首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of oral taurine supplementation on endotoxin-induced cholestasis was investigated in rat liver. At 12h following lipopolysaccharide (LPS) injection (4mg/kg body weight i.p.) bile flow and bromosulfophthalein (BSP) and taurocholate (TC) excretion were determined in the perfused liver and the expression of the canalicular transporters multidrug resistance protein 2 (Mrp2) and bile salt export pump (Bsep) was analyzed. Injection of LPS induced a significant decrease of bile flow ( 2.2+/-0.2 microl/g liver wet weight/min vs 3.3+/-0.1 microl/g liver wet weight in controls), biliary BSP excretion (10.8+/-2.2 nmol/g/min vs 21.0+/-3.8 nmol/g/min), and biliary TC excretion (114+/-23 nmol/g/min vs 228+/-8 nmol/g/min). These effects were due to transporter retrieval from the canalicular membrane and downregulation of Mrp2 and Bsep expression. In taurine-supplemented rats bile flow was 30% higher than that in untreated rats and the expression of Mrp2 and Bsep protein was increased two- to threefold. In taurine-supplemented rats there was no significant reduction of bile flow or of BSP and TC excretion at 12h following LPS injection. This protective effect of taurine was due to higher Mrp2 and Bsep protein levels compared to nonsupplemented LPS-treated rats, whereas relative Mrp2 retrieval from the canalicular membrane induced by LPS was not significantly different. LPS-induced tumor necrosis factor alpha and interleukin-1beta release were lower in taurine-fed rats; however, downregulation of Mrp2 and Bsep expression by LPS was delayed but not prevented. The data show that oral supplementation of taurine induces Mrp2 and Bsep expression and may prevent LPS-induced cholestasis.  相似文献   

2.
Oxidative stress is known to be a common feature of cholestatic syndrome. We have described the internalization of multidrug resistance-associated protein 2 (Mrp2), a biliary transporter involved in bile salt-independent bile flow, under acute oxidative stress, and a series of signaling pathways finally leading to the activation of novel protein kinase C were involved in this mechanism; however, it has been unclear whether the internalized Mrp2 localization was relocalized to the canalicular membrane when the intracellular redox status was recovered from oxidative stress. In this study, we demonstrated that decreased canalicular expression of Mrp2 induced by tertiary-butyl hydroperoxide (t-BHP) was recovered to the canalicular membrane by the replenishment of GSH by GSH-ethyl ester, a cell-permeable form of GSH. Moreover, pretreatment of isolated rat hepatocytes with colchicine and PKA inhibitor did not affect the t-BHP-induced Mrp2 internalization process but did prevent the Mrp2 recycling process induced by GSH replenishment. Moreover, intracellular cAMP concentration similarly changed with the change of intracellular GSH content. Taken together, our data clearly indicate that the redox-sensitive balance of PKA/PKC activation regulates the reversible Mrp2 localization in two different pathways, the microtubule-independent internalization pathway and -dependent recycling pathway of Mrp2.  相似文献   

3.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and beta-mercaptoethanol, with concentrations of 10 mM inhibiting by approximately 40%. DTT's inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [(3)H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

4.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and β-mercaptoethanol, with concentrations of 10 mM inhibiting by ∼40%. DTT’s inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [3H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

5.
Estradiol-17beta-D-glucuronide (E2-17G) induces a marked but reversible inhibition of bile flow in the rat together with endocytic retrieval of multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane to intracellular structures. We analyzed the effect of pretreatment (100 min) with the microtubule inhibitor colchicine or lumicholchicine, its inactive isomer (1 micromol/kg iv), on changes in bile flow and localization and function of Mrp2 induced by E2-17G (15 micromol/kg iv). Bile flow and biliary excretion of bilirubin, an endogenous Mrp2 substrate, were measured throughout, whereas Mrp2 localization was examined at 20 and 120 min after E2-17G by confocal immunofluorescence microscopy and Western analysis. Colchicine pretreatment alone did not affect bile flow or Mrp2 localization and activity over the short time scale examined (3-4 h). Administration of E2-17G to colchicine-pretreated rats induced a marked decrease (85%) in bile flow and biliary excretion of bilirubin as well as internalization of Mrp2 at 20 min. These alterations were of a similar magnitude as in rats pretreated with lumicolchicine followed by E2-17G. Bile flow and Mrp2 localization and activity were restored to control levels within 120 min of E2-17G in animals pretreated with lumicolchicine. In contrast, in colchicine-pretreated rats followed by E2-17G, bile flow and Mrp2 activity remained significantly inhibited by 60%, and confocal and Western studies revealed sustained internalization of Mrp2 120 min after E2-17G. We conclude that recovery from E2-17G cholestasis, associated with exocytic insertion of Mrp2 in the canalicular membrane, but not its initial E2-17G-induced endocytosis, is a microtubule-dependent process.  相似文献   

6.
In perfused rat liver, hyperosmolarity induces Mrp2- (Kubitz, R., D''urso, D., Keppler, D., and Häussinger, D. (1997) Gastroenterology 113, 1438–1442) and Bsep retrieval (Schmitt, M., Kubitz, R., Lizun, S., Wettstein, M., and Häussinger, D. (2001) Hepatology 33, 509–518) from the canalicular membrane leading to cholestasis. The aim of this study was to elucidate the underlying signaling events. Hyperosmolarity-induced retrieval of Mrp2 and Bsep from the canalicular membrane in perfused rat liver was accompanied by an activating phosphorylation of the Src kinases Fyn and Yes but not of c-Src. Both hyperosmotic transporter retrieval and Src kinase activation were sensitive to apocynin (300 μmol/liter), N-acetylcysteine (NAC; 10 mmol/liter), and SU6656 (1 μmol/liter). Also PP-2 (250 nmol/liter), which inhibited hyperosmotic Fyn but not Yes activation, prevented hyperosmotic transporter retrieval from the canalicular membrane, suggesting that Fyn but not Yes mediates hyperosmotic Bsep and Mrp2 retrieval. Neither hyperosmotic Fyn activation nor Bsep/Mrp2 retrieval was observed in livers from p47phox knock-out mice. Hyperosmotic activation of JNKs was sensitive to apocynin and NAC but insensitive to SU6656 and PP-2, indicating that JNKs are not involved in transporter retrieval, as also evidenced by experiments using the JNK inhibitors L-JNKI-1 and SP6001255, respectively. Hyperosmotic transporter retrieval was accompanied by a NAC and Fyn knockdown-sensitive inhibition of biliary excretion of the glutathione conjugate of 1-chloro-2,4-dinitrobenzene in perfused rat liver and of cholyl-l-lysyl-fluorescein secretion into the pseudocanaliculi formed by hepatocyte couplets. Hyperosmolarity triggered an association between Fyn and cortactin and increased the amount of phosphorylated cortactin underneath the canalicular membrane. It is concluded that the hyperosmotic cholestasis is triggered by a NADPH oxidase-driven reactive oxygen species formation that mediates Fyn-dependent retrieval of the Mrp2 and Bsep from the canalicular membrane, which may involve an increased cortactin phosphorylation.  相似文献   

7.
Oxidative stress in the liver is sometimes accompanied by cholestasis. We investigated the localization and role of multidrug-resistance-associated protein (Mrp) 2, a biliary transporter involved in bile-salt-independent bile flow, under ethacrynic acid (EA)-induced acute oxidative stress. Normal Sprague-Dawley rat (SDR) and Mrp2-deficient Eisai hyperbilirubinemic rat (EHBR) livers were perfused with 500 microM EA. The release of glutamic pyruvic transaminase (GPT) and thiobarbituric-acid-reactive substances (TBARS) from EHBR liver was markedly delayed compared with that from SDR liver. This is mainly due to the higher basal level of glutathione (GSH) in EHBR liver (59.1 +/- 0.3 nmol/mg protein) compared with SDR liver (39.7 +/- 1.5 nmol/mg protein). EA similarly induced a rapid reduction in GSH followed by mitochondrial permeability transition in the isolated mitochondria from both SDR and EHBR. Internalization of Mrp2 was detected before nonspecific disruption of the canalicular membrane and GPT release in SDR liver perfused with 100 microM EA. SDR liver preperfused with hyperosmolar buffer (405 mosmol/L) for 30 min induced internalization of Mrp2 without changing the basal GSH level, while elimination of hepatic GSH by 300 microM EA perfusion was significantly delayed thereafter. Concomitantly, hepatotoxicity assessed by the release of GPT and TBARS was also significantly attenuated under hyperosmolar conditions. In conclusion, preserved cytosolic and intramitochondrial GSH is the key factor involved in the acute hepatotoxicity induced by EA and its susceptibility could be altered by the presence of Mrp2.  相似文献   

8.
In perfused rat liver, hepatocyte shrinkage induces a Fyn-dependent retrieval of the bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane (Cantore, M., Reinehr, R., Sommerfeld, A., Becker, M., and Häussinger, D. (2011) J. Biol. Chem. 286, 45014–45029) leading to cholestasis. However little is known about the effects of hyperosmolarity on short term regulation of the Na+-taurocholate cotransporting polypeptide (Ntcp), the major bile salt uptake system at the sinusoidal membrane of hepatocytes. The aim of this study was to analyze hyperosmotic Ntcp regulation and the underlying signaling events. Hyperosmolarity induced a significant retrieval of Ntcp from the basolateral membrane, which was accompanied by an activating phosphorylation of the Src kinases Fyn and Yes but not of c-Src. Hyperosmotic internalization of Ntcp was sensitive to SU6656 and PP-2, suggesting that Fyn mediates Ntcp retrieval from the basolateral membrane. Hyperosmotic internalization of Ntcp was also found in livers from wild-type mice but not in p47phox knock-out mice. Tauroursodeoxycholate (TUDC) and cAMP reversed hyperosmolarity-induced Fyn activation and triggered re-insertion of the hyperosmotically retrieved Ntcp into the membrane. This was associated with dephosphorylation of the Ntcp on serine residues. Insertion of Ntcp by TUDC was sensitive to the integrin inhibitory hexapeptide GRGDSP and inhibition of protein kinase A. TUDC also reversed the hyperosmolarity-induced retrieval of bile salt export pump from the canalicular membrane. These findings suggest a coordinated and oxidative stress- and Fyn-dependent retrieval of sinusoidal and canalicular bile salt transport systems from the corresponding membranes. Ntcp insertion was also identified as a novel target of β1-integrin-dependent TUDC action, which is frequently used in the treatment of cholestatic liver disease.  相似文献   

9.
Endocytic internalization of the multidrug resistance-associated protein 2 (Mrp2) was previously suggested to be involved in estradiol-17beta-D-glucuronide (E217G)-induced cholestasis. Here we evaluated in the rat whether a similar phenomenon occurs with the bile salt export pump (Bsep) and the ability of DBcAMP to prevent it. E217G (15 micromol/kg i.v.) impaired bile salt (BS) output and induced Bsep internalization, as assessed by confocal microscopy and Western blotting. Neither cholestasis nor Bsep internalization occurred in TR- rats lacking Mrp2. DBcAMP (20 micromol/kg i.v.) partially prevented the decrease in bile flow and BS output and substantially prevented E217G-induced Bsep internalization. In hepatocyte couplets, E217G (50 microM) diminished canalicular accumulation of a fluorescent BS and decreased Bsep-associated fluorescence in the canalicular membrane; DBcAMP (10 microM) fully prevented both effects. In conclusion, our results suggest that changes in Bsep localization are involved in E217G-induced impairment of bile flow and BS transport and that DBcAMP prevents this effect by stimulating insertion of canalicular transporter-containing vesicles. Mrp2 is required for E217G to induce its harmful effect.  相似文献   

10.
Oxidative stress and Mrp2 internalization   总被引:2,自引:0,他引:2  
Oxidative stress in the liver is sometimes accompanied by cholestasis. We have described the internalization of multidrug resistance-associated protein 2/ATP-binding cassette transporter family 2 (Mrp2/Abcc2), a biliary transporter involved in bile-salt-independent bile flow, under ethacrynic acid (EA)-induced acute oxidative stress in rat liver. However, the signaling pathway and regulatory molecules have not been investigated. In the present study, we investigated the mechanism of EA-induced Mrp2 internalization using isolated rat hepatocyte couplets (IRCHs). The Mrp2 index, defined as the ratio of Mrp2-positive canalicular membrane staining in IRCHs per number of cell nuclei, was significantly reduced by treatment with EA. This reduction was abolished by a nonspecific protein kinase C (PKC) inhibitor Gö6850, a Ca2+ chelator, EGTA, but not by a protein kinase A (PKA)-selective inhibitor, a Ca2+-dependent conventional PKC (cPKC) inhibitor Gö6976, or a protein kinase G (PKG) inhibitor (1 μM). Moreover, an increase in the intracellular Ca2+ level and NO release into medium were observed shortly after the EA treatment. Both of these increases, as well as Mrp2 internalization, were completely blocked by EGTA. In conclusion, EA produced a reduction in GSH, Ca2+ elevation, NO production, and nPKC activation in a sequential manner, finally leading to Mrp2 internalization.  相似文献   

11.
12.
Cholestasis develops during inflammation and is characterized as occurring under oxidative stress. We have described the internalization of multidrug resistance-associated protein 2 (Mrp2), a biliary transporter involved in bile-salt-independent bile flow, under ethacrynic acid or lipopolysaccharide (LPS)-induced acute oxidative stress in rat liver. However, it remains unclear whether canalicular Mrp2 internalization is observed in human liver under conditions of acute oxidative stress. In this study, we examined the effect of dimerumic acid (DMA), an antioxidant and found in traditional Chinese medicine, on endotoxin-induced Mrp2 internalization in rat and human liver slices. At 1.5 h following LPS treatment (100 μg/mL), canalicular Mrp2 localization was disrupted without changing the expression of Mrp2 protein or the integrity of filamentous actin in the rat and human liver slices. Pretreatment with DMA (10 μM) counteracted LPS-induced subcellular distribution of Mrp2. Our data clearly indicated that LPS-induced short-term rapid retrieval of Mrp2 from the canalicular surface resulted from LPS-induced oxidative stress in rat and human liver slices.  相似文献   

13.
Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice   总被引:3,自引:0,他引:3  
Lam P  Wang R  Ling V 《Biochemistry》2005,44(37):12598-12605
In vertebrates, bile flow is essential for movement of water and solutes across liver canalicular membranes. In recent years, the molecular motor of canalicular bile acid secretion has been identified as a member of the ATP binding cassette transporter (ABC) superfamily, known as sister of P-glycoprotein (Spgp) or bile salt export pump (Bsep, ABCB11). In humans, mutations in the BSEP gene are associated with a very low level of bile acid secretion and severe cholestasis. However, as reported previously, because the spgp(-)(/)(-) knockout mice do not express severe cholestasis and have substantial bile acid secretion, we investigated the "alternative transport system" that allows these mice to be physiologically relatively normal. We examined the expression levels of several ABC transporters in spgp(-)(/)(-) mice and found that the level of multidrug resistance Mdr1 (P-glycoprotein) was strikingly increased while those of Mdr2, Mrp2, and Mrp3 were increased to only a moderate extent. We hypothesize that an elevated level of Mdr1 in the spgp(-)(/)(-) knockout mice functions as an alternative pathway to transport bile acids and protects hepatocytes from bile acid-induced cholestasis. In support of this hypothesis, we showed that plasma membrane vesicles isolated from a drug resistant cell line expressing high levels of P-glycoprotein were capable of transporting bile acids, albeit with a 5-fold lower affinity compared to Spgp. This finding is the first direct evidence that P-glycoprotein (Mdr1) is capable of transporting bile acids.  相似文献   

14.
The pathogenesis of lithocholic acid (LCA-Na)-induced cholestasis involves a rapid accumulation of cholesterol in the bile canalicular membrane. Since microtubules play an important role in the intracellular transport of many materials, including cholesterol, the present study was undertaken to assess the extent to which they participate in the development of LCA-Na-induced cholestasis. Rats were pretreated with either colchicine (0.2 mumol/100 g body wt.) or saline solution 90 min before injection with LCA-Na (12 mumol/100 g body wt.). Colchicine, although not increasing bile flow by itself, significantly reduced the cholestasis caused by LCA-Na (57-32% reduction in bile flow) without affecting its metabolism into less toxic bile acids or its distribution in blood, liver or bile. Bile canalicular membranes isolated from animals treated with a combination of colchicine and LCA-Na contained less cholesterol than those treated with LCA-Na alone. However, membranes obtained from rats treated with colchicine alone contained much less cholesterol than did controls. It was found that the total amount of cholesterol accumulated within the bile canalicular membrane following LCA-Na treatment (LCA-Na + colchicine versus colchicine alone compared with LCA-Na versus controls) was unchanged by colchicine treatment. In view of these findings it is suggested that the total amount of cholesterol present within the bile canalicular membrane determines the extent of LCA-Na-induced cholestasis, LCA-Na probably moves cholesterol to the bile canalicular membrane via a microtubule independent pathway, and microtubules are unlikely to function in the transcellular transport of LCA-Na.  相似文献   

15.
Estradiol-17beta-D-glucuronide (E(2)17G) induces immediate and profound but transient cholestasis in rats when administered as a single bolus dose. Here, we examined the consequence of sustained E(2)17G cholestasis and assessed the function and localization of the tight junctional proteins zonula occludens-1 (ZO-1) and occludin and of the canalicular transporter multidrug resistance-associated protein-2 (Mrp2). An initial dose of E(2)17G (15 mumol/kg iv) followed by five subsequent doses of 7.5 mumol/kg from 60 to 240 min induced a sustained 40-70% decrease in bile flow. Following their biliary retrograde administration, cholera toxin B subunit-FITC or horseradish peroxidase were detected at the sinusoidal domain, indicating opening of the paracellular route; this occurred as early as 15 min after the first dose as well as 15 min after the last dose of E(2)17G, but not following the administration of vehicle in controls. Localization of ZO-1 and occludin was only slightly affected under acute cholestatic conditions but was severely disrupted under sustained cholestasis, with their appearance suggesting a fragmented structure. Endocytic internalization of Mrp2 to the pericanalicular region was apparent 20 min after a single E(2)17G administration; however, Mrp2 was found more deeply internalized and partially redistributed to the basolateral membrane under sustained cholestasis. In conclusion, acute E(2)17G-induced cholestasis increased permeability of the tight junction, while sustained cholestasis provoked a significant redistribution of ZO-1, occludin, and Mrp2 in addition to increased permeability of the tight junction. Altered tight junction integrity likely contributes to impaired bile secretion and may be causally related to changes in Mrp2 localization.  相似文献   

16.
Oxidative stress is a feature of cholestatic syndrome and induces multidrug resistance-associated protein 2 (Mrp2) internalization from the canalicular membrane surface. We have previously shown that the activation of a novel protein kinase C (nPKC) by oxidative stress regulates Mrp2 internalization. The internalized Mrp2 was recycled to the canalicular surface in a protein kinase A (PKA)-dependent manner after intracellular glutathione (GSH) levels were replenished. However, the putative phosphorylation targets of these protein kinases involved in reversible Mrp2 trafficking remain unclear. In this study, we investigated the effect of changing the intrahepatic redox status on the C-terminal phosphorylation status of radixin (p-radixin), which links Mrp2 to F-actin, and the interaction of p-radixin with Mrp2 in rat hepatocytes. We detected a significant decrease in the amount of p-radixin that co-immunoprecipitated with Mrp2 after tertiary-butylhydroperoxide (t-BHP) treatment. After treatment with GSH-ethylester (GSH-EE), the phosphorylation level became the same as that of the control. A PKC and protein phosphatase (PP)-1/2A inhibitor, but not a PP-2A selective inhibitor, prevented the t-BHP-induced decrease of p-radixin and subsequent canalicular Mrp2 localization. In contrast, a PKA inhibitor affected the recovery process facilitated by GSH-EE treatment. In conclusion, the interaction of p-radixin with Mrp2 was decreased by the activation of PKC and PP-1 under oxidative stress conditions which subsequently led to Mrp2 internalization, whereas the interaction of p-radixin and Mrp2 was increased by the activation of PKA during recovery from oxidative stress.  相似文献   

17.
18.
Bile secretion is regulated by different signaling transduction pathways including protein kinase C (PKC). However, the role of different PKC isoforms for bile formation is still controversial. This study investigates the effects of PKC isoform selective activators and inhibitors on PKC translocation, bile secretion, bile acid uptake, and subcellular transporter localization in rat liver, isolated rat hepatocytes and in HepG2 cells. In rat liver activation of Ca(2+)-dependent cPKCalpha and Ca(2+)-independent PKCepsilon by phorbol 12-myristate 13-acetate (PMA, 10nmol/liter) is associated with their translocation to the plasma membrane. PMA also induced translocation of the cloned rat PKCepsilon fused to a yellow fluorescent protein (YFP), which was transfected into HepG2 cells. In the perfused liver, PMA induced marked cholestasis. The PKC inhibitors G?6850 (1 micromol/liter) and G?6976 (0.2 micromol/liter), a selective inhibitor of Ca(2+)-dependent PKC isoforms, diminished the PMA effect by 50 and 60%, respectively. Thymeleatoxin (Ttx,) a selective activator of Ca(2+)-dependent cPKCs, did not translocate rat PKCepsilon-YFP transfected in HepG2 cells. However, Ttx (0.5-10 nmol/liter) induced cholestasis similar to PMA and led to a retrieval of Bsep from the canalicular membrane in rat liver while taurocholate-uptake in isolated hepatocytes was not affected. G?6976 completely blocked the cholestatic effect of Ttx but had no effect on tauroursodeoxycholate-induced choleresis. The data identify Ca(2+)-dependent PKC isoforms as inducers of cholestasis. This is mainly due to inhibition of taurocholate excretion involving transporter retrieval from the canalicular membrane.  相似文献   

19.
Multidrug resistance-associated proteins 1 and 2 (Mrp1 and Mrp2) are thought to mediate low-affinity ATP-dependent transport of reduced glutathione (GSH), but there is as yet no direct evidence for this hypothesis. The present study examined whether livers from the little skate (Raja erinacea) express an Mrp2 homologue and whether skate liver membrane vesicles exhibit ATP-dependent GSH transport activity. Antibodies directed against mammalian Mrp2-specific epitopes labeled a 180-kDa protein band in skate liver plasma membranes and stained canaliculi by immunofluorescence, indicating that skate livers express a homologous protein. Functional assays of Mrp transport activity were carried out using (3)H-labeled S-dinitrophenyl-glutathione (DNP-SG). DNP-SG was accumulated in skate liver membrane vesicles by both ATP-dependent and ATP-independent mechanisms. ATP-dependent DNP-SG uptake was of relatively high affinity [Michaelis-Menten constant (K(m)) = 32 +/- 9 microM] and was cis-inhibited by known substrates of Mrp2 and by GSH. Interestingly, ATP-dependent transport of (3)H-labeled S-ethylglutathione and (3)H-labeled GSH was also detected in the vesicles. ATP-dependent GSH transport was mediated by a low-affinity pathway (K(m) = 12 +/- 2 mM) that was cis-inhibited by substrates of the Mrp2 transporter but was not affected by membrane potential or pH gradient uncouplers. These results provide the first direct evidence for ATP-dependent transport of GSH in liver membrane vesicles and support the hypothesis that GSH efflux from mammalian cells is mediated by members of the Mrp family of proteins.  相似文献   

20.
Lipopolysaccharide (LPS) induces hepatocellular down-regulation and endocytic retrieval of multidrug resistance protein 2 (Mrp2, Abcc2). Basolateral Mrp isoforms may compensate for the intracellular metabolic changes in cholestasis. Therefore, the effect of LPS on the zonal localization of Mrp2 and Mrp3 and the expression of Mrp3, Mrp4, Mrp5, and Mrp6 mRNA were investigated in rat liver. In normal rat liver Mrp3 was found in pericentral hepatocytes also expressing glutamine synthetase. In LPS-treated rat liver the decrease in Mrp2 protein was most pronounced in pericentral hepatocytes, with only minor down-regulation in periportal hepatocytes. Conversely, induction of Mrp3 was found in pericentral hepatocytes with a low expression of Mrp2. Furthermore, we found a strong induction of Mrp5 mRNA. Likewise, Mrp6 mRNA was up-regulated, however Mrp6 protein expression was not significantly altered. It is concluded that Mrp3 is inversely regulated to Mrp2 in a zonal pattern and may compensate for the LPS-induced loss of Mrp2 in the perivenous area. Induction of pericentral Mrp3 and up-regulation of Mrp5 mRNA may play an important role in the hepatocellular clearance of cholephilic substances and cyclic nucleotides accumulating after LPS treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号