sheep and other species essentially depends on bioassays in rodents. Transmission of natural sheep scrapie to conventional mice commonly requires one or two years. In an effort to develop laboratory models in which investigations on the sheep TSE agent would be facilitated, we have established mice and cell lines that were genetically engineered to express ovine PrP protein and examined their susceptibility to the infection. A series of transgenic mice lines (tgOv) expressing the high susceptibility allele (VRQ) of the ovine PrP gene from different constructs was expanded. Following intracerebral inoculation with natural scrapie isolates, all animals developed typical TSE neurological signs and accumulated abnormal PrP in their brain. The survival time in the highest expressing tgOv lines ranged from 2 to 7 months, depending on the isolate. It was inversely related to the brain PrP content, and essentially unchanged on further passaging. Ovine PrP transgene expression thus enhanced scrapie disease transmission from sheep to mice. Such tgOv mice may bring new opportunities for analysing the natural variation of scrapie strains and measuring infectivity. As no relevant cell culture models for agents of naturally-occurring TSE exist, we have explored various strategies in order to obtain stable cell lines that would propagate the sheep agent ex vivo without prior adaptation to rodent. In one otherwise refractory rabbit epithelial cell line, a regulable expression of ovine PrP was achieved and found to enable an efficient replication of the scrapie agent in inoculated cultures. Cells derived from sheep embryos or from tgOv mice were also used in an attempt to establish permissive cell lines derived from the nervous system. Cells engineered to express PrP proteins of a specified sequence may thus represent a promising strategy to further explore, at the cellular level, various aspects of TSE diseases.  相似文献   

14.
To determine the intracellular localization of the Creutzfeldt-Jakob disease (CJD) agent in mouse brain, cerebrum tissue of the mouse brain affected with the Fukuoka-1 strain was separated into six subcellular fractions (microsome, nerve ending, myelin, mitochondria, nucleus, and soluble fractions) by differential sucrose density gradient, and then the CJD infectivity of these fractions was examined. Serially diluted samples of each subfraction were inoculated intracerebrally into groups of BALB/c mice, and the infectivity was determined as to end point titration value, incubation period, and number of affected mice. On the basis of the protein content, the highest CJD infectivity was observed in the microsomal fraction. The nerve ending (synaptic plasma membrane) and myelin fractions were also infective. The mitochondria and nucleus fractions showed the lower infectivity. The infectivity of the soluble fraction was the lowest among the six subcellular fractions. From the findings obtained in this study two possibilities as to the intracellular localization of CJD agent were suggested: 1) the transmissible agent of CJD is closely associated with surface membranes of neuronal and/or glial cells, including their processes; 2) the CJD agent is diffusely present intracellularly, including in the surface membranes, but for manifestation of infectivity the agent needs membrane components as prerequisite factors.  相似文献   

15.
Three types of viral sensitivity were observed in various mouse strains upon MHV3 infection: resistance, full susceptibility, and semisusceptibility. In the latter type, seen in several inbred strains including C3H, approximately 50% of the adult injected animals resisted to the acute disease. Most of the surviving mice, however, developed a chronic disease with a wasting syndrome and occurrence of paralysis. The chronic period of the disease was characterized by a persistent viral infection, since MHV3 virus was recovered from brain, liver, spleen, and lymph nodes throughout the evolution in most of the animals. In addition, a correlation was observed between the clinical evolution and the titer of virus tested 4 days after infection.  相似文献   

16.
Transgenic (Tg) mice expressing full-length bovine prion protein (BoPrP) serially propagate bovine spongiform encephalopathy (BSE) prions without posing a transmission barrier. These mice also posed no transmission barrier for Suffolk sheep scrapie prions, suggesting that cattle may be highly susceptible to some sheep scrapie strains. Tg(BoPrP) mice were also found to be susceptible to prions from humans with variant Creutzfeldt-Jakob disease (CJD); on second passage in Tg(BoPrP) mice, the incubation times shortened by 30 to 40 days. In contrast, Tg(BoPrP) mice were not susceptible to sporadic, familial, or iatrogenic CJD prions. While the conformational stabilities of bovine-derived and Tg(BoPrP)-passaged BSE prions were similar, the stability of sheep scrapie prions was higher than that found for the BSE prions but lower if the scrapie prions were passaged in Tg(BoPrP) mice. Our findings suggest that BSE prions did not arise from a sheep scrapie strain like the one described here; rather, BSE prions may have arisen spontaneously in a cow or by passage of a scrapie strain that maintains its stability upon passage in cattle. It may be possible to distinguish BSE prions from scrapie strains in sheep by combining conformational stability studies with studies using novel Tg mice expressing a chimeric mouse-BoPrP gene. Single-amino-acid substitutions in chimeric PrP transgenes produced profound changes in incubation times that allowed us to distinguish prions causing BSE from those causing scrapie.  相似文献   

17.
The progression of Creutzfeldt-Jakob disease (CJD) was studied in ddY mice infected intraperitoneally with the Fukuoka-1 strain, a transmissible agent isolated from a CJD patient in Japan. Infectivity became detectable simultaneously in the brain, the spleen and the liver, i.e. 19 weeks after inoculation. Infectivity titer ranged from 10(2) to 10(3) LD50/g in all three organs up to 35 weeks, in contrast to intracerebrally infected mice in which the content of infectious CJD agent is higher in the brain than in the liver and the spleen. Cuffs appeared in the brain roughly four times in the period from 3 to 37 weeks after inoculation. The observed infectivity was discussed in relation to the appearance of cuffs in the brain.  相似文献   

18.
Abstract— Following intracerebral inoculation of mouse adapted scrapie agent into mice, polyamine concentration in the brain decreases to about 75 per cent of the normal level during the first 2 months after intracerebral inoculation of the agent. Between 2 and 4 months after infection thelevel of spermidine and spermineincreased by 80 and 40 percent respectively to reach concentrations of 25 and 20 per cent higher than controls of the same age. During the same period the rate of incorporation of [14C]putrescine into spermidine is increased four-fold as compared with controls. The changes in polyamine levels correlate well with the pattern of astrocyte hypertrophy and are similar to those reported for human brain tumours. The concentration of polyamines in spleen increases soon after inoculation. Whilst changes in brain polyamines might be referred to the hypertrophic growth of astrocytes those in spleen are perhaps due to an increased metabolic activity of spleen cells associated with the replication of the agent. These results are derived from experimental mouse scrapie and not naturally occurring disease in sheep.  相似文献   

19.

Background

Given the theoretical proposal that bovine spongiform encephalopathy (BSE) could have originated from sheep scrapie, this study investigated the pathogenicity for cattle, by intracerebral (i.c.) inoculation, of two pools of scrapie agents sourced in Great Britain before and during the BSE epidemic. Two groups of ten cattle were each inoculated with pools of brain material from sheep scrapie cases collected prior to 1975 and after 1990. Control groups comprised five cattle inoculated with sheep brain free from scrapie, five cattle inoculated with saline, and for comparison with BSE, naturally infected cattle and cattle i.c. inoculated with BSE brainstem homogenate from a parallel study. Phenotypic characterisation of the disease forms transmitted to cattle was conducted by morphological, immunohistochemical, biochemical and biological methods.

Results

Disease occurred in 16 cattle, nine inoculated with the pre-1975 inoculum and seven inoculated with the post-1990 inoculum, with four cattle still alive at 83 months post challenge (as at June 2006). The different inocula produced predominantly two different disease phenotypes as determined by histopathological, immunohistochemical and Western immunoblotting methods and biological characterisation on transmission to mice, neither of which was identical to BSE. Whilst the disease presentation was uniform in all scrapie-affected cattle of the pre-1975 group, the post-1990 inoculum produced a more variable disease, with two animals sharing immunohistochemical and molecular profile characteristics with animals in the pre-1975 group.

Conclusion

The study has demonstrated that cattle inoculated with different pooled scrapie sources can develop different prion disease phenotypes, which were not consistent with the phenotype of BSE of cattle and whose isolates did not have the strain typing characteristics of the BSE agent on transmission to mice.  相似文献   

20.
Identification of the strain of agent responsible for bovine spongiform encephalopathy (BSE) can be made histologically through the analysis of both distribution and intensity of brain vacuolar lesions after BSE transmission to mouse. Another useful way to distinguish the BSE agent from other prion strains is the study of the distribution of the abnormal prion protein (PrP(res)). For that purpose, paraffin-embedded tissue blot (PET-blot) method was applied on brains from C57Bl/6 mice infected with cattle BSE, experimental sheep BSE, or feline spongiform encephalopathy (FSE) from a cheetah. PrP(res) distribution was comparable, whichever of the three BSE agent sources was considered and was distinct from the PrP(res) distribution in C57Bl/6 mice inoculated with a French scrapie isolate or with a mouse-adapted scrapie strain (C506M3). These data confirm a common origin of infectious agent responsible for the British and French cattle BSE. They also indicate that PET-blot method appears as a precise complementary tool in prion strain studies because it offers easy and quick assessment of the PrP(res) mapping. Advantages and limits of the PET-blot method are discussed and compared with other established and validated methods of strain typing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号