首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We have studied changes in plasma membrane NAD(P)H:quinone oxidoreductases of HL-60 cells under serum withdrawal conditions, as a model to analyze cell responses to oxidative stress. Highly enriched plasma membrane fractions were obtained from cell homogenates. A major part of NADH-quinone oxidoreductase in the plasma membrane was insensitive to micromolar concentrations of dicumarol, a specific inhibitor of the NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), and only a minor portion was characterized as DT-diaphorase. An enzyme with properties of a cytochrome b 5 reductase accounted for most dicumarol-resistant quinone reductase activity in HL-60 plasma membranes. The enzyme used mainly NADH as donor, it reduced coenzyme Q0 through a one-electron mechanism with generation of superoxide, and its inhibition profile by p-hydroxymercuribenzoate was similar to that of authentic cytochrome b 5 reductase. Both NQO1 and a novel dicumarol-insensitive quinone reductase that was not accounted by a cytochrome b 5 reductase were significantly increased in plasma membranes after serum deprivation, showing a peak at 32 h of treatment. The reductase was specific for NADH, did not generate superoxide during quinone reduction, and was significantly resistant to p-hydroxymercuribenzoate. The function of this novel quinone reductase remains to be elucidated whereas dicumarol inhibition of NQO1 strongly potentiated growth arrest and decreased viability of HL-60 cells in the absence of serum. Our results demonstrate that upregulation of two-electron quinone reductases at the plasma membrane is a mechanism evoked by cells for defense against oxidative stress caused by serum withdrawal.  相似文献   

2.
A note on the inhibition of DT-diaphorase by dicoumarol.   总被引:1,自引:0,他引:1  
The participation of DT-diaphorase or NAD(P)H:(quinone acceptor) oxidoreductase (E.C. 1.6.99.2) in metabolism or in events leading to toxicity is often implied on the basis of the inhibitory effects of dicoumarol. DT-diaphorase functions via a ping pong bi-bi kinetic mechanism involving oxidized and reduced flavin forms of the free enzyme. Dicoumarol, a potent (Ki = 10 nM) inhibitor, binds to the oxidized form of the enzyme, competitively versus reduced pyridine nucleotide. Inhibition is effectively complete at 1 microM dicoumarol in typical studies using DCPIP, one of the best known substrates for the enzyme, as electron acceptor. The antitumor quinone Diaziquone (AZQ) is a poor substrate for DT-diaphorase relative to DCPIP, but effective inhibition of its reduction requires ten-fold higher concentrations of dicoumarol than for inhibition of DCPIP reduction under otherwise similar conditions. The variable inhibition of DT-diaphorase by dicoumarol dependent on the efficiency of the electron acceptor can be explained on the basis of the complete rate equation describing its ping pong type kinetic mechanism. Thus, the concentration of dicoumarol used to inhibit DT-diaphorase must be chosen carefully and consideration should be given to the efficiency of the electron acceptor. The absence of an inhibitory effect using low doses of dicoumarol cannot rule out a reaction mediated by DT-diaphorase. Although higher doses of dicoumarol may be required to inhibit DT-diaphorase mediated metabolism of less efficient electron acceptors, the use of such doses in cells may also affect biochemical processes other than DT-diaphorase and should be approached with caution.  相似文献   

3.

Dicoumarol is frequently used as inhibitor of the detoxifying enzyme NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1). In order to test whether dicoumarol may also affect the cellular glutathione (GSH) metabolism, we have exposed cultured primary astrocytes to dicoumarol and investigated potential effects of this compound on the cell viability as well as on the cellular and extracellular contents of GSH and its metabolites. Incubation of astrocytes with dicoumarol in concentrations of up to 100 µM did not acutely compromise cell viability nor was any GSH consumption or GSH oxidation to glutathione disulfide (GSSG) observed. However, unexpectedly dicoumarol inhibited the cellular multidrug resistance protein (Mrp) 1-dependent export of GSH in a time- and concentration-dependent manner with half-maximal effects observed at low micromolar concentrations of dicoumarol. Inhibition of GSH export by dicoumarol was not additive to that observed for the known Mrp1 inhibitor MK571. In addition, dicoumarol inhibited also the Mrp1-mediated export of GSSG during menadione-induced oxidative stress and the export of the GSH–bimane-conjugate (GS–B) that had been generated in the cells after exposure to monochlorobimane. Half-maximal inhibition of the export of Mrp1 substrates was observed at dicoumarol concentrations of around 4 µM (GSH and GSSG) and 30 µM (GS–B). These data demonstrate that dicoumarol strongly affects the GSH metabolism of viable cultured astrocytes by inhibiting Mrp1-mediated export processes and identifies for the first time Mrp1 as additional cellular target of dicoumarol.

  相似文献   

4.
Summary.  The aim of this work was to study the activity of NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) in the regeneration of lipophilic antioxidants, alpha-tocopherol, and reduced-coenzyme Q analogs. First, we tested whether or not two isoforms of the NAD(P)H:(quinone acceptor) oxidoreductase 1 designated as “hydrophilic” and “hydrophobic” (H. J. Prochaska and P. Talalay, Journal of Biological Chemistry 261: 1372–1378, 1986) show differential enzyme activities towards hydrophilic or hydrophobic ubiquinone homologs. By chromatography on phenyl Sepharose, we purified the two isoforms from pig liver cytosol and measured their reduction of several ubiquinone homologs of different side chain length. We also studied by electron paramagnetic resonance the effect of NAD(P)H:(quinone acceptor) oxidoreductase 1 on steady-state levels of chromanoxyl radicals generated by linoleic acid and lipooxygenase and confirmed the enzyme's ability to protect alpha-tocopherol against oxidation induced with H2O2-Fe2+. Our results demonstrated that the different hydrophobicities of the isoforms do not reflect different reactivities towards ubiquinones of different side chain length. In addition, electron paramagnetic resonance studies showed that in systems containing the reductase plus NADH, levels of chromanoxyl radicals were dramatically reduced. Morever, in the presence of oxidants, alpha-tocopherol was preserved by NAD(P)H:(quinone acceptor) oxidoreductase 1, supporting our hypothesis that regeneration of alpha-tocopherol may be one of the physiologic functions of this enzyme. Received May 20, 2002; accepted September 20, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain.  相似文献   

5.
Abstract: The application of enzymatic staining techniques, using tetrazolium dyes, to aldehyde-treated brain sections has revealed the presence of NADPH-diaphorase activity attributed to nitric oxide synthase. When evaluating the specificity of the putative guanylyl cyclase inhibitor LY 83583, a robust and novel staining pattern was noted in epithelial, endothelial, and astrocytic cells when LY 83583 was included in the NADPH-diaphorase histochemical reaction. This LY 83583-dependent staining could be blocked by the NAD(P)H:quinone oxidoreductase inhibitor dicumarol. Based on its quinone structure, we hypothesized that LY 83583 was a substrate for the enzyme NAD(P)H:quinone oxidoreductase. Transfection of human embryonic kidney 293 cells with the rat liver isoform of NAD(P)H:quinone oxidoreductase resulted in robust NADPH- and LY 83583-dependent staining that was completely blocked by dicumarol and was not observed in untransfected cells. Analysis of transfected cell extracts and brain homogenates indicated that LY 83583 was a substrate for NAD(P)H:quinone oxidoreductase, with a K m similar to the well-characterized substrate menadione. Sensitivity of the nitroblue tetrazolium reduction to superoxide dismutase indicated that the reduction of LY 83583 by NAD(P)H:quinone oxidoreductase leads to superoxide generation. The localization of NAD(P)H:quinone oxidoreductase activity to astrocytic cells suggests a role for glia in combating oxidative insults to brain and in activating quinone-like drugs such as LY 83583.  相似文献   

6.
Asher G  Dym O  Tsvetkov P  Adler J  Shaul Y 《Biochemistry》2006,45(20):6372-6378
NAD(P)H quinone oxidoreductase 1 (NQO1) is a ubiquitous flavoenzyme that catalyzes two-electron reduction of quinones to hydroquinones utilizing NAD(P)H as an electron donor. NQO1 binds and stabilizes several short-lived proteins including the tumor suppressors p53 and p73 and the enzyme ornithine decarboxylase (ODC). Dicoumarol is a widely used potent competitive inhibitor of NQO1 enzymatic activity, which competes with NAD(P)H for binding to NQO1. Dicoumarol also disrupts the binding of NQO1 to p53, p73, and ODC and induces their ubiquitin-independent proteasomal degradation. We report here the crystal structure of human NQO1 in complex with dicoumarol at 2.75 A resolution. We have identified the interactions of dicoumarol with the different residues of NQO1 and the conformational changes imposed upon dicoumarol binding. The most prominent conformational changes that occur in the presence of dicoumarol involve Tyr 128 and Phe 232 that are present on the surface of the NQO1 catalytic pocket. On the basis of the comparison of the NQO1 structure in complex with different NQO1 inhibitors and our previous analysis of NQO1 mutants, we propose that the specific conformation of Tyr 128 and Phe 232 is important for NQO1 interaction with p53 and other client proteins.  相似文献   

7.
The amino acid sequence of mouse liver NAD(P)H:quinone acceptor oxidoreductase (EC 1.6.99.2) has been determined by tandem mass spectrometry and deduced from the nucleotide sequence of the cDNA encoding for the enzyme. The electrospray mass spectral analyses revealed, as previously reported (Prochaska HJ, Talalay P, 1986, J Biol Chem 261:1372-1378), that the 2 forms--the hydrophilic and hydrophobic forms--of the mouse liver quinone reductase have the same molecular weight. No amino acid sequence differences were found by tandem mass spectral analyses of tryptic peptides of the 2 forms. Moreover, the amino-termini of the mouse enzymes are acetylated as determined by tandem mass spectrometry. Further, only 1 cDNA species encoding for the quinone reductase was found. These results suggest that the 2 forms of the mouse quinone reductase have the same primary sequences, and that any difference between the 2 forms may be attributed to a labile posttranslational modification. Analysis of the mouse quinone reductase cDNA revealed that the enzyme is 273 amino acids long and has a sequence homologous to those of rat and human quinone reductases. In this study, the mouse quinone reductase cDNA was also ligated into a prokaryotic expression plasmid pKK233.2, and the constructed plasmid was used to transform Escherichia coli strain JM109. The E. coli-expressed mouse quinone reductase was purified and characterized. Although mouse quinone reductase has an amino acid sequence similar to those of the rat and human enzymes, the mouse enzyme has a higher NAD(P)H-menadione reductase activity and is less sensitive to flavones and dicoumarol, 2 known inhibitors of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Steinmeier  Johann  Kube  Sophie  Karger  Gabriele  Ehrke  Eric  Dringen  Ralf 《Neurochemical research》2020,45(10):2442-2455

β-lapachone (β-lap) is reduced in tumor cells by the enzyme NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1) to a labile hydroquinone which spontaneously reoxidises to β-lap, thereby generating reactive oxygen species (ROS) and oxidative stress. To test for the consequences of an acute exposure of brain cells to β-lap, cultured primary rat astrocytes were incubated with β-lap for up to 4 h. The presence of β-lap in concentrations of up to 10 µM had no detectable adverse consequences, while higher concentrations of β-lap compromised the cell viability and the metabolism of astrocytes in a concentration- and time-dependent manner with half-maximal effects observed for around 15 µM β-lap after a 4 h incubation. Exposure of astrocytes to β-lap caused already within 5 min a severe increase in the cellular production of ROS as well as a rapid oxidation of glutathione (GSH) to glutathione disulfide (GSSG). The transient cellular accumulation of GSSG was followed by GSSG export. The β-lap-induced ROS production and GSSG accumulation were completely prevented in the presence of the NQO1 inhibitor dicoumarol. In addition, application of dicoumarol to β-lap-exposed astrocytes caused rapid regeneration of the normal high cellular GSH to GSSG ratio. These results demonstrate that application of β-lap to cultured astrocytes causes acute oxidative stress that depends on the activity of NQO1. The sequential application of β-lap and dicoumarol to rapidly induce and terminate oxidative stress, respectively, is a suitable experimental paradigm to study consequences of a defined period of acute oxidative stress in NQO1-expressing cells.

  相似文献   

9.
Cytosolic NAD(P)H:(quinone-acceptor) oxidoreductase (EC 1.6.99.2) is a widely distributed, FAD-containing enzyme that catalyzes the obligatory two-electron reduction of quinones. Cibacron Blue is an inhibitor of this enzyme comparable in potency to dicoumarol. Pure quinone reductase was obtained from the livers of Sudan II (1-[2,4-dimethylphenylazo]-2-naphthol)-treated rats in a single step by Cibacron Blue-agarose chromatography. Cibacron Blue is a competitive inhibitor with respect to NADH (Ki = 170 nM) and is a noncompetitive inhibitor with respect to menadione (Ki = 540 nM). Addition of Cibacron Blue to quinone reductase resulted in a decrease and red shift of the enzyme-bound FAD peak at 450 nm. The titration of the absorbance changes for both FAD and Cibacron Blue could be fitted to curves describing an equilibrium binding equation with a KD of 300 nM and one binding site per enzyme subunit. Furthermore, the Cibacron Blue difference spectrum that resulted from binding to quinone reductase was abolished by dicoumarol. Significant amino acid homology between quinone reductase and the nucleotide binding regions of enzymes that bind to Cibacron Blue was found. These data indicate that Cibacron Blue is a useful ligand for the purification of quinone reductase and a new probe for its NAD(P)H binding site. Conditions for crystallizing rat liver quinone reductase are also described.  相似文献   

10.
Quinone oxidoreductases are flavoproteins that catalyze two-electron reduction and detoxification of quinones. This leads to the protection of cells against toxicity, mutagenicity, and cancer due to exposure to environmental and synthetic quinones and its precursors. Two cytosolic forms of quinone oxidoreductases [NAD(P)H:quinone oxidoreductase 1 (NQO1) and NRH:quinone oxidoreductase 2 (NQO2)] were previously identified, purified, and cloned. A role of cytosolic NQO1 in protection of cells from oxidative stress, cytotoxicity, and mutagenicity of quinones was established. Currently, we have characterized and partially purified the NQO activity from rat liver microsomes. This activity was designated as microsomal NQO (mNQO). The mNQO activity showed significantly higher affinity for NADH than NADPH as electron donors and catalyzed reduction of 2,6-dichlorophenolindophenol and menadione. The mNQO activity was insensitive to dicoumarol, a potent inhibitor of cytosolic NQO1. Western analysis of microsomal proteins revealed 29- and 18-kDa bands that cross-reacted with polyclonal antibodies raised against cytosolic NQO1. The mNQO activity was partially purified by solubilization of microsomes with detergent Chaps, ammonium sulfate fractionation, and DEAE-Sephacel column chromatography. The microsomal mNQO proteins are expected to provide additional protection after cytosolic NQOs against quinone toxicity and mutagenicity.  相似文献   

11.
The quinone oxidoreductases [NAD(P)H:quinone oxidoreductase1 (NQO1) and NRH:quinone oxidoreductase2 (NQO2)] are flavoproteins. NQO1 is known to catalyse metabolic detoxification of quinones and protect cells from redox cycling, oxidative stress and neoplasia. NQO2 is a 231 amino acid protein (25956 mw) that is 43 amino acids shorter than NQO1 at its carboxy-terminus. The human NQO2 cDNA and protein are 54 and 49% similar to the human liver cytosolic NQO1 cDNA and protein. Recent studies have revealed that NQO2 differs from NQO1 in its cofactor requirement. NQO2 uses dihydronicotinamide riboside (NRH) rather than NAD(P)H as an electron donor. Another difference between NQO1 and NQO2 is that NQO2 is resistant to typical inhibitors of NQO1, such as dicoumarol, Cibacron blue and phenindone. Flavones, including quercetin and benzo(a)pyrene, are known inhibitors of NQO2. Even though overlapping substrate specificities have been observed for NQO1 and NQO2, significant differences exist in relative affinities for the various substrates. Analysis of the crystal structure of NQO2 revealed that NQO2 contains a specific metal binding site, which is not present in NQO1. The human NQO2 gene has been precisely localized to chromosome 6p25. The human NQO2 gene locus is highly polymorphic. The NQO2 gene is ubiquitously expressed and induced in response to TCDD. Nucleotide sequence analysis of the NQO2 gene promoter revealed the presence of several cis-elements, including SP1 binding sites, CCAAT box, xenobiotic response element (XRE) and an antioxidant response element (ARE). The complement of these elements regulates tissue specific expression and induction of the NQO2 gene in response to xenobiotics and antioxidants. The in vivo role of NQO2 and its role in quinone detoxification remains unknown.  相似文献   

12.
Oxidative stress may be an important determinant of the severity of acute pancreatitis. One-electron reduction of oxidants generates reactive oxygen species (ROS) via redox cycling, whereas two-electron detoxification, e.g. by NAD(P)H:quinone oxidoreductase, does not. The actions of menadione on ROS production and cell fate were compared with those of a non-cycling analogue (2,4-dimethoxy-2-methylnaphthalene (DMN)) using real-time confocal microscopy of isolated perfused murine pancreatic acinar cells. Menadione generated ROS with a concomitant decrease of NAD(P)H, consistent with redox cycling. The elevation of ROS was prevented by the antioxidant N-acetyl-l-cysteine but not by the NADPH oxidase inhibitor diphenyliodonium. DMN produced no change in reactive oxygen species per se but significantly potentiated menadione-induced effects, probably via enhancement of one-electron reduction, since DMN was found to inhibit NAD(P)H:quinone oxidoreductase detoxification. Menadione caused apoptosis of pancreatic acinar cells that was significantly potentiated by DMN, whereas DMN alone had no effect. Furthermore, bile acid (taurolithocholic acid 3-sulfate)-induced caspase activation was also greatly increased by DMN, whereas DMN had no effect per se. These results suggest that acute generation of ROS by menadione occurs via redox cycling, the net effect of which is induction of apoptotic pancreatic acinar cell death. Two-electron detoxifying enzymes such as NAD(P)H:quinone oxidoreductase, which are elevated in pancreatitis, may provide protection against excessive ROS and exert an important role in determining acinar cell fate.  相似文献   

13.
beta-Lapachone activates a novel apoptotic response in a number of cell lines. We demonstrate that the enzyme NAD(P)H:quinone oxidoreductase (NQO1) substantially enhances the toxicity of beta-lapachone. NQO1 expression directly correlated with sensitivity to a 4-h pulse of beta-lapachone in a panel of breast cancer cell lines, and the NQO1 inhibitor, dicoumarol, significantly protected NQO1-expressing cells from all aspects of beta-lapachone toxicity. Stable transfection of the NQO1-deficient cell line, MDA-MB-468, with an NQO1 expression plasmid increased apoptotic responses and lethality after beta-lapachone exposure. Dicoumarol blocked both the apoptotic responses and lethality. Biochemical studies suggest that reduction of beta-lapachone by NQO1 leads to a futile cycling between the quinone and hydroquinone forms, with a concomitant loss of reduced NAD(P)H. In addition, the activation of a cysteine protease, which has characteristics consistent with the neutral calcium-dependent protease, calpain, is observed after beta-lapachone treatment. This is the first definitive elucidation of an intracellular target for beta-lapachone in tumor cells. NQO1 could be exploited for gene therapy, radiotherapy, and/or chemopreventive interventions, since the enzyme is elevated in a number of tumor types (i.e. breast and lung) and during neoplastic transformation.  相似文献   

14.
The model quinone compound menadione has been used to study the effects of oxidative stress in mammalian cells, and to investigate the mechanism of action of the quinone nucleus which is present in many anti-cancer drugs. We have used the alkaline single cell gel electrophoresis assay (comet assay) to investigate the effects of low doses of this compound on isolated human lymphocytes. We found that concentrations of menadime as low as 1μM were sufficient to induce strand breaks in these cells. Pre-incubation with the NAD(P)H quinone oxidoreductase inhibitor dicoumarol, enhanced the production of menadione-induced strand breaks. In contrast, the metal ion chelator 1,10-phenanthroline inhibited formation of strand breaks, although prolonged incubation with 1,10-phenanthroline in combination with menadione resulted in an increase in a population of very severely damaged nuclei. A marked variation in the response of lymphocytes from different donors to menadione, and in different samples from the same donor was also observed.  相似文献   

15.
We describe a rapid and direct assay of NAD(P)H:(quinone-acceptor) oxidoreductase (EC 1.6.99.2) activity in cultured cells suitable for identifying and purifying inducers of this detoxication enzyme. Hepa 1c1c7 murine hepatoma cells are plated in 96-well microtiter plates, grown for 24 h, and exposed to inducing agents for another 24 h. The cells are then lysed and quinone reductase activity is assayed by the addition of a reaction mixture containing an NADPH-generating system, menadione (2-methyl-1,4-naphthoquinone), and MTT [3-(4,-5-dimethylthiazo-2-yl)-2,5-diphenyltetrazolium bromide]. Quinone reductase catalyzes the reduction of menadione to menadiol by NADPH, and MTT is reduced nonenzymatically by menadiol resulting in the formation of a blue color which can be quantitated on a microtiter plate absorbance reader. The reaction is more than 90% dicoumarol inhibitable and menadione dependent. The results are comparable to those obtained by harvesting cells from larger plates, preparing cytosols, and carrying out spectrophotometric measurements.  相似文献   

16.
A direct involvement of the antioxidant enzyme NAD(P)H:quinone oxidoreductase (NQO1) in neuroprotection has not yet been shown. The aim of this study was to examine changes, localization and role of NQO1 after different neuronal injury paradigms. In primary cultures of rat cortex the activity of NQO1 was measured after treatment with ethylcholine aziridinium (AF64A; 40 micro m), inducing mainly apoptotic cell death, or oxygen-glucose deprivation (OGD; 120 min), which combines features of apoptotic and necrotic cell death. After treatment with AF64A a significant NQO1 activation started after 24 h. Sixty minutes after OGD a significant early induction of the enzyme was observed, followed by a second increase 24 h later. Enzyme activity was preferentially localized in glial cells in control and injured cultures, however, expression also occurred in injured neuronal cells. Inhibition of the NQO1 activity by dicoumarol, cibacron blue or chrysin (1-100 nM) protected the cells both after exposure to AF64A or OGD as assessed by the decreased release of lactate dehydrogenase. Comparable results were obtained in vivo using a mouse model of focal cerebral ischaemia. Dicoumarol treatment (30 nmol intracerebroventricular) reduced the infarct volume by 29% (p = 0.005) 48 h after the insult. After chemical induction of NQO1 activity by t-butylhydroquinone in vitro neuronal damage was exaggerated. Our data suggest that the activity of NQO1 is a deteriorating rather than a protective factor in neuronal cell death.  相似文献   

17.
NAD(P)H/quinone acceptor oxidoreductase type 1 (QR1) protects cells from cytotoxic and neoplastic effects of quinones though two-electron reduction. Kinetic experiments, docking, and binding affinity calculations were performed on a series of structurally varied quinone substrates. A good correlation between calculated and measured binding affinities from kinetic determinations was obtained. The experimental and theoretical studies independently support a model in which quinones (with one to three fused aromatic rings) bind in the QR1 active site utilizing a pi-stacking interaction with the isoalloxazine ring of the FAD cofactor.  相似文献   

18.
NAD(P)H:quinone oxidoreductases (NQOs) are flavoproteins that catalyze the oxidation of NADH or NADPH by various quinones and oxidation-reduction dyes. We have previously described a complementary DNA that encodes a dioxin-inducible cytosolic form of human NAD(P)H:quinone oxidoreductase (NQO1). In the present report we describe the nucleotide sequence and deduced amino acid sequence for a cDNA clone that is likely to encode a second form of NAD(P)H:quinone oxidoreductase (NQO2) which was isolated by screening a human liver cDNA library by hybridization with a NQO1 cDNA probe. The NQO2 cDNA is 976 nucleotides long and encodes a protein of 231 amino acids (Mr = 25,956). The human NQO2 cDNA and protein are 54% and 49% similar to human liver cytosolic NQO1 cDNA and protein, respectively. COS1 cells transfected with NQO2 cDNA showed a 5-7-fold increase in NAD(P)H:quinone oxidoreductase activity as compared to nontransfected cells when either 2,6-dichlorophenolindophenol or menadione was used as substrate. Western blot analysis of the expressed NQO1 and NQO2 cDNA proteins showed cross-reactivity with rat NQO1 antiserum, indicating that NQO1 and NQO2 proteins are immunologically related. Northern blot analysis shows the presence of one NQO2 mRNA of 1.2 kb in control and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treated human hepatoblastoma Hep-G2 cells and that TCDD treatment does not lead to enhanced levels of NQO2 mRNA as it does for NQO1 mRNA. Southern blot analysis of human genomic DNA suggests the presence of a single gene approximately 14-17 kb in length. The NQO2 gene locus is highly polymorphic as indicated by several restriction fragment length polymorphisms detected with five different restriction enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Procedures for assessing enzyme inhibition in living cells are an important tool in the study of the relevance of enzyme-catalyzed reactions and interactions in the human body. This paper presents the effects of flavonoids on NAD(P)H:quinone oxidoreductase 1 (NQO1) activity, by a newly developed method to measure NQO1 inhibition in intact cells. The principle of this method is based on the resorufin reductase activity of NQO1. The change in fluorescence in time was used to determine NQO1 activity in intact Chinese hamster ovary (CHO) cells genetically engineered to overexpress human NQO1. Applying this method to determine the inhibitory effects of reported in vitro NQO1 inhibitors (dicoumarol, 7,8-dihydroxyflavone, chrysin) showed that for all inhibitors tested, the IC50 in intact cells was at least 3 orders of magnitude higher than the IC50 in cell lysates. This result demonstrates that in vitro studies with purified NQO1 or with extracts from disrupted tissues are of limited value for obtaining insight into the situation in living cells. Possible factors underlying this discrepancy are being discussed. For the first time, we determined NQO1 inhibition by flavonoids in cells without disruption of the cells or addition of cofactors, enabling the assessment of enzymatic activity and the interaction of modulators of enzymatic activity in an intracellular situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号