首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on measurements and theoretical analyses, we identified deletion of pyruvate kinase (PYK) activity as a possible route for elimination of acid formation in Bacillus subtilis cultures grown on glucose minimal media. Evidence consistent with the attenuation of PYK flux has come from metabolic flux calculations, metabolic pool and enzymatic activity measurements, and a series of nuclear magnetic resonance experiments, all suggesting a nearly complete inhibition of PYK activity for glucose-citrate fed cultures in which the amount of acid formation was nearly zero. In this paper, we report the construction and characterization of a pyk mutant of B. subtilis. Our results demonstrate an almost complete elimination of acid production in cultures of the pyk mutant in glucose minimal medium. The substantial reduction in acid production is accompanied by increased CO(2) production and a reduced rate of growth. Metabolic analysis indicated a dramatic increase in intracellular pools of phosphoenolpyruvate (PEP) and glucose-6-P in the pyk mutant. The high concentrations of PEP and glucose-6-P could explain the decreased growth rate of the mutant. The substantial accumulation of PEP does not occur in Escherichia coli pyk mutants. The very high concentration of PEP which accumulates in the B. subtilis pyk mutant could be exploited for production of various aromatics.  相似文献   

2.
In this paper, we report on the analysis of acid formation in an E. coli pyk mutant. The results demonstrate that acid formation is insignificant for both the wild-type and the mutant at low glucose concentrations. However, at relatively high glucose concentrations, acid formation remains very low for the mutant but is significant for the wild-type. This substantial reduction in acids is accompanied by an increase in CO(2) production. Moreover, unlike the B. subtilis pyk mutant, the E. coli pyk mutant did not show a substantial increase in the PEP pool.  相似文献   

3.
We have characterized the gene YOR347c of Saccharomyces cerevisiae and shown that it encodes a second functional pyruvate kinase isoenzyme, Pyk2p. Overexpression of the YOR347c/PYK2 gene on a multicopy vector restored growth on glucose of a yeast pyruvate kinase 1 (pyk1) mutant strain and could completely substitute for the PYK1-encoded enzymatic activity. PYK2 gene expression is subject to glucose repression. A pyk2 deletion mutant had no obvious growth phenotypes under various conditions, but the growth defects of a pyk1 pyk2 double-deletion strain were even more pronounced than those of a pyk1 single-mutation strain. Pyk2p is active without fructose-1,6-bisphosphate. However, overexpression of PYK2 during growth on ethanol did not cause any of the deleterious effects expected from a futile cycling between pyruvate and phosphoenolpyruvate. The results indicate that the PYK2-encoded pyruvate kinase may be used under conditions of very low glycolytic flux.  相似文献   

4.
Based on measurements and theoretical analyses, we identified deletion of pyruvate kinase (PYK) activity as a possible route for elimination of acid formation in Bacillus subtilis cultures grown on glucose minimal media. Evidence consistent with the attenuation of PYK flux has come from metabolic flux calculations, metabolic pool and enzymatic activity measurements, and a series of nuclear magnetic resonance experiments, all suggesting a nearly complete inhibition of PYK activity for glucose-citrate fed cultures in which the amount of acid formation was nearly zero. In this paper, we report the construction and characterization of a pyk mutant of B. subtilis. Our results demonstrate an almost complete elimination of acid production in cultures of the pyk mutant in glucose minimal medium. The substantial reduction in acid production is accompanied by increased CO2 production and a reduced rate of growth. Metabolic analysis indicated a dramatic increase in intracellular pools of phosphoenolpyruvate (PEP) and glucose-6-P in the pyk mutant. The high concentrations of PEP and glucose-6-P could explain the decreased growth rate of the mutant. The substantial accumulation of PEP does not occur in Escherichia coli pyk mutants. The very high concentration of PEP which accumulates in the B. subtilis pyk mutant could be exploited for production of various aromatics.  相似文献   

5.
6.
ABSTRACT: BACKGROUND: In Escherichia coli phosphoenolpyruvate (PEP) is a key central metabolism intermediate that participates in glucose transport, as precursor in several biosynthetic pathways and it is involved in allosteric regulation of glycolytic enzymes. In this work we generated W3110 derivative strains that lack the main PEP consumers PEP:sugar phosphotransferase system (PTS-) and pyruvate kinase isozymes PykA and PykF (PTS- pykA- and PTS- pykF -). To characterize the effects of these modifications on cell physiology, carbon flux distribution and aromatics production capacity were determined. RESULTS: When compared to reference strain W3110, strain VH33 (PTS-) displayed lower specific rates for growth, glucose consumption and acetate production as well as a higher biomass yield from glucose. These phenotypic effects were even more pronounced by the additional inactivation of PykA or PykF. Carbon flux analysis revealed that PTS inactivation causes a redirection of metabolic flux towards biomass formation. A cycle involving PEP carboxylase (Ppc) and PEP carboxykinase (Pck) was detected in all strains. In strains W3110, VH33 (PTS-) and VH35 (PTS-, pykF-), the net flux in this cycle was inversely correlated with the specific rate of glucose consumption and inactivation of Pck in these strains caused a reduction in growth rate. In the PTS- background, inactivation of PykA caused a reduction in Ppc and Pck cycling as well as a reduction in flux to TCA, whereas inactivation of PykF caused an increase in anaplerotic flux from PEP to OAA and an increased flux to TCA. The wild-type and mutant strains were modified to overproduce L-phenylalanine. In resting cells experiments, compared to reference strain, a 10, 4 and 7-fold higher aromatics yields from glucose were observed as consequence of PTS, PTS PykA and PTS PykF inactivation. CONCLUSIONS: Metabolic flux analysis performed on strains lacking the main activities generating pyruvate from PEP revealed the high degree of flexibility to perturbations of the central metabolic network in E. coli. The observed responses to reduced glucose uptake and PEP to pyruvate rate of conversion caused by PTS, PykA and PykF inactivation included flux rerouting in several central metabolism nodes towards anabolic biosynthetic reactions, thus compensating for carbon limitation in these mutant strains. The detected cycle involving Ppc and Pck was found to be required for maintaining the specific growth and glucose consumption rates in all studied strains. Strains VH33 (PTS-), VH34 (PTS- pykA-) and VH35 (PTS- pykF-) have useful properties for biotechnological processes, such as increased PEP availability and high biomass yields from glucose, making them useful for the production of aromatic compounds or recombinant proteins.  相似文献   

7.
To investigate primary effects of a pyruvate kinase (PYK) defect on glucose metabolism in Corynebacterium glutamicum, a pyk-deleted mutant was derived from wild-type C. glutamicum ATCC13032 using the double-crossover chromosome replacement technique. The mutant was then evaluated under glutamic acid-producing conditions induced by biotin limitation. The mutant showed an increased specific rate of glucose consumption, decreased growth, higher glutamic acid production, and aspartic acid formation during the glutamic acid production phase. A significant increase in phosphoenolpyruvate (PEP) carboxylase activity and a significant decrease in PEP carboxykinase activity occurred in the mutant, which suggested an enhanced overall flux of the anaplerotic pathway from PEP to oxaloacetic acid in the mutant. The enhanced anaplerotic flux may explain both the increased rate of glucose consumption and the higher productivity of glutamic acid in the mutant. Since the pyk-complemented strain had similar metabolic profiles to the wild-type strain, the observed changes represented intrinsic effects of pyk deletion on the physiology of C. glutamicum.  相似文献   

8.
Trypanosoma brucei is a parasitic protist responsible for sleeping sickness in humans. The procyclic form of this parasite, transmitted by tsetse flies, is considered to be dependent on oxidative phosphorylation for ATP production. Indeed, its respiration was 55% inhibited by oligomycin, which is the most specific inhibitor of the mitochondrial F0/F1-ATP synthase. However, a 10-fold excess of this compound did not significantly affect the intracellular ATP concentration and the doubling time of the parasite was only 1.5-fold increased, suggesting that oxidative phosphorylation is not essential for procyclic trypanosomes. To further investigate the sites of ATP production, we studied the role of two ATP producing enzymes, which are involved in the synthesis of pyruvate from phosphoenolpyruvate: the glycosomal pyruvate phosphate dikinase (PPDK) and the cytosolic pyruvate kinase (PYK). The parasite was not affected by PPDK gene knockout. In contrast, inhibition of PYK expression by RNA interference was lethal for these cells. In the absence of PYK activity, the intracellular ATP concentration was reduced by up to 2.3-fold, whereas the intracellular pyruvate concentration was not reduced. Furthermore, we show that this mutant cell line still excreted acetate from d-glucose metabolism, and both the wild type and mutant cell lines consumed pyruvate present in the growth medium with similar high rates, indicating that in the absence of PYK activity pyruvate is still present in the trypanosomes. We conclude that PYK is essential because of its ATP production, which implies that the cytosolic substrate level phosphorylation is essential for the growth of procyclic trypanosomes.  相似文献   

9.
Streptococcus mutans transports glucose via the phosphoenolpyruvate (PEP)-dependent sugar phosphotransferase system (PTS). Earlier studies indicated that an alternate glucose transport system functions in this organism under conditions of high growth rates, low pH, or excess glucose. To identify this system, S. mutans BM71 was transformed with integration vector pDC-5 to generate a mutant, DC10, defective in the general PTS protein enzyme I (EI). This mutant expressed a defective EI that had been truncated by approximately 150 amino acids at the carboxyl terminus as revealed by Western blot (immunoblot) analysis with anti-EI antibody and Southern hybridizations with a fragment of the wild-type EI gene as a probe. Phosphotransfer assays utilizing 32P-PEP indicated that DC10 was incapable of phosphorylating HPr and EIIAMan, indicating a nonfunctional PTS. This was confirmed by the fact that DC10 was able to ferment glucose but not a variety of other PTS substrates and phosphorylated glucose with ATP and not PEP. Kinetic assays indicated that the non-PTS system exhibited an apparent Ks of 125 microM for glucose and a Vmax of 0.87 nmol mg (dry weight) of cells-1 min-1. Sugar competition experiments with DC10 indicated that the non-PTS transport system had high specificity for glucose since glucose transport was not significantly by a 100-fold molar excess of several competing sugar substrates, including 2-deoxyglucose and alpha-methylglucoside. These results demonstrate that S. mutans possesses a glucose transport system that can function independently of the PEP PTS.  相似文献   

10.
11.
In Pseudomonas oxalaticus the activity and synthesis of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) are regulated by inactivation and endproduct repression, respectively. Phosphoenolpyruvate (PEP) has been suggested to function as a signal molecule for the latter control system. During growth of the organism in carbon-source-limited continuous cultures with various ratios of acetate and formate in the feed, the RuBisCO levels varied considerably, but no correlation was observed with the intracellular concentrations of PEP. To study whether the repression exerted by acetate utilization was dependent on the synthesis of glycolytic intermediates from this compound, an acetate-negative mutant defective in isocitrate lyase was isolated and characterized. Clear evidence was obtained that in this mutant acetate is as effective in repressing RuBisCO synthesis as in the wild-type. It therefore appears more likely that acetyl-CoA or a closely related metabolite functions as a signal molecule in the regulation of RuBisCO synthesis.  相似文献   

12.
Listeria monocytogenes is a gram-positive bacterium whose carbohydrate metabolic pathways are poorly understood. We provide evidence for an inducible phosphoenolpyruvate (PEP):fructose phosphotransferase system (PTS) in this pathogen. The system consists of enzyme I, HPr, and a fructose-specific enzyme II complex which generates fructose-1-phosphate as the cytoplasmic product of the PTS-catalyzed vectorial phosphorylation reaction. Fructose-1-phosphate kinase then converts the product of the PTS reaction to fructose-1,6-bisphosphate. HPr was shown to be phosphorylated by [32P]PEP and enzyme I as well as by [32P]ATP and a fructose-1,6-bisphosphate-activated HPr kinase like those found in other gram-positive bacteria. Enzyme I, HPr, and the enzyme II complex of the Listeria PTS exhibit enzymatic cross-reactivity with PTS enzyme constituents from Bacillus subtilis and Staphylococcus aureus.  相似文献   

13.
HPr is a protein of the phosphoenolpyruvate:sugar phosphotransferase transport system (PTS). In gram-positive bacteria, HPr can be phosphorylated on Ser-46 by the kinase/phosphorylase HprK/P and on His-15 by phospho-enzyme I (EI~P) of the PTS. In vitro studies with purified HPrs from Bacillus subtilis, Enterococcus faecalis, and Streptococcus salivarius have indicated that the phosphorylation of one residue impedes the phosphorylation of the other. However, a recent study showed that while the rate of Streptococcus salivarius HPr phosphorylation by EI~P is reduced at acidic pH, the phosphorylation of HPr(Ser-P) by EI~P, generating HPr(Ser-P)(His~P), is stimulated. This suggests that HPr(Ser-P)(His~P) synthesis may occur in acidogenic bacteria unable to maintain their intracellular pH near neutrality. Consistent with this hypothesis, significant amounts of HPr(Ser-P)(His~P) have been detected in some streptococci. The present study was aimed at determining whether the capacity to synthesize HPr(Ser-P)(His~P) is common to streptococcal species, as well as to lactococci, which are also unable to maintain their intracellular pH near neutrality in response to a decrease in extracellular pH. Our results indicated that unlike Staphylococcus aureus, B. subtilis, and E. faecalis, all the streptococcal and lactococcal species tested were able to synthesize large amounts of HPr(Ser-P)(His~P) during growth. We also showed that Streptococcus salivarius IIABLMan, a protein involved in sugar transport by the PTS, could be efficiently phosphorylated by HPr(Ser-P)(His~P).  相似文献   

14.
15.
During growth of Escherichia coli on acetate, isocitrate dehydrogenase (ICDH) is partially inactivated by phosphorylation and is thus rendered rate-limiting in the Krebs cycle so that the intracellular concentration of isocitrate rises which, in turn, permits an increased flux of carbon through the anaplerotic sequence of the glyoxylate bypass. A large number of metabolites stimulate ICDH phosphatase and inhibit ICDH kinase in the wild-type (E. coli ML308) and thus regulate the utilization of isocitrate by the two competing enzymes, ICDH and isocitrate lyase. Addition of pyruvate to acetate grown cultures triggers a rapid dephosphorylation and threefold activation of ICDH, both in the wild-type (ML308) and in mutants lacking pyruvate dehydrogenase (ML308/Pdh-), PEP synthase (ML308/Pps-) or both enzymes (ML308/Pdh-Pps-). Pyruvate stimulates the growth on acetate of those strains with an active PEP synthase but inhibits the growth of those strains that lack this enzyme. When pyruvate is exhausted, ICDH is again inactivated and the growth rate reverts to that characteristic of growth on acetate. Because pyruvate stimulates dephosphorylation of ICDH in strains with differing capabilities for pyruvate metabolism, it seems likely that pyruvate itself is a sufficient signal to activate the dephosphorylation mechanism, but this does not discount the importance of other signals under other circumstances.  相似文献   

16.
In this study, it is found that, for Bacillus subtilis, citrate-glucose cometabolism leads to zero acid production over a wide range of growth rates and nearly theoretical carbon yield. Experimental results are presented that point to pyruvate kinase (PYK) as a site of citrate-mediated glycolytic flux attenuation. First, the measured fluxes show that, compared with cultures grown on glucose, the PYK flux drops by more than tenfold when citrate is added. Second, relative to cultures metabolizing glucose, the phosphoenolpyruvate (PEP) pool elevates substantially, whereas the pyruvate pool drops, when citrate is present. Finally, our modeling results indicate that maximizing carbon yield corresponds to nearly eliminating pyruvate kinase (PYK) flux and that the pyruvate supplied by the PEP-consuming glucose transport system can supply the biosynthetic requirements. A literature review suggests some mechanisms for how PYK attenuation by citrate addition can occur. At this juncture, we hypothesize that direct PYK inhibition occurs which, in turn, also leads to phosphofructokinase inhibition via the elevated PEP pool. These two inhibition events combine to throttle glycolytic flux; minimize acid formation; and substantially increase cellular, product, and energetic yields.  相似文献   

17.
Listeria monocytogenes is a versatile bacterial pathogen that is able to accommodate to diverse environmental and host conditions. Presently, we have identified a L. monocytogenes two-component response regulator, ResD that is required for the repression of virulence gene expression known to occur in the presence of easily fermentable carbohydrates not found inside host organisms. Structurally and functionally, ResD resembles the respiration regulator ResD in Bacillus subtilis as deletion of the L. monocytogenes resD reduces respiration and expression of cydA, encoding a subunit of cytochrome bd. The resD mutation also reduces expression of mptA encoding the EIIABman component of a mannose/glucose-specific PTS system, indicating that ResD controls sugar uptake. This notion was supported by the poor growth of resD mutant cells that was alleviated by excess of selected carbohydrates. Despite the growth deficient phenotype of the mutant in vitro the mutation did not affect intracellular multiplication in epithelial or macrophage cell lines. When examining virulence gene expression we observed traditional induction by charcoal in both mutant and wild-type cells whereas the repression observed in wild-type cells by fermentable carbohydrates did not occur in resD mutant cells. Thus, ResD is a central regulator of L. monocytogenes when present in the external environment.  相似文献   

18.
Uncoupled enzyme IIGlc of the phosphoenolpyruvate (PEP):glucose phosphotransferase system (PTS) in Salmonella typhimurium is able to catalyze glucose transport in the absence of PEP-dependent phosphorylation. As a result of the ptsG mutation, the apparent Km of the system for glucose transport is increased about 1,000-fold (approximately 18 mM) compared with wild-type PTS-mediated glucose transport. An S. typhimurium mutant containing uncoupled enzyme IIGlc as the sole system for glucose uptake was grown in glucose-limited chemostat cultures. Selective pressure during growth in the chemostat resulted in adaptation to the glucose-limiting conditions in two different ways. At first, mutations appeared that led to a decrease in Km value of uncoupled enzyme IIGlc. These results suggested that uncoupled enzyme IIGlc had significant control on the growth rate under glucose-limiting conditions. More efficient glucose uptake enabled a mutant to outgrow its parent and caused a decrease in the steady-state glucose concentration in the chemostat. At very low glucose concentrations (10 microM), mutants arose that contained a constitutively synthesized methyl-beta-galactoside permease. Apparently, further changes in the uncoupled enzyme IIGlc did not lead to a substantial increase in growth rate at very low glucose concentrations.  相似文献   

19.
In contrast to wild-type cells, the Bacillus subtilis mutant SF109 that lacks the active 2-ketoglutarate dehydrogenase enzymatic complex is unable to increase the specific activity of two enzymes subject to glucose catabolite repression, aconitase and histidase, during limitation of growth by glucose. Examination of the intracellular metabolite pools in the mutant and wild-type cells grown in excess and limiting glucose medium showed that the complete derepression of aconitase and histidase could be correlated with the decrease in the intracellular concentration of 2-ketoglutarate. The complete repression of aconitase that occurred in wild-type and mutant cells could be correlated with a high intracellular concentration of 2-ketoglutarate.  相似文献   

20.
J J Ye  M H Saier  Jr 《Journal of bacteriology》1996,178(12):3557-3563
By using both metabolizable and nonmetabolizable sugar substrates of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), we show that PTS sugar uptake into intact cells and membrane vesicles of Lactococcus lactis and Bacillus subtilis is strongly inhibited by high concentrations of any of several metabolizable PTS sugars. Inhibition requires phosphorylation of seryl residue 46 in the phosphocarrier protein of the PTS, HPr, by the metabolite-activated, ATP-dependent protein kinase. Inhibition does not occur when wild-type HPr is replaced by the S46A mutant form of this protein either in vesicles of L. lactis or B. subtilis or in intact cells of B. subtilis. Nonmetabolizable PTS sugar analogs such as 2-deoxyglucose inhibit PTS sugar uptake by a distinct mechanism that is independent of HPr(ser-P) and probably involves cellular phosphoenolpyruvate depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号