首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed an assay that quantitates bidirectional cholesterol flux between cells and lipoproteins. Incubating Fu5AH cells with increasing concentrations of human serum resulted in increased influx and efflux; however, influx was 2- to 3-fold greater at all serum concentrations. With apolipoprotein B (apoB)-depleted serum, the ratio of influx to efflux (I/E) was close to 1, indicating cholesterol exchange. The apoB fraction of serum induced influx and little efflux, with I/E > 1. Using block lipid transport-1 to block scavenger receptor class B type I (SR-BI)-mediated flux with different acceptors, we determined that 50% to 70% of efflux was via SR-BI. With HDL, 90% of influx was via SR-BI, whereas with LDL or serum, 20% of influx was SR-BI-mediated. Cholesterol-enriched hepatoma cells produced increased efflux without a change in influx, resulting in reduced I/E. The assay was applied to cholesterol-normal and -enriched mouse peritoneal macrophages exposed to serum or LDL. The enrichment enhanced efflux without shifts in influx. With cholesterol-enriched macrophages, HDL efflux was enhanced and influx was greatly reduced. With all lipoproteins, cholesterol enrichment of murine peritoneal macrophages led to a reduced I/E. We conclude that this assay can simultaneously and accurately quantitate cholesterol bidirectional flux and can be applied to a variety of cells exposed to isolated lipoproteins or serum.  相似文献   

2.
Earlier work from this laboratory showed that enrichment of cells with free cholesterol enhanced the efflux of phospholipid to lipoprotein acceptors, suggesting that cellular phospholipid may contribute to high density lipoprotein (HDL) structure and the removal of sterol from cells. To test this hypothesis, we examined the efflux of [3H]cholesterol (FC) and [32P]phospholipid (PL) from control and cholesterol-enriched fibroblasts to delipidated apolipoproteins. The percentages of [3H]cholesterol and [32P]phospholipid released from control cells to human apolipoprotein A-I were 2.2 +/- 0.5%/24 h and 0.8 +/- 0.1%/24 h, respectively. When the cellular cholesterol content was doubled, efflux of both lipids increased substantially ([3H]FC efflux = 14.6 +/- 3.6%/24 h and [32P]PL efflux = 4.1 +/- 0.3%/24 h). Phosphatidylcholine accounted for 70% of the radiolabeled phospholipid released from cholesterol-enriched cells. The cholesterol to phospholipid molar ratio of the lipid released from cholesterol-enriched cells was approximately 1. This ratio remained constant throughout an incubation time of 3 to 48 h, suggesting that there was a coordinate release of both lipids. The concentrations of apoA-I, A-II, A-IV, E, and Cs that promoted half-maximal efflux of phospholipid from cholesterol-enriched fibroblasts were 53, 30, 68, 137, and 594 nM, respectively. With apoA-I and A-IV, these values for half-maximal efflux of phospholipid were identical to the concentrations that resulted in half-maximal efflux of cholesterol. Agarose gel electrophoresis of medium containing apoA-I that had been incubated with cholesterol-enriched fibroblasts revealed a particle with alpha to pre-beta mobility. We conclude that the cholesterol content of cellular membranes is an important determinant in the ability of apolipoproteins to promote lipid removal from cells. We speculate that apolipoproteins access cholesterol-phosphatidylcholine domains within the plasma membrane of cholesterol-enriched cells, whereupon HDL is generated in the extracellular compartment. The release of cellular lipid to apolipoproteins may serve as a protective mechanism against the potentially damaging effects of excess membrane cholesterol.  相似文献   

3.
We have investigated the direct effect of arachidonic acid on cholesterol transport in intact cells or isolated mitochondria from steroidogenic cells and the effect of cyclic-AMP on the specific release of this fatty acid inside the mitochondria. We show for the first time that cyclic-AMP can regulate the release of arachidonic acid in a specialized compartment of MA-10 Leydig cells, e.g. the mitochondria, and that the fatty acid induces cholesterol transport through a mechanism different from the classical pathway. Arachidonic acid and arachidonoyl-CoA can stimulate cholesterol transport in isolated mitochondria from nonstimulated cells. The effect of arachidonoyl-CoA is inhibited by the reduction in the expression or in the activity of a mitochondrial thioesterase that uses arachidonoyl-CoA as a substrate to release arachidonic acid. cAMP-induced arachidonic acid accumulation into the mitochondria is also reduced when the mitochondrial thioesterase activity or expression is blocked. This new feature in the regulation of cholesterol transport by arachidonic acid and the release of arachidonic acid in specialized compartment of the cells could offer novel means for understanding the regulation of steroid synthesis but also would be important in other situations such as neuropathological disorders or oncology disorders, where cholesterol transport plays an important role.  相似文献   

4.
Dibutyryl cyclic AMP (50-1000 microM) was found to increase the initial rate of efflux of taurocholic acid from isolated rat hepatocytes. Efflux of the bile acid was inhibited by sodium, and in the absence of sodium dibutyryl cyclic AMP failed to stimulate the rate. Increasing the concentration of calcium from 0 to 1.2 mM had no effect on the initial rate of taurocholic acid efflux from the cells, but the absence of calcium markedly reduced the effect of dibutyryl cyclic AMP. The results suggest that changes in the fluxes of sodium and calcium are involved in the effect of the cyclic nucleotide on taurocholic acid efflux from the cells.  相似文献   

5.
The bidirectional surface transfer of free cholesterol (FC) between Fu5AH rat hepatoma cells and human high density lipoprotein (HDL) was studied. Cells and HDL were prelabeled with [4-14C]FC and [7-3H]FC, respectively. Influx and efflux of FC were measured simultaneously from the appearance of 3H counts in cells and 14C counts in medium. Results were analyzed by a computerized procedure which fitted sets of kinetic data to a model assuming that cell and HDL FC populations each formed a single homogeneous pool and that together the pools formed a closed system. This analysis yielded values for the first-order rate constants of FC influx and efflux (ki and ke), from which influx and efflux of FC mass (Fi and Fe) could be calculated. With normal HDL, the uptake and release of FC tracers conformed well to the above-described model; Fi and Fe were approximately equal, suggesting an exchange of FC between cells and HDL. HDL was depleted of phospholipid (PL) by treatment with either phospholipase A2 or heparin-releasable rat hepatic lipase, followed by incubation with bovine serum albumin. PL depletion of HDL had little or no effect on ki, but reduced ke, indicating that PL-deficient HDL is a relatively poor acceptor of cell cholesterol. The reduction in ke resulted in initial Fi greater than Fe and, thus, in net uptake of FC by the cells. This result explained previous results demonstrating net uptake of FC from PL-depleted HDL. In the presence of an inhibitor of acyl coenzyme A:cholesterol acyltransferase, the steady state distribution of FC mass between cells and HDL was accurately predicted by the ratio of rate constants for FC flux. This result provided additional validation for describing FC flux in terms of first-order rate constants and homogeneous cell and HDL FC pools.  相似文献   

6.
This study elucidates the factors underlying the enhancement in efflux of human fibroblast unesterified cholesterol and phospholipid (PL) by lipid-free apolipoprotein (apo) A-I that is induced by cholesterol enrichment of the cells. Doubling the unesterified cholesterol content of the plasma membrane by incubation for 24 h with low density lipoprotein and lipid/cholesterol dispersions increases the pools of PL and cholesterol available for removal by apoA-I from about 0.8-5%; the initial rates of mass release of cholesterol and PL are both increased about 6-fold. Expression of the ATP binding cassette transporter A1 (ABCA1) is critical for this increased efflux of lipids, and cholesterol loading of the fibroblasts over 24 h increases ABCA1 mRNA about 12-fold. The presence of more ABCA1 and cholesterol in the plasma membrane results in a 2-fold increase in the level of specific binding of apoA-I to the cells with no change in binding affinity. Characterization of the species released from either control or cholesterol-enriched cells indicates that the plasma membrane domains from which lipids are removed are cholesterol-enriched with respect to the average plasma membrane composition. Cholesterol enrichment of fibroblasts also affects PL synthesis, and this leads to enhanced release of phosphatidylcholine (PC) relative to sphingomyelin (SM); the ratios of PC to SM solubilized from control and cholesterol-enriched fibroblasts are approximately 2/1 and 5/1, respectively. Biosynthesis of PC is critical for this preferential release of PC and the enhanced cholesterol efflux because inhibition of PC synthesis by choline depletion reduces cholesterol efflux from cholesterol-enriched cells. Overall, it is clear that enrichment of fibroblasts with unesterified cholesterol enhances efflux of cholesterol and PL to apoA-I because of three effects, 1) increased PC biosynthesis, 2) increased PC transport via ABCA1, and 3) increased cholesterol in the plasma membrane.  相似文献   

7.
8.
9.
The efflux of cholesterol from human skin fibroblasts was determined using radioisotope techniques and mass measurements. When the cells were labeled with [14C]- or [3H]-cholesterol and then incubated with very low density, low density, or high density lipoproteins or with serum, 20 to 30% of the label was released into the medium in 20 h. However, when the cellular cholesterol content was determined after incubation with various lipoproteins under identical conditions, only the heavier subfraction of high density lipoproteins (HDL3) caused a significant decrease in cellular cholesterol. This net removal of cholesterol can be observed in the cells without overloading them with cholesterol, by incubation with low density lipoproteins. Time studies indicated that at least 24 h of incubation is required to detect significant removal of cellular cholesterol. These experiments show that methods using the release of labeled cholesterol from cultured cells to determine net cholesterol removal mediated by high density lipoprotein, although currently used by many investigators, can lead to erroneous conclusions when employed without the measurement of cholesterol mass.  相似文献   

10.
Previous studies indicate that free cholesterol moves passively between high density lipoprotein (HDL) and cell plasma membranes by uncatalyzed diffusion of cholesterol molecules in the extracellular aqueous phase. By this mechanism, the rate constants for free cholesterol influx (Cli) and efflux (ke) should not be very sensitive to the free cholesterol content of cells or HDL. Thus, at a given HDL concentration, the unidirectional influx and efflux of cholesterol mass (Fi, Fe) should be proportional to the cholesterol content of HDL and cells, respectively, and net efflux of cholesterol mass (Fe-Fi greater than 0) should occur when either cells are enriched with cholesterol or HDL is depleted of cholesterol. We have examined the influence of cell and HDL free cholesterol contents on the bidirectional flux of free cholesterol between HDL and human fibroblasts and also attempted to detect some dependence of flux on the binding of HDL to the cells. In the range of HDL concentrations from 1 to 1000 micrograms of protein/ml, ke for cell free cholesterol approximately doubled for every 10-fold increase in HDL concentration, reaching 0.04 h-1 at 1000 micrograms of HDL/ml. ke and Cli were not influenced by the doubling of fibroblast free cholesterol content (from 31 +/- 5 to 62 +/- 13 micrograms of cholesterol/mg of protein). There was an approximate exchange of cholesterol between HDL and the unenriched fibroblasts (e.g. at [HDL] = 100 micrograms/ml, Fe and Fi = 3.2 and 3.0 micrograms of cholesterol/[4 h.mg of cell protein], respectively). In contrast, there was substantial net efflux from the enriched cells (at [HDL] = 100 micrograms/ml, Fe and Fi = 5.5 and 3.1 micrograms of cholesterol/[4 h.mg of cell protein], respectively). The rate constants for cholesterol flux were not influenced by changing the free cholesterol content of HDL, so that there was net efflux of cell cholesterol in the presence of cholesterol-depleted HDL and net influx from cholesterol-rich HDL. The Kd of HDL binding to fibroblasts was reduced from 1.7 to 0.9 micrograms/ml by the enrichment of the cells with free cholesterol; this increase in affinity for HDL was not reflected in enhanced rate constants for cholesterol flux. The inhibition of specific HDL binding by treatment of the lipoprotein with dimethyl suberimidate did not affect cholesterol flux using either control or cholesterol-rich cells at any HDL concentration in the range 1-1000 micrograms/ml. The above results are consistent with the concept that net movement of free cholesterol between cells and HDL occurs by passive, mass-action effects.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The fate of cholesteryl esters of the serum lipoproteins was studied in intact rats and in isolated perfused rat livers. The lipoproteins of fasting rat serum were labeled in vitro with [3H]cholesteryl oleate. Following intravenous injection, it was found that the majority of the radioactive ester was rapidly taken up by the liver where hydrolysis of the ester bond occurred. At 5 min, 58% of the injected material was recovered in the liver, 85% of which was still in the ester form, while at 30 min only 22% of the liver radioactivity was in cholesteryl esters. There was very little difference in the rate at which radioactivity was taken up from the different lipoprotein classes. Similar phenomena were observed in the perfused liver, but it was found that although the radioactive esters were being taken up, there was no change in the concentrations of free or esterified cholesterol in the perfusing medium, indicating that the lipoprotein cholesteryl ester was gaining access to the liver through an exchange of molecules. After uptake, cell fractionation experiments showed that the plasma membranes had the greatest relative amounts of radioactivity, suggesting that this is the site of exchange. Small amounts of radioactivity were recovered in the bile, demonstrating that serum lipoproteins can serve as precursors of at least some of the bile steroids.  相似文献   

12.
To study the effect of cholecystectomy on the regulation of classic and alternative bile acid syntheses, gallbladder-intact (n = 20) and cholecystectomized (n = 20) New Zealand White rabbits were fed either chow or chow with 2% cholesterol (3 g/day). After 10 days, bile fistulas were constructed in half of each rabbit group to recover and measure the bile acid pool and biliary bile acid flux. After cholesterol feeding, the bile acid pool size increased from 268 +/- 55 to 444 +/- 77 mg (P < 0.01) with a 2-fold rise in the biliary bile acid flux in intact rabbits but did not expand the bile acid pool (270 +/- 77 vs. 276 +/- 62 mg), nor did the biliary bile acid flux increase in cholecystectomized rabbits. Ileal apical sodium-dependent bile acid transporter protein increased 46% from 93 +/- 6 to 136 +/- 23 units/mg (P < 0.01) in the intact rabbits but did not change in cholecystectomized rabbits (104 +/- 14 vs. 99 +/- 19 units/mg) after cholesterol feeding. Cholesterol 7alpha-hydroxylase activity was inhibited 59% (P < 0.001) while cholesterol 27-hydroxylase activity rose 83% (P < 0.05) after cholesterol feeding in the intact rabbits but neither enzyme activity changed significantly in cholesterol-fed cholecystectomized rabbits. Fecal bile acid outputs reflecting bile acid synthesis increased significantly in the intact but not in the cholecystectomized rabbits fed cholesterol.Removal of the gallbladder prevented expansion of the bile acid pool after cholesterol feeding as seen in intact rabbits because ileal bile acid transport did not increase. As a result, cholesterol 7alpha-hydroxylase was not inhibited.  相似文献   

13.
14.
15.
To clarify the mechanisms involved in the specific uptake of hematoporphyrin by cancer cells, we investigated the interaction of the heme- and/or hematoporphyrin-hemopexin complexes with rat hepatoma dRLh-84 cells. Hemopexin bound to the cells in a saturable, time- and temperature-dependent manner. The cells exhibited 0.55 nmol of binding sites/mg of protein for the heme-hemopexin complex and 0.38 nmol for the hematoporphyrin-hemopexin complex. The dissociation constants (Kd) for the heme-hemopexin and hematoporphyrin-hemopexin complexes were 0.57 and 0.54 microM, respectively. Specific binding of the labeled hemopexin was inhibited by the unlabeled heme- and hematoporphyrin-hemopexin complexes but was unaffected by albumin or neoglycoprotein. Hematoporphyrin bound to hemopexin was incorporated into the cells at 37 degrees C, but not at 4 degrees C. These results indicate that hematoporphyrin bound hemopexin was taken up by dRLh-84 cells, via the hemopexin receptors. When the hematoporphyrin-albumin complex was incubated with the cells, the hematoporphyrin-[125I]albumin complex bound to the cells in a time and temperature-dependent manner. Here the binding was not saturated up to 100 micrograms/ml of albumin. The binding of hematoporphyrin-[125I]albumin was partially inhibited by unlabeled albumin and hemopexin. Hematoporphyrin bound to albumin was taken up by the cells at 37 degrees C. Thus, the albumin-dependent uptake of hematoporphyrin by rat hepatoma dRL-84 cells could be differentiated from the hemopexin-mediated uptake of hematoporphyrin.  相似文献   

16.
The objective of this study was to determine whether high density lipoproteins (HDL) that have been treated with hepatic lipase have an enhanced ability to deliver cholesterol to cells. Human HDL was incubated with rat hepatic lipase, reisolated, and subjected to compositional analysis. Approximately 28% of the HDL phosphatidylcholine was hydrolyzed by the hepatic lipase but no change was detected in the cholesterol or apoprotein content of the HDL compared to HDL incubated with heat-inactivated hepatic lipase. Cultured rat hepatoma cells exposed to hepatic lipase-modified HDL showed an increased uptake of HDL free cholesterol relative to cells exposed to control HDL. This increased delivery of HDL free cholesterol was demonstrated by both isotopic and mass determinations and it contributed to a 1.6-fold increase in total cellular cholesterol content relative to cells treated with control HDL. The free cholesterol delivered by the HDL is functionally available to the cell as evidenced by the conversion of radiolabeled free cholesterol to cholesteryl ester. The stimulation of free cholesterol delivery was dose-dependent up to a level of 100 micrograms of HDL free cholesterol/ml of extracellular medium, and was directly related to the extent of phosphatidylcholine hydrolysis. The enhanced cellular accumulation of HDL free cholesterol observed with hepatic lipase appears to be due to the phospholipase activity of this enzyme, since similar results were obtained with HDL that had been modified by snake venom phospholipase A2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Chen H  Yu QS  Guo ZG 《生理学报》2000,52(1):81-84
用培养的小牛主动脉内皮细胞与兔水洗血小板直接相互作用的模型 ,探讨高密度脂蛋白对内皮衍生的一氧化氮抗血小板聚集作用的影响。培养的小牛主动脉内皮细胞预先用 10 0 μmol/L阿斯匹林处理 ,抑制细胞内的环氧化物酶活性。凝血酶 ( 0 1U/ml)可诱导兔血小板 ( 2× 10 8/ml) 67 3 3± 7 5 2 %的聚集反应。内皮细胞 ( 1× 10 5~ 1× 10 6 /ml)能抑制凝血酶诱导的血小板聚集 ,抑制强度与内皮细胞的数目正相关。且此作用可被 1mmol/L硝基精氨酸完全取消。表明内皮细胞对凝血酶诱导血小板聚集的抑制作用都是由内皮衍生的一氧化氮所致。在加凝血酶之前加入高密度脂蛋白 ( 1mg/ml)可增强内皮细胞 ( 1× 10 5/ml)的这种作用。高密度脂蛋白 ( 1mg/ml)与内皮细胞共同孵育 1h后 ,将高密度脂蛋白离心弃去 ,内皮细胞对凝血酶诱导血小板聚集的抑制作用不受影响。高密度脂蛋白及内皮细胞对静息血小板均无直接作用。结果表明 ,高密度脂蛋白增强内皮细胞抗凝血酶诱导的血小板聚集反应的作用是通过直接作用于内皮衍生的一氧化氮而产生的  相似文献   

18.
The clinical promise of cell-based therapies is generally recognized, and has driven an intense search for good cell sources. In this study, we isolated plastic-adherent cells from human term decidua vera, called decidua-derived-mesenchymal cells (DMCs), and compared their properties with those of bone marrow-derived-mesenchymal stem cells (BM-MSCs). The DMCs strongly expressed the mesenchymal cell marker vimentin, but not cytokeratin 19 or HLA-G, and had a high proliferative potential. That is, they exhibited a typical fibroblast-like morphology for over 30 population doublings. Cells phenotypically identical to the DMCs were identified in the decidua vera, and genotyping confirmed that the DMCs were derived from the maternal components of the fetal adnexa. Flow cytometry analysis showed that the expression pattern of CD antigens on the DMCs was almost identical to that on BM-MSCs, but some DMCs expressed the CD45 antigen, and over 50% of them also expressed anti-fibroblast antigen. In vitro, the DMCs showed good differentiation into chondrocytes and moderate differentiation into adipocytes, but scant evidence of osteogenesis, compared with the BM-MSCs. Gene expression analysis showed that, compared with BM-MSCs, the DMCs expressed higher levels of TWIST2 and RUNX2 (which are associated with early mesenchymal development and/or proliferative capacity), several matrix metalloproteinases (MMP1, 3, 10, and 12), and cytokines (BMP2 and TGFB2), and lower levels of MSX2, interleukin 26, and HGF. Although DMCs did not show the full multipotency of BM-MSCs, their higher proliferative ability indicates that their cultivation would require less maintenance. Furthermore, the use of DMCs avoids the ethical concerns associated with the use of embryonic tissues, because they are derived from the maternal portion of the placenta, which is otherwise discarded. Thus, the unique properties of DMCs give them several advantages for clinical use, making them an interesting and attractive alternative to MSCs for regenerative medicine.  相似文献   

19.
20.
Estrogens have been shown to have many positive effects on the function of arterial wall, and recent evidence suggest that 17-estradiol has a direct action in reducing the accumulation of cholesteryl ester in macrophages. The mechanisms underlying the effects of 17-estradiol on foam cell formation, however are poorly understood. The aim of this study is to investigate the role of 17-estradiol in the regulation of the cholesteryl ester cycle and cholesterol efflux in human macrophages. In addition, the influence of 17-estradiol on apolipoprotein E (apoE) and lipoprotein lipase (LDL) secretion by the cells was also tested. Human Monocyte Derived Macrophages (HMDM), matured in the presence or the absence of 17-estradiol, were loaded with [3H]-cholesteryl ester-labeled-acetyl LDL (low density lipoprotein) and the efflux of radioactivity into the medium was measured. The effect of 17-estradiol on cellular activities of acyl coenzyme A: cholesterol acyl transferase (ACAT), and both neutral and acid cholesteryl ester hydrolase (CEH) and the secretion of apoE and LDL into the medium, were also studied. The results indicate that 17-estradiol induces an increase in the amount of labeled cholesterol released from the cells and, the data obtained from the measurements of ACAT and CEH activities showed that, in estrogen-treated HMDM, the cholesteryl ester cycle favors the hydrolysis of lipoprotein cholesterol by CEH in comparison with its acylation by ACAT. In particular, for the first time a strong enhancement of neutral and acid CEH in human macrophages by 17-estradiol, was demonstrated. ApoE and LDL secretion increased during the maturation of monocytes to macrophages, and was not modified by 17-estradiol. In contrast, loading the cells with cholesterol by incubation in the presence of acetylated or oxidized LDL produced an increase in the levels of apoE secreted by both estrogen-treated and control macrophages. The activity of LPL found in the cell medium, on the other hand, in lipid loaded cells tended to be increased only in estrogen treated macrophages, suggesting that the effects of estrogen on unloaded macrophages are different from those produced on lipid-loaded macrophages. On the whole, the present findings suggest that one of the mechanisms by which 17-estradiol acts to reduce cholesterol accumulation in macrophages is by increasing reverse cholesterol transport through the enhancement of the cholesteryl ester cycle, so that the generation of intracellular unesterified cholesterol for excretion from the cells is favored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号