首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tet repressor binding induced curvature of tet operator DNA.   总被引:1,自引:1,他引:1       下载免费PDF全文
Tet repressor dimer binds to two tet operator sites spaced by 30 bp in the Tn10 encoded tet regulatory DNA. The effect of repressor binding on the gel mobility of circular permutated DNA fragments containing either one or both operator sequences is reported. The EcoRI induced bending of DNA is used to compare the results with other protein binding induced structural perturbations of DNA. Tet repressor bends a DNA fragment with a single tet operator to an angle of 42 degrees +/- 7 degrees. The apparent bend angle of DNA fragments containing the tandem tet operator arrangement occupied by two Tet repressor dimers turns out to be 52 degrees +/- 9 degrees. These results are interpreted with respect to the end to end distances of the bent DNA fragments. They indicate that either the intervening tet regulatory DNA between the operators or the bound operator sequences themselves contain additional perturbations from the canonical B-DNA structure. This finding is discussed in the light of previously obtained results from CD, neutron scattering, and electrooptical studies.  相似文献   

2.
Binding of a Tet repressor mutant containing a single Trp43 residue in the tet operator recognition -helix leads to the quenching of the protein fluorescence down to about 23% in the case of the tet O1 operator and to 40% in the case of the tet O2 operator. We have used fluorescence detection to describe the binding equilibrium and kinetics of the Tet repressor interaction with the 20-bp DNA operators tet O1 and tet O2. Stopped-flow measurements in an excess of the tet operators performed in 5 mM NaCl or 150 mM NaCl indicate that the reaction can be described by at least three exponentials characterized by different relaxation times. The mechanism of interaction for both operators as well as for two salt concentrations used can be described as TetR + Operator Complex 1 Complex 2 Complex 3. Only the much faster process can be described as a second-order reaction characterized by a bimolecular rate constant equal to 2.8 × 106 M–1 sec–1 for both operators. The medium and slow processes may be described by relaxational times ranging from 50 msec to seconds. The results of the binding equilibrium measurements extrapolated to 1 M NaCl concentration, which reflects the specific nonionic interaction between TetR and tet operators, indicate K as equal to 3.2 × 104 and 4.0 × 105 M–1 for tet O1 and tet O2, respectively. The number of monovalent ions replaced upon binding can be calculated as about 5 and 3 for tet O1 and tet O2, respectively. The binding of Tet repressor to the operators leads to changes in the circular dichroism spectra of the DNA which could indicate transitions of B-DNA into A-like DNA structure.  相似文献   

3.
The contributions to catalysis of the conserved catalytic aspartate (Asp149) in the phosphorylase kinase catalytic subunit (PhK; residues 1-298) have been studied by kinetic and crystallographic methods. Kinetic studies in solvents of different viscosity show that PhK, like cyclic AMP dependent protein kinase, exhibits a mechanism in which the chemical step of phosphoryl transfer is fast and the rate-limiting step is release of the products, ADP and phosphoprotein, and possibly viscosity-dependent conformational changes. Site-directed mutagenesis of Asp149 to Ala and Asn resulted in enzymes with a small increase in K(m) for glycogen phosphorylase b (GPb) and ATP substrates and dramatic decreases in k(cat) (1.3 x 10(4) for Asp149Ala and 4.7 x 10(3) for Asp149Asn mutants, respectively). Viscosometric kinetic measurements with the Asp149Asn mutant showed a reduction in the rate-limiting step for release of products by 4.5 x 10(3) and a significant decrease (possibly as great as 2.2 x 10(3)) in the rate constant characterizing the chemical step. The date combined with the crystallographic evidence for the ternary PhK-AMPPNP-peptide complex [Lowe et al. (1997) EMBO J. 6, 6646-6658] provide powerful support for the role of the carboxyl of Asp149 in binding and orientation of the substrate and in catalysis of phosphoryl transfer. The constitutively active subunit PhK has a glutamate (Glu182) residue in the activation segment, in place of a phosphorylatable serine, threonine, or tyrosine residue in other protein kinases that are activated by phosphorylation. Site-directed mutagenesis of Glu182 and other residues involved in a hydrogen bond network resulted in mutant proteins (Glu182Ser, Arg148Ala, and Tyr206Phe) with decreased catalytic efficiency (approximate average decrease in k(cat)/K(m) by 20-fold). The crystal structure of the mutant Glu182Ser at 2.6 A resolution showed a phosphate dianion about 2.6 A from the position previously occupied by the carboxylate of Glu182. There was no change in tertiary structure from the native protein, but the activation segment in the region C-terminal to residue 182 showed increased disorder, indicating that correct localization of the activation segment is necessary in order to recognize and present the protein substrate for catalysis.  相似文献   

4.
5.
6.
B Hecht  G Müller    W Hillen 《Journal of bacteriology》1993,175(4):1206-1210
We have developed a new genetic selection system for Tet repressor mutations with a noninducible phenotype for tetracycline (TetRs). Extensive chemical mutagenesis of tetR yielded 93 single-site Tet repressor mutations. They map from residue 23 preceding the alpha-helix-turn-alpha-helix operator binding motif to residue 196 close to the C terminus of the repressor. Thirty-three of the mutations are clustered between residues 95 and 117, and another 27 are clustered between residues 131 to 158. Several of the mutants were characterized quantitatively in vivo for induction by tetracycline and anhydrotetracycline. While all of these are severely reduced in tetracycline-mediated induction, only some of them are affected for anhydrotetracycline-mediated induction.  相似文献   

7.
The N-terminal residues preceding the alpha-helix-turn-alpha-helix motif on the Tn10 Tet repressor protein were probed by oligonucleotide-directed deletion mutagenesis for their role in protein activity. All deletion mutants showed decreased repression in vivo, emphasizing the importance of the N terminus for tet operator binding. Only two of the mutants, TetR delta 2-23 and TetR delta 3-8 displayed a reduced intracellular protein level. The remaining deletion mutants showed either reduced binding to tet operator and inducibility by tetracycline or transdominance. We conclude that these deletions do not affect stability and overall protein structure. DNA binding activities of residue-wise increasing deletions, TetR delta 9 through TetR delta 9-13, reveal a pattern consistent with an alpha-helical structure of the affected residues. This conclusion is supported by the helical wheel projection and the hydrophobic moment profile calculated for the protein segment ranging from residues S7-V20. We propose that these residues form an amphipathic alpha-helix which packs closely against the alpha-helix-turn-alpha-helix motif and is essential for Tet repressor activity. The residues preceding this putative alpha-helix contribute to DNA binding, but no direct interactions with base pairs of tet operator were revealed in a loss of contact analysis. Individual mutation of the 4 charged residues to alanine at the N terminus shows that no single residue can account for the reduction in repression observed for the deletion mutants.  相似文献   

8.
We have analyzed the DNA binding properties of Tet-repressor mutants with single amino acid residue replacements at eight positions within the alpha-helix-turn-alpha-helix DNA-binding motif. A saturation mutagenesis of Gln38, Pro39, Thr40, Tyr42, Trp43 and His44 in the second alpha-helix was performed; in addition, several substitutions of Thr27 and Arg28 in the first alpha-helix were constructed. The abilities of these mutant repressors to bind a set of 16 operator variants were determined and revealed 23 new binding specificities. All repressor mutants with DNA-binding activity were inducible by tetracycline, while mutants lacking binding activity were trans-dominant over the wild-type. All mutant proteins were present at the same intracellular steady-state concentrations as the wild-type. These results suggest the structural integrity of the mutant repressors. On the basis of the new recognition specificities, five contacts between a repressor monomer and each operator half-site and the chemical nature of these repressor-operator interactions are proposed. We suggest that Arg28 contacts guanine of the G.C base-pair at operator position 2 with two H-bonds, Gln38 binds adenine of the A.T base-pair at position 3 with two H-bonds, and the methyl group of Thr40 participates in a van der Waals' contact with cytosine of the G.C base-pair at position 6 of tet operator. A previously unrecognized type of interaction is proposed for Pro39, which inserts its side-chain between the methyl groups of the thymines of T.A and A.T base-pairs at positions 4 and 5. Computer modeling of these proposed contacts reveals that they are possible using the canonical structures of the helix-turn-helix motif and B-DNA. These contacts suggest an inverse orientation of the Tet repressor helix-turn-helix with respect to the operator center as compared with non-inducible repressor-operator complexes, and are supported by similar contacts of other repressor-operator complexes.  相似文献   

9.
K C Hayashibara  G L Verdine 《Biochemistry》1992,31(46):11265-11273
In the template-directed interference (TDI) footprinting method (Hayashibara & Verdine, 1990), analogs of the naturally occurring DNA bases are incorporated into DNA enzymatically and assayed for interference of sequence-specific binding by a protein. Here we extend this method to include analysis of contacts of amino acid residues to the major groove surface of cytosine residues (TDI-C footprinting). The base analog 5-aza-2'-deoxycytidine, in which the hydrophobic 5-CH of cytosine is replaced by a hydrophilic aza nitrogen, was incorporated into DNA via the corresponding 5'-triphosphate. The analog was found to base pair with guanine during polymerization, resulting in substitution of 2'-deoxycytidine residues. TDI-C footprints of the lambda repressor-OL1 operator complex revealed apparent contacts to the cytosines at operator positions 7 and 8. Inspection of the high-resolution X-ray crystal structure of the lambda-OL1 complex (Clarke et al., 1992; Beamer & Pabo, 1992) revealed that C8 makes a hydrogen binding contact with the Lys3; C7, on the other hand, makes a previously unnoticed hydrophobic contact with the alkane side chain of Lys3. In only the consensus operator half-site was cytosine interference observed, suggesting that the nonconsensus arm binds DNA very differently if at all. The N-terminal arm represents the archetypal case of a sequence-specific peptide-DNA complex characterized at high resolution; thus, the present studies suggest strategies for design and screening of DNA binding peptides. The finding that 5-aza-2'-deoxycytidine inhibits sequence-specific DNA binding proteins may suggest an alternative rationale for the biological activities of this and related azapyrimidine nucleosides.  相似文献   

10.
The synthesis of 8-azido-2'-deoxyadenosine-5'-triphosphate is described. The photoreactive dATP analog was characterized by thin layer chromatography, proton resonance spectroscopy, infrared spectroscopy and UV spectroscopy. Its photolysis upon UV irradiation was studied. After incorporation of this dATP analog into DNA containing the tet operator sequence the investigation of the interactions between tet operator DNA and Tet repressor protein by UV photocross-linking becomes possible. Photocross-linking of protein to DNA was demonstrated by the reduced migration of the DNA in SDS polyacrylamide gel electrophoresis. Addition of the inducer tetracycline prior to UV irradiation significantly reduces the DNA-protein cross-linking rate. The long wave UV light applied here does not significantly alter the DNA or the protein under the photocross-linking conditions.  相似文献   

11.
The hetero-oligomeric eukaryotic chaperonin TRiC (TCP-1-ring complex, also called CCT) interacts cotranslationally with a diverse subset of newly synthesized proteins, including actin, tubulin, and luciferase, and facilitates their correct folding. A photocross-linking approach has been used to map the contacts between individual chaperonin subunits and ribosome-bound nascent chains of increasing length. Whereas a cryo-EM study suggests that chemically denatured actin interacts with only two TRiC subunits (delta and either beta or epsilon), actin and luciferase chains photocross-link to at least six TRiC subunits (alpha, beta, delta, epsilon, xi, and theta) at different stages of translation. Furthermore, the photocross-linking of actin, but not luciferase, nascent chains to TRiC subunits zeta and theta was length-dependent. In addition, a single photoreactive probe incorporated at a unique site in actin nascent chains of different lengths reacted covalently with multiple TRiC subunits, thereby indicating that the nascent chain samples the polypeptide binding sites of different subunits. We conclude that elongating actin and luciferase nascent chains contact multiple TRiC subunits upon emerging from the ribosome, and that the TRiC subunits contacted by nascent actin change as it elongates and starts to fold.  相似文献   

12.
We analysed the conformational states of free, tet operator-bound and anhydrotetracycline-bound Tet repressor employing a Trp-scanning approach. The two wild-type Trp residues in Tet repressor were replaced by Tyr or Phe and single Trp residues were introduced at each of the positions 162-173, representing part of an unstructured loop and the N-terminal six residues of alpha-helix 9. All mutants retained in vivo inducibility, but anhydrotetracycline-binding constants were decreased up to 7.5-fold when Trp was in positions 169, 170 and 173. Helical positions (168-173) differed from those in the loop (162-167) in terms of their fluorescence emission maxima, quenching rate constants with acrylamide and anisotropies in the free and tet operator-complexed proteins. Trp fluorescence emission decreased drastically upon atc binding, mainly due to energy transfer. For all proteins, either free, tet operator bound or anhydrtetracycline-bound, mean fluorescence lifetimes were determined to derive quenching rate constants. Solvent-accessible surfaces of the respective Trp side chains were calculated and compared with the quenching rate constants in the anhydrotetracycline-bound complexes. The results support a model, in which residues in the loop become more exposed, whereas residues in alpha-helix 9 become more buried upon the induction of TetR by anhydrotetracycline.  相似文献   

13.
Each of 22 amino acids in the proposed alpha-helix-turn-alpha-helix operator binding motif of the Tn10 encoded Tet repressor was replaced by alanine and one residue was replaced by valine to determine their role in tet operator recognition by a 'loss of contact' analysis with 16 operator variants. One class of amino acids consisting of T27 and R28 in the first alpha-helix and L41, Y42, W43 and H44 in the recognition alpha-helix are quantitatively most important for wild-type operator binding. These residues are probably involved in the structural architecture of the motif. A second class of residues is quantitatively less important for binding, but determines specificity by forming base pair specific contacts to three positions in tet operator. This property is most clearly demonstrated for Q38 and P39 and to a lesser extent for T40 at the N-terminus of the recognition alpha-helix. The contacted operator base pairs indicate that the N-terminus of the recognition alpha-helix is located towards the palindromic center in the repressor-operator complex. Although the orientation of the recognition alpha-helix in the Tet repressor-tet operator complex is inversed as compared with the lambda- and 434 repressor-operator complexes, the reduced operator binding of the TA27 mutation in the first alpha-helix suggests that the hydrogen bonding networks connecting the two alpha-helices may be similar in these proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The Tn10-encoded Tet repressor contains two tryptophan residues at positions 43 and 75. The typical tryptophan fluorescence is decreased upon binding of tet operator. The Tet repressor gene was engineered to replace either or both of the Trp codons by Phe codons. The resulting single tryptophan mutants are called F43 and F75 and the double mutant F43F75. The mutant proteins were purified to homogeneity. They recognize tet operator DNA only in the absence of the inducer tetracycline, indicating an intact tertiary structure of the engineered proteins. F75 and wild-type bind tet operator with the same association constant. The association constants of F43 and F43F75 with tet operator are about 3 orders of magnitude smaller. This indicates that Trp43 is important for tet operator recognition. Trp43 fluorescence is completely quenched in the complex with tet operator DNA while Trp75 remains unaffected. Binding to nonspecific DNA leads only to a 40% decrease of Trp43 fluorescence. This is interpreted as the contribution of the changed environment while the complete quench reflects a tight sequence-specific contact of tryptophan 43 to tet operator DNA. Trp43 is solvent-exposed, while Trp75 is buried in the hydrophobic interior of the protein. These results are discussed in light of the alpha-helix turn-alpha-helix DNA binding motif deduced from homology to other repressor proteins.  相似文献   

15.
A saturating oligonucleotide-directed mutagenesis of both tet operators in the tet regulatory sequence was performed yielding mutants with four identical base pair exchanges at equivalent positions in the four tet operator half sides. The mutants were cloned between bipolar lacZ and galK indicator genes on a multicopy plasmid allowing the quantitative analysis of their effects in vivo. In the absence of Tet repressor the mutations lead to considerably different expression levels of both genes. They are discussed with respect to the promoter consensus sequences. In particular, the -10 region of the in vivo active tetPR2 promoter is unambiguously defined by these results. In the presence of Tet repressor most of the mutants exhibit a lower affinity for that protein as determined quantitatively by their reduced expression levels. In general, tet operator recognition is most strongly affected by alterations of base pairs near the center of the palindromic sequence. The most important position is the third base pair, followed by base pairs two, four, five and six, the latter showing similar effects as base pair one. At each position, the four possible base pairs show different affinities for Tet repressor. They are discussed according to their exposure of H-bond donors and -acceptors in the major and minor grooves of the B-DNA. The results are in agreement with major groove contacts at positions two, three and five. At position four a low potential correlation of efficiencies with the H-bonding in the minor groove is found, while mutations at position six seem to influence repressor binding by other mechanisms.  相似文献   

16.
Plasmid constructs containing a wild-type (O+) lac operator upstream of an operator-constitutive (Oc) lac control element exhibit a length-dependent, oscillatory pattern of repression of expression of the regulated gene as interoperator spacing is varied from 115 to 177 base pairs (bp). Both the length dependence and the periodicity of repression are consistent with a thermodynamic model involving a stable looped complex in which bidentate lac repressor interacts simultaneously with both O+ and Oc operators. The oscillatory pattern of repression with distance occurs with a period approximating the helical repeat of DNA and presumably reflects the necessity for proper alignment of interacting operators along the helical face of the DNA. In the length regime examined, the presence of the upstream operator enhances repression between 6-fold and 50-fold depending upon phasing. This reflects a torsional rigidity of DNA in vivo that is consistent with in vitro measurements. The oscillatory pattern of repression is best fit with a period of either 9.0 or 11.7 bp/cycle but not 10.5 bp/cycle. This periodicity is interpreted as reflecting the average helical repeat of the 40-bp interoperator region of plasmid DNA in vivo, suggesting that the local helical repeat of DNA in vivo may differ significantly from 10.5 bp/turn. The apparent persistence length needed to fit the data (aapp) is only one-fifth the standard in vitro value. This low value of aapp may be due in part to DNA bending induced by catabolite activator protein (CAP) bound to its site between the interacting operators.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Six pRNAs (p for packaging) of bacterial virus phi29 form a hexamer complex that is an essential component of the viral DNA translocating motor. Dimers, the building block of pRNA hexamer, assemble in the order of dimer --> tetramer --> hexamer. The two-dimensional structure of the pRNA monomer has been investigated extensively; however, the three-dimensional structure concerning the distance constraints of the three stems and loops are unknown. In this report, we probed the three-dimensional structure of pRNA monomer and dimer by photo affinity cross-linking with azidophenacyl. Bases 75-81 of the left stem were found to be oriented toward the head loop and proximate to bases 26-31 in a parallel orientation. Chemical modification interference indicates the involvement of bases 45-71 and 82-91 in dimer formation. Dimer was formed via hand-in-hand contact, a novel RNA dimerization that in some aspects is similar to the kissing loops of the human immunodeficiency virus. The covalently linked dimers were found to be biologically active. Both the native dimer and the covalently linked dimer were found by cryo-atomic force microscopy to be similar in global conformation and size.  相似文献   

18.
An intrinsic steady-state fluorescent system for bovine adrenodoxin has been developed to study the protein structure in solution and the processes involved in protein unfolding. Since mature Adx contains no natural Trp residue as internal probe, all of the aromatic amino acids, tyrosine at position 82 and four phenylalanines at positions 11, 43, 59 and 64, were at each case replaced by tryptophan. The resulting single tryptophan containing mutants kept their biological function compared with the wild type. Molecular modeling studies verify thermal unfolding experiments which point to a dramatically reduced stability caused by steric hindrance only for mutant F59W. Fluorescence spectra, Stern-Volmer quenching constants, and fluorescence energy transfer calculations indicated the analyzed positions to be situated in solution in the same immediate environment as in the crystal structure. Unfolding experiments with Gdn-HCl and time-resolved stopped-flow measurements provide evidence for differential stability and a chronologically ordered unfolding mechanism of the different fluorescence probe positions in the protein.  相似文献   

19.
In regions of focal adhesion, cells adhere to a substrate through the interaction of extracellular matrix proteins and transmembrane integrins which are coupled to the cell skeleton. It is generally assumed that the plasma membrane is brought to close proximity to the substrate there. We used the novel method of fluorescence interference contrast (FLIC) microscopy to measure the distance of the plasma membrane of GD25 fibroblasts on silica coated with fibronectin. We correlated the distance map with the distribution of vinculin tagged with green fluorescent protein. We found that the major part of the membrane was separated by 50 nm from the substrate. With respect to this plateau, we found spots of upward deformation and of close adhesion as well as a general ruffling of the membrane. There was no correlation between the areas of close adhesion and the distribution of vinculin. We conclude that focal adhesion does not imply a close attachment of membrane and substrate.  相似文献   

20.
Highlights? EGCs can erase DNA methylation at ICRs in somatic cells after fusion ? EGCs selectively induce 5hmC accumulation at ICRs in the somatic genome ? Conversion of 5mC to 5hmC at these imprinted domains requires Tet1 ? Tet2 depletion results in delayed reprogramming by EGCs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号