首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract: In the presence of substance P (SP; 10 μM), serotonin (5-HT; 1 μM) triggered a cation permeability in cells of the hybridoma (mouse neuroblastoma X rat glioma) clone NG 108-15 that could be assessed by measuring the cell capacity to accumulate [14C]guanidinium for 10-15 min at 37°C. In addition to 5-HT (EC50, 0.33 μM), the potent 5-HT3 receptor agonists 2-methyl-serotonin, phenylbiguanide, and m-chlorophenylbiguanide, and quipazine, markedly increased [14C]guanidinium uptake in NG 108-15 cells exposed to 10 μM SP. In contrast, 5-HT3 receptor antagonists prevented the effect of 5-HT. The correlation (r= 0.97) between the potencies of 16 different ligands to mimic or prevent the effects of 5-HT on [14C]guanidinium uptake, on the one hand, and to displace [3H]zacopride specifically bound to 5-HT3 receptors on NG 108-15 cells, on the other hand, clearly demonstrated that [14C]guanidinium uptake was directly controlled by 5-HT3 receptors. Various compounds such as inorganic cations (La3+, Mn2+, Ba2+, Ni2+, and Zn2+), D-tubocurarine, and memantine inhibited [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT and SP, as expected from their noncompetitive antagonistic properties at 5-HT3 receptors. However, ethanol (100 mM), which has been reported to potentiate the electrophysiological response to 5-HT3 receptor stimulation, prevented the effects of 5-HT plus SP on [14C]guanidinium uptake. The cooperative effect of SP on this 5-HT3-evoked response resulted neither from an interaction of the peptide with the 5-HT3 receptor binding site nor from a possible direct activation of G proteins in NG 108-15 cells. Among SP derivatives, [D-Pro9]SP, a compound inactive at the various neurokinin receptor classes, was the most potent to mimic the stimulatory effect of SP on [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT. Although the cellular mechanisms involved deserve further investigations, the 5-HT-evoked [14C]guanidinium uptake appears to be a rapid and reliable response for assessing the functional state of 5-HT3 receptors in NG 108-15 cells.  相似文献   

2.
Abstract: Extracellular ATP has neurotransmitter-like properties in the CNS and PNS that are mediated by a cell-surface P2 purinergic receptor. In the present study, we have extensively characterized the signal transduction pathways that are associated with activation of a P2U receptor in a cultured neuroblastoma × glioma hybrid cell line (NG108-15 cells). The addition of ≥1 μM ATP to NG108-15 cells caused a transient increase in [Ca2+]i that was inhibited by 40% when extracellular calcium was chelated by EGTA. ATP concentrations ≥500 μM also elicited a sustained increase in [Ca2+]i that was inhibited when extracellular calcium was chelated by EGTA. The increase in [Ca2+]i elicited by ATP occurred concomitantly with the hydrolysis off [32P]-phosphatidylinositol 4,5-bisphosphates and an increase in the level of inositol 1,4,5-trisphosphate. ATP also caused a time- and dose-dependent increase in levels of [3H]inositol monophosphates in lithium-treated cells. Separation of the inositol monophosphate isomers by ion chromatography revealed a specific increase in the level of inositol 4-monophosphate. The magnitude of the increase in [Ca2+]i elicited by ATP correlated with the concentration of the fully ionized form of ATP (ATP4-) in the medium and not with the concentration of magnesium-ATP (MgATP2-). Similar to ATP, UTP also induced polyphosphoinositide breakdown, inositol phosphate formation, and an increase in [Ca2+]i. ADP, ITP, TTP, GTP, ATP-γS, 2-methylthio ATP, β,γ-imidoATP or 3′-O-(4-benzoyl)benzoylATP, but not CTP, AMP, β,γ-methylene ATP, or adenosine, also caused an increase in [Ca2+]i. In cells labeled with [32P]Pi or [14C]-arachidonic acid, ATP caused a transient increase in levels of labeled phosphatidic acids, but had no effect on levels of arachidonic acid. The increase in phosphatidic acid levels elicited by ATP apparently was not due to activation of a phospholipase D because ATP did not induce the formation of phosphatidylethanol in [14C]myristic acid-labeled cells incubated in the presence of ethanol. These findings support the hypothesis that a P2 nucleotide receptor in NG108-15 cells is coupled to a signal transduction pathway involving the activation of a phospholipase C and a plasma membrane calcium channel, but not the activation of phospholipases A2 and D.  相似文献   

3.
Serotonin [5-hydroxytryptamine (5-HT)] enhances acetyl choline (ACh)-elicited contractures of Aplysia buccal muscles E1 and I5. The possible role of external calcium in regulating the magnitude of ACh contracture in the presence and absence of 5-HT was investigated. Superfusion of E1 with zero calcium medium caused ACh contractures to fail within one to two minutes. Recovery of ACh contracture upon restoring normal medium occurred within two to four minutes. In the absence of 5-HT, ACh contracture decreased proportionally to external [Ca++] in the concentration range of 0–10 mM; however, the amount of enhancement of of ACh contracture following 5-HT treatment did not decrease with external [Ca++] as long as [Ca++] was above a threshold concentration that varied from preparation to preparation. For most preparations, the enhancement of ACh contracture by 5-HT was dependent on the presence of external calcium during 5-HT treatment. Calcium influx into muscles E1 and I5 increased approximately two and a half fold in the presence of 10?6 M 5-HT. A model in which 5-HT brings about calcium “loading” of an ACh releasable intracellular storage site is discussed.  相似文献   

4.
Abstract— The accumulation, metabolism and stimulated-induced release of 5-HT in the nervous system of the snail was studied. When nervous tissue was incubated at 24°C in a medium containing [14C]5-HT or [3H]tryptophan, tissue: medium ratios of about 25:1 and 4:1 respectively were obtained after 45 min incubation. The process responsible for [14C]5-HT accumulation showed properties of an active transport system: it was temperature sensitive and was greatly inhibited by dinitrophenol and ouabain. Furthermore, the accumulation process was inhibited by imipramine and desipramine. Of a number of analogues of indole, N-acetyl-5-HT and 5-hydroxytryptophan were the most potent in the inhibition of the accumulation of [14C]5-HT. The presence of a large molar excess of amino acids had little effect. A small amount (less than 14 per cent) of the accumulated [14C]5-HT was metabolized to form 5-hydroxyindole acetic acid, even after long periods (2 h) of incubation. The accumulated [3H]tryptophan was metabolized to form 5-hydroxytryptophan and 5-HT; the content of formed [3H]5-HT increased with incubation time whilst the [3H]5-hydroxytryptophan remained more or less constant. The presence of p-chlorophenylalanine in the incubation medium did not interfere with the accumulation of [3H]tryptophan, though it inhibited the formation of [3H]5-hydroxytryptophan and to a greater extent [3H]5-HT. A rapid efflux of the accumulated [14C]5-HT from snail nervous tissue was observed on electrical stimulation. Slower release resulted when the Ca2+ ion content of the incubation medium was replaced by Mg2+ ions. There is also a slight efflux of radioactive substances following electrical stimulation in tissues previously incubated in [3H]tryptophan. Most of this radioactivity was attributed to the formed [3H]5-HT. The data support the idea that 5-HT is a transmitter-substance in the snail Helix pomatia, and that re-uptake of the substance is a method of inactivating the released amine.  相似文献   

5.
1. Aminoalkylindoles, typified by WIN 55212-2, bind to G protein-coupled cannabinoid receptors in brain. Although cannabinoids inhibit adenylyl cyclase in NG108-15 neuroblastoma × glioma hybrid cells, cannabinoid receptor binding in these cells has not been described previously. This study compares pharamcological characteristics of [3H]WIN 55212-2 binding sites in rat cerebellar membranes and in NG108-15 membranes.2. Although the K D of specifid [3H]WIN 55212-2 binding was similar in brain and NG108-15 membranes, the B max was 10 times lower in NG108-15 than in cerebellar membranes. In both brain and NG108-15 membranes, aminoalkylindole analogues were relatively potent in displacing [3H]WIN 55212-2 binding.However, IC50 values for more traditional cannabinoids were significantly higher in NG108-15 membranes than in brain, e.g., the K i values for CP55,940 were1.2nM in brain and >5000nM in NG108-15 membranes. Moreover, sodium and GTP--S decreased [3H]WIN 55212-2 binding in brain but not in NG108-15membranes.3. These data suggest that WIN 55212-2 does not label traditional cannabinoid receptors in NG108-15 cells and that these novel aminoalkylindolebinding sites are not coupled to G proteins.  相似文献   

6.
ATP-Activated Nonselective Cation Current in NG108-15 Cells   总被引:5,自引:0,他引:5  
Abstract: ATP (1 mM) induced a biphasic increase in intracellular Ca2+ concentration ([Ca2+]i), i.e., an initial transient increase decayed to a level of sustained increase, in NG108-15 cells. The transient increase was inhibited by a phospholipase C inhibitor, 1-[6-[[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), whereas the sustained increase was abolished by removal of external Ca2+. We examined the mechanism of the ATP-elicited sustained [Ca2+]i increase using the fura-2 fluorescent method and the whole-cell patch clamp technique. ATP (1 mM) induced a membrane current with the reversal potential of 12.5 ± 0.8 mV (n = 10) in Tyrode external solution. The EC50 of ATP was ~0.75 mM. The permeability ratio of various cations carrying this current was Na+ (defined as 1) > Li+ (0.92 ± 0.01; n = 5) > K+ (0.89 ± 0.03; n = 6) > Rb+ (0.55 ± 0.02; n = 6) > Cs+ (0.51 ± 0.01; n = 5) > Ca2+ (0.22 ± 0.03; n = 3) > N-methyl-d -glucamine (0.13 ± 0.01; n = 5), suggesting that ATP activated a nonselective cation current. The ATP-induced current was larger at lower concentrations of external Mg2+. ATP analogues that induced the current were 2-methylthio-ATP (2MeSATP), benzoylbenzoic-ATP, adenosine 5′-thiotriphosphate (ATPγS), and adenosine 5′-O-(2-thiodiphosphate), but not adenosine, ADP, α,β-methylene-ATP (AMPCPP), β,γ-methylene-ATP (AMPPCP), or UTP. Concomitant with the current data, 2MeSATP and ATPγS, but not AMPCPP or AMPPCP, increased the sustained [Ca2+]i increase. We conclude that ATP activates a class of Ca2+-permeable nonselective cation channels via the P2z receptor in NG108-15 cells.  相似文献   

7.
Characteristics for the up-regulated response in the concentration of intracellular calcium ion ([Ca2+] i ) and in the sodium ion (Na+) current by serotonin (5-HT) were investigated in differentiated neuroblastoma × glioma hybrid NG108-15 (NG) cells. The results for the changes in [Ca2+] i by 5-HT were as follows, (1) The 5-HT-induced Ca2+ response was inhibited by 3 × 10−9 M tropisetron (a 5-HT3 receptor blocker), but not by other types of 5-HT receptor blockers; (2) The 5-HT-induced Ca2+ response was mainly inhibited by calciseptine (a L-type Ca2+ blocker), but not by other types of Ca2+ channel blockers or 10−7 M TTX (a voltage-sensitive Na+ channel blocker); (3) When the extracellular Na+ was removed by exchange with choline chloride or N-methyl-d-glucamine, the 5-HT-induced Ca2+ response was extremely inhibited. The results for the 5-HT-induced Na+ current by the whole cell patch-clamp technique were as follows, (1) The 5-HT-induced Na+ current in differentiated cells was significantly larger than that in undifferentiated cells; (2) The ED50 value for 5-HT-induced Na+ current in undifferentiated and differentiated cells was almost the same, about 4 × 10−6 M each other; (3) The 5-HT-induced Na+ current was completely blocked by 3 × 10−9 M tropisetron, but not by other 5-HT receptor antagonists and 10−7 M TTX. These results suggested that 5-HT-induced Ca2+ response in differentiated NG cells was mainly due to L-type voltage-gated Ca2+ channels allowing extracellular Na+ to enter via 5-HT3 receptors, but not through voltage-gated Na+ channels.  相似文献   

8.
1. The influences of dietary phosphorus (P) and food concentration on the calcium (Ca) balance in Daphnia magna were examined in this study at two different ambient Ca concentrations (0.5 and 10 mg Ca L?1). Daphnia were grown by feeding the young adults differentially under contrasting dietary P conditions [molar C : P ratio = c. 900 and c. 90 as low P (LP) and high P (HP), respectively], ambient Ca concentrations [0.5 mg and 10 mg Ca L?1 as low Ca (LCa) or high Ca (HCa), respectively] and food levels [0.15 or 1.5 mg C L?1 as low food (LF) or high food (HF), respectively] for 5 days. 2. The specific Ca contents of daphniids (1.9–6.5% of dry weight?1) increased with increasing Ca concentration, food level and dietary P content, although the food level did not affect the Ca content in the HPHCa treatment. A radioactive tracer method showed that the food level did not affect the influx of Ca from the water under LP conditions, but the Ca influx under HP conditions doubled with a HF level. A LP condition also led to a decrease in Ca influx with a HF level. 3. During the 3 days of efflux, generally only a small proportion of Ca (2.6–3.3%) was retained by the daphniids, but this retention increased (14–23%) under low ambient Ca concentrations and under P‐limitation. Excretion was the most important pathway for Ca loss (accounting for 50–60% of body Ca), followed by moulting (20–47%), but the relative contribution of these two pathways (excretion and moulting) did not vary among all the different treatments. The absolute loss of Ca through excretion and moulting, on the contrary, differed with different ambient Ca concentrations and dietary P conditions. A HF level led to an increase in the loss rates in most cases. 4. Our study strongly suggested that there is an interaction between an essential metal (Ca) and macronutrients (C and P) in freshwater crustaceans with HCa and P contents. The results imply that variation in environmental nutrient conditions may change the Ca budget in crustaceans and may affect the dynamics of Ca in the epilimnion of freshwaters.  相似文献   

9.
Abstract: Potassium depolarization of rat brain synaptosomes (containing incorporated l-acyl-2-[14C]arachidonyl-phosphatidylcholine) stimulated endogenous phospholipase A1 (EC 3.1.1.32) and A2 (EC 3.1.1.4), as determined by the formation of [14C]lysophosphatidylcholine, [14C]arachidonate, and [14C]prostaglandins, and also stimulated the secretion of [3H]catecholamines. The phospholipase A2 stimulation, dependent on calcium, was elicited in resting synaptosomes by A23187 and was demonstrated with incorporated 1-acyl-2-[l4C]oleoyl-phosphatidylcholine but not with incorporated [I4C]phosphatidylethanolamine or [l4C]phosphatidylserine. Inhibitors of phospholipase A2 [p-bromophenacylbromide (10 μM), trifluoperazine (3 μM), and quinacrine (3 μM) reduced the potassium-stimulated [3H]catecholamine release from synaptosomes to 78, 39. and 55%, respectively, of depolarized controls. The addition of lysophosphatidylcholine increased the release of [3H]norepinephrine to levels observed with potassium depolarization, whereas lysophosphatidylethanolamine, lysophosphatidylserine, and sodium dodecyl sulfate were much less effective. Potassium stimulation of synaptosomes increased the endogenous levels of free arachidonic acid and prostaglandins E2 and F. Indomethacin and aspirin decreased the amounts of prostaglandins formed, allowed the accumulation of free arachidonic acid, and diminished the potassium-stimulated release of [3H]dopamine. p-Bromophenacylbromide inhibited the formation of prostaglandin F. Addition of prostaglandin E2 inhibited, whereas prostaglandin F enhanced the release of [3H]norepinephrine. These results suggest that calcium influx induced by synaptosomal depolarization activates endogenous phospholipase A2, with subsequent formation of lysophosphatidylcholine and prostaglandins, both of which may modulate neurosecretion.  相似文献   

10.
The effect of body temperature in the 4–30°C range on L-leucine uptake by toadfish liver in vivo was examined by means of a single-injection pulse technique. The ratio of [14C]leucine to [3H]mannitol or [3H]inulin in blood leaving the liver was measured as a function of time after hepatic portal vein injection. Recoveries of the two isotopes in liver and [14C]leucine incorporation into protein were determined.The Q10 value for influx was 3.8, that for efflux 2.8. At all temperatures, the leucine influx was 8–10-times higher than its incorporation into protein. The directly energy-linked reactions appear to be the main site of increased temperature sensitivity at low temperatures.  相似文献   

11.
Abstract— In vitro binding experiments with 5-hydroxy[14C]tryptamine (3.3 × 10?6 M) were carried out on subcellular fractions of the cat brain. The highest specific activity was observed in some fractions of nerve-ending membranes isolated from the hypothalamus, basal ganglia, and gray areas of the mesencephalon. The specificity of this high affinity binding was demonstrated by competition with reserpine, butanolamide of lysergic acid, and desmethylimipramine. With butanol-water extraction the [14C]5-HT was found in the butanol while the gangliosides were separated in the water phase. Several experiments with thin layer and column chromatography suggest that in the organic phase the [14C]5-HT is not bound to the lipids but to a special proteolipid. This proteolipid is different from that found in myelin and has similar chromatographic properties to that previously observed in the proteolipid which binds d-[14C]tubocurarine in nerve-ending membranes of the cerebral cortex.  相似文献   

12.
The effects of 5-HT and glutamate on dopamine synthesis and release by striatal synaptosomes were investigated and compared with the action of acetylcholine, which acts presynaptically on this system. 5-HT inhibited (28%) synthesis of [14C]dopamine from L-[U-14C]tyrosine, at 10-5M and above. This contrasts with the action of acetylcholine, which stimulated [14C]-dopamine synthesis by 24% at 10-4 M. Tissue levels of GABA were unaffected by either 5-HT or acetylcholine up to concentrations of 10-4 M. The inhibitory action of 5-HT (5 × 10?5 M and 2 × 10?4 M) on [19C]dopamine synthesis was completely abolished by methysergide (2 × 10?6 M). Higher concentrations of methysergide (10?4 M) or cyproheptadine (10?5 M) inhibited [14C]dopamine synthesis by 28% and 25%, respectively, when added alone to synaptosomes. However, only methysergide prevented the further inhibition of synthesis caused by 5-HT. At concentrations of 2 × 10?5 M and above, 5-HT stimulated [14C]dopamine release. This releasing action differed from that of acetylcholine, which occurred at lower concentrations (e.g., 10?6 M). Methysergide (up to 10?4 M) or cyproheptadine (2 × 10?4 M) did not reduce the 5-HT (5 × 10?5 M)-induced release of [14C]dopamine, but methysergide (10?4 M) showed a potentiation (49%) of this increased release. The stimulatory effects of 5-HT (2 × 10?5 M) and K+ (56 mM) on [14C]dopamine release were additive, indicating that two separate mechanisms were involved. However, when both agents were present the stimulatory effect of K+ (56 mM) on [14C]dopamine synthesis was not seen above the inhibitory effect of 5-HT. Glutamate (0.1-5 mM) did not affect [4C]dopamine release or its synthesis from L-[U-14C]tyrosine. It is concluded that 5-HT modulates the synthesis of dopamine in striatal nerve terminals through a presynaptic receptor mechanism, an action antagonised by methysergide. The releasing action of 5-HT apparently occurs through a separate mechanism which is also distinct from that involved in the response to K+ depolarisation.  相似文献   

13.
Abstract: Glutamic acid and glycine were quantified in cells and medium of cultured rostral rhombencephalic neurons derived from fetal rats. In the presence of 1 mM Mg2+, NMDA (50 μM) significantly stimulated (by 69%) release of newly synthesized 5-[3H]hydroxytryptamine ([3H]5-HT). d -2-Amino-5-phosphonopentanoate (AP-5; 50 μM) blocked the stimulatory effect of NMDA. AP-5 by itself inhibited [3H]5-HT release (by 25%), suggesting a tonic control of 5-HT by glutamate. In the absence of Mg2+, basal [3H]5-HT release was 60% higher as compared with release with Mg2+. AP-5 blocked the increased [3H]5-HT release observed without Mg2+, suggesting that this effect was due to the stimulation of NMDA receptors by endogenous glutamate. Glycine (100 μM) inhibited [3H]5-HT release in the absence of Mg2+. Strychnine (50 μM) blocked the inhibitory effect of glycine, indicating an action through strychnine-sensitive inhibitory glycine receptors. The [3H]5-HT release stimulated by NMDA was unaffected by glycine. In contrast, when tested in the presence of strychnine, glycine increased NMDA-evoked [3H]5-HT release (by 22%), and this effect was prevented by a selective antagonist of the NMDA-associated glycine receptor, 7-chlorokynurenate (100 μM). 7-Chlorokynuren-ate by itself induced a drastic decrease in [3H]5-HT release, indicating that under basal conditions these sites were stimulated by endogenous glycine. These results indicate that NMDA stimulated [3H]5-HT release in both the presence or absence of Mg2+. Use of selective antagonists allowed differentiation of a strychnine-sensitive glycine response (inhibition of [3H]5-HT release) from a 7-chlorokynurenate-sensitive response (potentiation of NMDA-evoked [3H]5-HT release).  相似文献   

14.
Abstract: The serotonin 5-HT3 receptor, a ligand-gated ion channel, has previously been shown to be present on a subpopulation of brain nerve terminals, where, on activation, the 5-HT3 receptors induce Ca2+ influx. Whereas postsynaptic 5-HT3 receptors induce depolarization, being permeant to Na+ and K+, the basis of presynaptic 5-HT3 receptor-induced calcium influx is unknown. Because the small size of isolated brain nerve terminals (synaptosomes) precludes electrophysiological measurements, confocal microscopic imaging has been used to detect calcium influx into them. Application of 100 nM 1-(m-chlorophenyl)biguanide (mCPBG), a highly specific 5-HT3 receptor agonist, induced increases in internal free Ca2+ concentration ([Ca2+]i) and exocytosis in a subset of corpus striatal synaptosomes. mCPBG-induced increases in [Ca2+]i ranged from 1.3 to 1.6 times over basal values and were inhibited by 10 nM tropisetron, a potent and highly specific 5-HT3 receptor antagonist, but were insensitive to the removal of external free Na+ (substituted with N-methyl-d -glucamine), to prior depolarization induced on addition of 20 mM K+, or to voltage-gated Ca2+ channel blockade by 10 µM Co2+/Cd2+ or by 1 µMω-conotoxin MVIIC/1 µMω-conotoxin GVIA/200 nM agatoxin TK. In contrast, the Ca2+ influx induced by 5-HT3 receptor activation in NG108-15 cells by 1 µM mCPBG was substantially reduced by 10 µM Co2+/Cd2+ and was completely blocked by 1 µM nitrendipine, an L-type Ca2+ channel blocker. We conclude that in contrast to the perikaryal 5-HT3 receptors, presynaptic 5-HT3 receptors appear to be uniquely calcium-permeant.  相似文献   

15.
—The uptake of [3H]5HT, [3H]dopamine, [3H]noradrenaline and [3H]octopamine into the auricle of Helix pomatia was studied. When tissues were incubated at 25°C in media containing radioactive amines, tissue:medium ratios of about 49:1, 14:1 and 5:1 for 5-HT, dopamine, noradrenaline, and octopamine respectively were obtained after a 20–30 min incubation time. Tissues incubated at 25°C in media containing radioactive amines for 20–30 mins showed that almost all (96%) the radioactivity was present as unchanged [3H]5-HT, [3H]dopamine, [3H]octopamine or [3H]noradrenaline. The high tissue:medium ratios for 5-HT and dopamine, but not for noradrenaline and octopamine, showed saturation kinetics which were dependent upon temperature and sodium ions. From the Lineweaver–Burk plots, two uptake mechanisms for 5-HT at 25°C were resolved; the high affinity uptake process having a Km1 value of 6.0 ± 10?8m and a Vm1 value of 0.115 nmol/g/min while the lower affinity process had a Km2 value of 1.04 ± 10?6m and a Vm2 value of 0.66nmol/g/min. At 0°C a single uptake mechanism for 5-HT occurred which gave a Km value of 5.02 ± 10?8m and a Vm value of 0.0165 nmol/g/min. In the case of dopamine, the Lineweaver–Burk plot at 25°C showed a single uptake process with values for Km and Vm of 1.55 ± 10?7m and 0.086 nmol/g/min respectively. This process did not function at 0°C. The effect of various agents and ions upon the accumulation processes for all amines was also studied, and the data indicate that the same neurons probably accumulate more than one amine type. It is concluded that 5-HT and dopamine uptake in the auricle is a mechanism for inactivating these substances at 25°C and that an uptake mechanism for 5-HT also functions at 0°C. The results are discussed from the point of view of 5-HT's being the cardioexcitatory substance in the snail heart.  相似文献   

16.
Abstract: High-affinity [3H]5-hydroxytryptamine ([3H]5-HT) binding in the rat spinal cord is similar to that demonstrated in the frontal cortex. [3H]5-HT binds with nearly the same affinity to sites in both tissues. Furthermore, similar patterns of displacement of [3H]5–HT were seen in both tissues, with either spiperone or LSD as the unlabeled ligand. This high-affinity binding appears to be to multiple sites, since displacement studies using 2 nM [3H]5–HT result in Hill coefficients less than unity for spiperone, LSD, and quipazine [Hill coefficients (nH): 0.44, 0.39, 0.40, respectively]. These sites apparently have an equal affinity for [3H]5-HT, since unlabeled 5-HT did not discriminate between them. Thus, the high-affinity [3H]5-HT binding in the spinal cord may be analogous to that observed in the frontal cortex, where two populations of sites have previously been described (5-HTIA, 5-HTIB). In addition to the multiple high-affinity spinal cord binding sites, a low-affinity [3H]5-HT binding component was also identified. A curvilinear Scatchard plot results from saturation studies using [3H]5-HT (0.5–100 nM) in the spinal cord. The plot can be resolved into sites having apparent dissociation constants of 1.4 nM and 57.8 nM for the high-and low-affinity components, respectively. Additional support for a change in affinity characteristics at higher radioligand concentrations comes from the displacement of 30 nM [3H]5-HT by the unlabeled ligand. A nonparallel shift in the dissociation curve was seen, resulting in a Hill coefficient less than unity (0.32). None of the specifically bound [3H]5-HT in the spinal cord is associated with the 5-HT uptake carrier, since fluoxetine, an inhibitor of 5-HT uptake, does not alter binding characteristics. In addition, a 5-HT binding site analogous to the site designated 5-HT, was not apparent in the spinal cord. Ketanse-rin and cyproheptadine, drugs that are highly selective for 5-HT, sites, did not displace [3H]5-HT from spinal tissue, and [3H]spiperone, a radioligand that binds with high affinity to 5-HT2 sites, did not exhibit saturable binding in the tissue. Thus, the 5-HT2 binding site reported in other regions of the central nervous system, and the serotonin uptake carrier do not appear to contribute to the multiple binding sites demonstrated in the spinal cord.  相似文献   

17.
Abstract: The present study indicates that central 5-hydroxytryptamine (5-HT; serotonin) receptors can be modulated in opposite directions by Ca2+ and guanine nucleotides [guanosine triphosphate (GTP), β, γ-imidoguanosine 5′-triphosphate (GppNHp)]. Thus CaCl2 (≥0.5 mm ) inhibited whereas GTP and GppNHp (10 μm ) stimulated the 5-HT-sensitive adenylate cyclase in the hippocampus of newborn rats. Both the affinity (Kd ?1) and the number (Bmax) of [3H]5-HT binding sites in hippocampal membranes from adult rats were increased in the presence of Ca2+ (≥0.25 mm ); GTP (≥0.1 mm ) and GppNHp (≥0.3; μm ) produced reverse effects. The efficacy of guanine nucleotides in inhibiting specific [3H]5-HT binding was counteracted by Ca2+: the addition of this cation (5mm -CaCl2) to the assay mixture resulted in a 40-fold increase in the IC50 for GTP; the IC50 for GppNHp increased five-fold under the same condition. The examination of the respective effects of Ca2+ and of GTP on the specific binding of [3H]5-HT to various hippocampal membrane preparations (from developing rats, from subcellular fractions of adult tissues, and from adult rats after the selective degeneration of serotoninergic innervation in the forebrain) indicated that the amplitudes of the Ca2+-induced increase and of the GTP-induced decrease were generally correlated. This conclusion did not apply to striatal membranes of kainic acid-treated rats because [3H]5-HT binding sites persisting after the intrastriatal injection of kainic acid (i.e., half of the total number in striatal membranes from control rats) were markedly less affected by GTP but at least as responsive as control membranes to the Ca2+-induced increase. These data are compatible with the hypothesis of a possible coupling of some–but not all–[3H]5-HT binding sites to adenylate cyclase in the rat brain.  相似文献   

18.
The role of 5-hydroxytryptamine (5-HT, serotonin) in the control of leech behavior is well established and has been analyzed extensively on the cellular level; however, hitherto little is known about the effect of 5-HT on the cytosolic free calcium concentration ([Ca(2+)](i)) in leech neurons. As [Ca(2+)](i) plays a pivotal role in numerous cellular processes, we investigated the effect of 5-HT on [Ca(2+)](i) (measured by Fura-2) in identified leech neurons under different experimental conditions, such as changed extracellular ion composition and blockade of excitatory synaptic transmission. In pressure (P), lateral nociceptive (N1), and Leydig neurons, 5-HT induced a [Ca(2+)](i) increase which was predominantly due to Ca(2+) influx since it was abolished in Ca(2+)-free solution. The 5-HT-induced Ca(2+) influx occurred only if the cells depolarized sufficiently, indicating that it was mediated by voltage-dependent Ca(2+) channels. In P and N1 neurons, the membrane depolarization was due to Na(+) influx through cation channels coupled to 5-HT receptors, whereby the dose-dependency suggests an involvement in excitatory synaptic transmission. In Leydig neurons, 5-HT receptor-coupled cation channels seem to be absent. In these cells, the membrane depolarization activating the voltage-dependent Ca(2+) channels was evoked by 5-HT-triggered excitatory glutamatergic input. In Retzius, anterior pagoda (AP), annulus erector (AE), and median nociceptive (N2) neurons, 5-HT had no effect on [Ca(2+)](i).  相似文献   

19.
—The effect of short (4–6 min)‘pulses’ of elevated extracellular potassium ions K0, in the 10–50 mm range, on the efflux of [3H]norepinephrine [3H]NE) and [14C]α-aminoisobutyrate (AIB) has been studied in a superfused neocortical thin slice system. At all the concentrations tested high K0 increases the efflux of both NE and AIB, although thc effects on the former are greater. In the absence of calcium ions, or in the presence of 8 mm -MnCl2, the potassium-stimulated release of both NE and AIB is severely depressed. However, potassium induced NE release is proportional to extracellular calcium ions in the 0–1.5 mm range, while that of AIB does not continue to increase above 0.2 mm -calcium. This permissive role of calcium in amino acid efflux is interpreted as due to changes in the inactivation of membrane sodium conductance.  相似文献   

20.
Abstract: We studied the effect of α-latrotoxin (αLTX) on [14C]acetylcholine ([14C]ACh) release, intracellular Ca2+ concentration ([Ca2+]i), plasma membrane potential, and high-affinity choline uptake of synaptosomes isolated from guinea pig cortex. αLTX (10?10-10?8M) caused an elevation of the [Ca2+]i as detected by Fura 2 fluorescence and evoked [14C]ACh efflux. Two components in the action of the toxin were distinguished: one that required the presence of Na+ in the external medium and another that did not. Displacement of Na+ by sucrose or N-methylglucamine in the medium considerably decreased the elevation of [Ca2+]i and [14C]ACh release by αLTX. The Na+-dependent component of the αLTX action was obvious in the inhibition of the high-affinity choline uptake of synaptosomes. Some of the toxin action on both [Ca2+]i and [14C]ACh release remained in the absence of Na+. Both the Na+-dependent and the Na+-independent components of the αLTX-evoked [14C]ACh release partly required the presence of either Mg2+ or Ca2+. The nonneurotransmitter [14C]choline was released along with [14C]ACh, but this release did not depend on the presence of either Na+ or Ca2+, indicating nonspecific leakage through the plasma membrane. We conclude that there are two factors in the release of ACh from synaptosomes caused by the toxin: (1) cation-dependent ACh release, which is related to (a) Na+-dependent divalent cation entry and (b) Na+-independent divalent cation entry, and (2) nonspecific Na+- and divalent cation-independent leakage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号