首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Gelman Envirochek capsule is a membrane device for the simultaneous concentration of Cryptosporidium oocysts and Giardia cysts from water. Samples are filtered through a Supor® polyethersulphone membrane with a 1 μm absolute pore size. (Oo)cysts are mechanically eluted from the membrane fibre using a wrist action shaker and a non-ionic detergent and concentrated by centrifugation. The concentrate can be further processed using any separation technique to separate the target organisms from other debris. This method enables multiple samples to be processed within 1 h. Recoveries from seeded tap and source water samples were in excess of 70% for Cryptosporidium and 80% for Giardia.  相似文献   

2.
AIMS: The aim of this study was to determine the effectiveness of continuous separation channel centrifugation for concentrating water-borne pathogens of various taxa and sizes. METHODS AND RESULTS: Cryptosporidium parvum oocysts, Giardia lamblia cysts, Encephalitozoon intestinalis spores and Escherichia coli were seeded into different water matrices at densities ranging from 5 to 10 000 organisms l(-1) and recovered using continuous separation channel centrifugation. All pathogens were enumerated on membrane filters using microscopy. Recovery efficiencies were usually > 90%. Oocyst recovery did not vary with source water turbidity or with centrifuge flow rate up to 250 ml min(-1). Based on excystation, this concentration method did not alter oocyst viability. CONCLUSIONS: Continuous separation channel centrifugation is an effective means of concentrating water-borne pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: Methods are needed for detecting pathogens in drinking water to ensure public health. The first step for any pathogen detection procedure is concentration. However, this step has been problematic because recovery efficiencies of conventional methods, like filtration, are often low and variable, which may lead to false negatives. Continuous separation channel centrifugation can simultaneously concentrate multiple pathogens as small as 1 microm with high and reproducible efficiency in a variety of water matrices.  相似文献   

3.
Methodology for enumeration of coliphages in foods.   总被引:2,自引:1,他引:1       下载免费PDF全文
The effects of eluent composition, pH, and chaotropic agents on the recovery of T2, MS2, and indigenous coliphages from various foods were investigated. Additionally, methods of sample suspension and clarification were evaluated for coliphage recovery and application to various foods. Clarified sample suspensions were assayed for coliphages with a modified agar layer technique and appropriate Escherichia coli hosts. Centrifugation and polypropylene mesh filtration were more rapid and effective than glass wool filtration for clarification of sample suspensions and subsequent recovery of coliphages. Blending, stomaching, and shaking procedures were generally comparable for sample liquefaction and release of coliphages from foods. Complex basal eluents, EC medium and 1% casein, were generally more effective than a less complex eluent, phosphate buffer, for elution of coliphages from foods. For most foods, incorporation of sodium chloride or chaotropic agents, i.e., sodium trichloroacetate, urea, Tween 80, Triton X-100, and sodium nitrate, into basal eluents did not enhance recovery of coliphages. Indigenous coliphage recovery was not affected by sample suspension pH over a range of 6.0 to 9.0. With an optimal procedure, i.e., EC medium eluent, blending, and centrifugation, the recovery of T2 and MS2 ranged from 48 to 81% and from 58 to 100%, respectively, depending on the food type.  相似文献   

4.
The effects of eluent composition, pH, and chaotropic agents on the recovery of T2, MS2, and indigenous coliphages from various foods were investigated. Additionally, methods of sample suspension and clarification were evaluated for coliphage recovery and application to various foods. Clarified sample suspensions were assayed for coliphages with a modified agar layer technique and appropriate Escherichia coli hosts. Centrifugation and polypropylene mesh filtration were more rapid and effective than glass wool filtration for clarification of sample suspensions and subsequent recovery of coliphages. Blending, stomaching, and shaking procedures were generally comparable for sample liquefaction and release of coliphages from foods. Complex basal eluents, EC medium and 1% casein, were generally more effective than a less complex eluent, phosphate buffer, for elution of coliphages from foods. For most foods, incorporation of sodium chloride or chaotropic agents, i.e., sodium trichloroacetate, urea, Tween 80, Triton X-100, and sodium nitrate, into basal eluents did not enhance recovery of coliphages. Indigenous coliphage recovery was not affected by sample suspension pH over a range of 6.0 to 9.0. With an optimal procedure, i.e., EC medium eluent, blending, and centrifugation, the recovery of T2 and MS2 ranged from 48 to 81% and from 58 to 100%, respectively, depending on the food type.  相似文献   

5.
Methods for the simultaneous detection of Cryptosporidium parvum oocysts and Giardia cysts from water are described and their relative recovery efficiencies are assessed for seeded samples of both tap and river water. Cartridge filtration, membrane filtration, and calcium carbonate flocculation were evaluated, and steps to optimize the concentration procedures were undertaken. Increasing centrifugation to 5,000 x g, coupled with staining in suspension, was found to increase the overall efficiency of recovery of both cysts and oocysts. Cartridge filtration for both cysts and oocysts was examined by use of 100-liter volumes of both tap and river water. Improvements in recovery were observed for Cryptosporidium oocysts after extra washes of the filters. Calcium carbonate flocculation gave the maximum recovery for both Cryptosporidium oocysts and Giardia cysts and for both water types. A variety of 142-mm membranes was examined by use of 10-liter seeded samples of tap and river water. Cellulose acetate with a 1.2-micron pore size provided the best results for Cryptosporidium oocysts, and cellulose nitrate with a 3.0-micron pore size did so for Giardia cysts.  相似文献   

6.
Membrane filter adsorption-elution technology has been extensively used for the concentration and detection of animal viruses from large volumes of water. This study describes the development of positively charged microporous filters (Zeta Plus) for the concentration of coliphages from large volumes of water and wastewater. Four different coliphages were studied: MS-2, phi X174, T2, and T4. Positively charged microporous filters were found to efficiently adsorb these coliphages from tap water, sewage, and lake water at neutral pH. Adsorbed viruses were eluted with a 1:1 mixture of 8% beef extract and 1 M sodium chloride at pH 9. Using this method, coliphages could be concentrated from 17-liter volumes of tap water with recoveries ranging from 34 to 100%. Coliphages occurring naturally in raw and secondarily treated sewage were recovered with average efficiencies of 56.5 and 55.0%, respectively. This method should be useful in isolation of rare phages, the ecology of phages in natural waters, and the evaluation of water quality.  相似文献   

7.
Strong adherence of bacteria, yeast, erythrocytes, leukocytes, platelets, spores, and polystyrene spheres to membrane filter materials was noted during filtration through membranes with pore size diameters much larger than the particles themselves. Quantitative recovery on the membrane filters of these particles from low-concentration suspensions was achieved during gravity- or vacuum-assisted filtration through membranes with pore diameters as much as 30 times that of the filtered particles. Mechanical sieving was not responsible. The phenomenon was judged to be electrostatic. It could be partially blocked by pretreating the filter with a nonionic surfactant (Tween 20), and elution of adherent particles was achieved with 0.05% Tween 20. Gram-positive cocci were removed from suspension more efficiently than gram-negative rods. The commonly used cellulose membranes adsorbed more bacteria, blood cells, and other particles than did polycarbonate filters. Of lesser adsorptive capacity were vinyl acetate, nylon, acrylic, and Teflon membranes. Backwashing with saline, serum, 6% NaCl, dextran solutions, or phosphate buffers of varying molality and pH removed only a fraction of adherent particles. Tween 20 (0.05%) eluted up to 45% of adherent particles in a single back-filtration. Selected filters quantitatively removed the particles tested, which then could be washed and subjected to reagents for a variety of purposes. It is important to anticipate the removal of particles during membrane filtration, since it is not a simple mechanical event.  相似文献   

8.
The development of a simple method for concentrating enteroviruses from oysters is described. In this method viruses in homogenized oyster tissues are efficiently absorbed to oyster solids at pH 5.5 and low salt concentration. After low-speed centrifugation, the supernatant is discarded and viruses are eluted from the sedimented oyster solids by resuspending them in pH 3.5 glycine-buffered saline. The solids are then removed by low-speed centrifugation, and the virus-containing supernatant is filtered through a 0.2-micronm porosity filter to remove bacteria and other small particulates without removing viruses. The virus-containing filtrate is then concentrated to a volume of a few milliliters by ultrafiltration, and the concentrate obtained is inoculated directly into cell cultures for virus assay. When tested with pools of oysters experimentally contaminated with small amounts of different enteroviruses, virus recovery efficiency averaged 63%.  相似文献   

9.
The extent of reduction in selected microorganisms was tested during both aerobic wastewater treatment and anaerobic digestion of sludge at the wastewater treatment plant in Ottawa to compare the removal of two encysted pathogenic protozoa with that of microbial indicators. Samples collected included the raw wastewater, the primary effluent, the treated wastewater, the mixed sludge, the decanted liquor, and the cake. All of the raw sewage samples were positive for Cryptosporidium oocysts and Giardia cysts, as well as for the other microorganisms tested. During aerobic wastewater treatment (excluding the anaerobic sludge digestion), Cryptosporidium and Giardia were reduced by 2.96 log10 and 1.40 log10, respectively. Clostridium perfringens spores, Clostridium perfringens total counts, somatic coliphages, and heterotrophic bacteria were reduced by approximately 0.89 log10, 0.96 log10, 1.58 log10, and 2.02 log10, respectively. All of the other microorganisms were reduced by at least 3.53 log10. Sludge samples from the plant were found to contain variable densities of microorganisms. Variability in microbial concentrations was sometimes great between samples, stressing the importance of collecting a large number of samples over a long period of time. In all cases, the bacterial concentrations in the cake (dewatered biosolids) samples were high even if reductions in numbers were observed with some bacteria. During anaerobic sludge digestion, no statistically significant reduction was observed for Clostridium perfringens, Enterococcus sp., Cryptosporidium oocysts, and Giardia cysts. A 1-2 log10 reduction was observed with fecal coliforms and heterotrophic bacteria. However, the method utilized to detect the protozoan parasites does not differentiate between viable and nonviable organisms. On the other hand, total coliforms and somatic coliphages were reduced by 0.35 log10 and 0.09 log10, respectively. These results demonstrate the relative persistence of the protozoa in sewage sludge during wastewater treatment.  相似文献   

10.
The steps of two immunofluorescent-antibody-based detection methods were evaluated for their efficiencies in detecting Giardia cysts and Cryptosporidium oocysts. The two methods evaluated were the American Society for Testing and Materials proposed test method for Giardia cysts and Cryptosporidium oocysts in low-turbidity water and a procedure employing sampling by membrane filtration, Percoll-Percoll step gradient, and immunofluorescent staining. The membrane filter sampling method was characterized by higher recovery rates in all three types of waters tested: raw surface water, partially treated water from a flocculation basin, and filtered water. Cyst and oocyst recovery efficiencies decreased with increasing water turbidity regardless of the method used. Recoveries of seeded Giardia cysts exceeded those of Cryptosporidium oocysts in all types of water sampled. The sampling step in both methods resulted in the highest loss of seeded cysts and oocysts. Furthermore, much higher recovery efficiencies were obtained when the flotation step was avoided. The membrane filter method, using smaller tubes for flotation, was less time-consuming and cheaper. A serious disadvantage of this method was the lack of confirmation of presumptive cysts and oocysts, leaving the potential for false-positive Giardia and Cryptosporidium counts when cross-reacting algae are present in water samples.  相似文献   

11.
Strong adherence of bacteria, yeast, erythrocytes, leukocytes, platelets, spores, and polystyrene spheres to membrane filter materials was noted during filtration through membranes with pore size diameters much larger than the particles themselves. Quantitative recovery on the membrane filters of these particles from low-concentration suspensions was achieved during gravity- or vacuum-assisted filtration through membranes with pore diameters as much as 30 times that of the filtered particles. Mechanical sieving was not responsible. The phenomenon was judged to be electrostatic. It could be partially blocked by pretreating the filter with a nonionic surfactant (Tween 20), and elution of adherent particles was achieved with 0.05% Tween 20. Gram-positive cocci were removed from suspension more efficiently than gram-negative rods. The commonly used cellulose membranes adsorbed more bacteria, blood cells, and other particles than did polycarbonate filters. Of lesser adsorptive capacity were vinyl acetate, nylon, acrylic, and Teflon membranes. Backwashing with saline, serum, 6% NaCl, dextran solutions, or phosphate buffers of varying molality and pH removed only a fraction of adherent particles. Tween 20 (0.05%) eluted up to 45% of adherent particles in a single back-filtration. Selected filters quantitatively removed the particles tested, which then could be washed and subjected to reagents for a variety of purposes. It is important to anticipate the removal of particles during membrane filtration, since it is not a simple mechanical event.  相似文献   

12.
A method is described for the second-step concentration of viruses from large volumes of drinking and surface waters. Seeded viruses present in the first eluate, performed with 50 mM glycine buffer, pH 11.5, were adsorbed on a preformed magnesium hydroxide precipitate. After low-speed centrifugation they were desorbed and adjusted to pH 7 with McIlvaine citrate-phosphate buffer. In these experimental conditions 90% of the viruses present in the 300-mL first eluate were reconcentrated in a final volume of 40 mL. The recovery efficiency was independent of either virus concentration or water quality.  相似文献   

13.
Methods are described for the efficient concentration of an enterovirus from large volumes of tap water, sewage, and seawater. Virus in acidified water (pH 3.5) in the presence of aluminum chloride was adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in a series at flow rates of up to 37.8 liters (10 gallons) per min. Adsorbed viruses were eluted from the filters with glycine buffer (pH 10.5 to 11.5), and the eluate was reconcentrated by using a combination of aluminum flocculation followed by hydroextraction. With this procedure, poliovirus in large volumes of tap water, seawater, and sewage could be concentrated with an average efficiency of 52, 53, and 50%, respectively. It was demonstrated that this method is capable of detecting surface solid-associated viruses originating from sewage treatment plants. No difference in virus recovery between laboratory batch studies and a set-up with acid-salt injection was found. This unified scheme for the concentration of viruses has many advantages over previously described systems. These include: high operating flow rates, low weight and small size, effectiveness with a variety of waters with widely varying qualities, and filters with a high resistance to clogging.  相似文献   

14.
Methods are described for the efficient concentration of an enterovirus from large volumes of tap water, sewage, and seawater. Virus in acidified water (pH 3.5) in the presence of aluminum chloride was adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in a series at flow rates of up to 37.8 liters (10 gallons) per min. Adsorbed viruses were eluted from the filters with glycine buffer (pH 10.5 to 11.5), and the eluate was reconcentrated by using a combination of aluminum flocculation followed by hydroextraction. With this procedure, poliovirus in large volumes of tap water, seawater, and sewage could be concentrated with an average efficiency of 52, 53, and 50%, respectively. It was demonstrated that this method is capable of detecting surface solid-associated viruses originating from sewage treatment plants. No difference in virus recovery between laboratory batch studies and a set-up with acid-salt injection was found. This unified scheme for the concentration of viruses has many advantages over previously described systems. These include: high operating flow rates, low weight and small size, effectiveness with a variety of waters with widely varying qualities, and filters with a high resistance to clogging.  相似文献   

15.
The accurate determination of the presence of Giardia cysts and Cryptosporidium oocysts in surface waters requires a reliable method for the detection and enumeration of these pathogenic organisms. Published methods have usually reported recovery efficiencies of less than 50% for both cysts and oocysts. Typically, the losses are greater for Cryptosporidium oocysts than they are for Giardia cysts. The purpose of this study was to examine procedures used for sample collection, elution, concentration, and clarification to determine when losses of cysts and oocysts occurred during processing. The results showed that major losses of cysts and oocysts occurred during centrifugation and clarification. Depending on the centrifugation force, oocyst losses of as high as 30% occurred for each centrifugation step. A 1.15-specific-gravity Percoll-sucrose gradient was needed to optimize recovery of oocysts from natural water samples. Minor improvements in the procedure could be accomplished by selecting a filter other than the recommended 1-micron-pore-size (nominal-porosity) polypropylene filter.  相似文献   

16.
A method is described for the efficient concentration of viruses from large volumes of tap water in relatively short time periods. Virus in acidified tap water in the presence of aluminum chloride is adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in series at flow rates of up to 37.8 liters/min (10 gallons/min). This filter series is capable of efficiently adsorbing virus from greater than 19,000 liters (5,000 gallons) of treated tap water. Adsorbed viruses are eluted from the filters with glycine buffer (pH 10.5) and the eluate is reconcentrated using an aluminum flocculation process. Viruses are eluted from the aluminum floc with glycine buffer (pH 11.5). Using this procedure, viruses in 1,900 liters (500 gallons) of tap water can be concentrated 100,000-fold in 3 h with an average recovery of 40 to 50%.  相似文献   

17.
Determination of the concentration of Legionella pneumophila in environmental water sites may be useful for the prediction of the risk of a particular site's causing Legionnaires' disease as well as for experimental studies of environmental growth or remediation. The precision and accuracy of recovery of two different L. pneumophila strains from seeded tap water samples were studied, with either filtration or centrifugation used to concentrate the bacteria. L. pneumophila grown on BCYE alpha agar or in Acanthamoeba castellanii was used to seed sterile tap water. Water samples were then either filtered (0.2-microns pore size) or centrifuged. An average of 53% (95% confidence interval [CI], 47 to 58%; n = 45) of the seeded L. pneumophila organisms were recovered by filtration with flat polycarbonate membranes. This recovery was significantly higher (P < 0.01) than that obtained by filtration with cast membranes (mean, 13%; 95% CI, 11 to 38%; n = 4) or by centrifugation at 3,800 x g for 30 min (mean, 14%; 95% CI, 2 to 25%; n = 9) or at 8,150 x g for 15 min (mean, 32%; 95% CI, 28 to 36%; n = 19). Recovery of L. pneumophila was not significantly different whether the bacteria were grown on plates or in amoebae. Use of a selective medium did not decrease the recovery efficiency, but preplating acid treatment of specimens caused an approximately 30% bacterial loss.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A method is described for the efficient concentration of viruses from large volumes of highly turbid estuary water. Virus in acidified seawater in the presence of aluminum chloride is adsorbed to a 10-in. (about 25.4 cm) fibreglass depth cartridge and 2- and 0.65-micron epoxy-fibreglass filters in series. This filter series is capable of efficiently adsorbing enteroviruses from 50 U.S. gallons (about 190) of estuary water of varying salinity and turbidity. Adsorbed viruses were eluted from the filters with glycine buffer (pH 11.5) and the eluate reconcentrated by using a precipitate formed by the addition of ferric chloride. Viruses were eluted from this precipitate with fetal calf serum. Using this procedure, four different enteroviruses in 50 gallons (about 190) of estuary water were concentrated 9 000- to 12 000-fold with an overall efficiency of 41%.  相似文献   

19.
A method is described for the efficient concentration of viruses from large volumes of tap water in relatively short time periods. Virus in acidified tap water in the presence of aluminum chloride is adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in series at flow rates of up to 37.8 liters/min (10 gallons/min). This filter series is capable of efficiently adsorbing virus from greater than 19,000 liters (5,000 gallons) of treated tap water. Adsorbed viruses are eluted from the filters with glycine buffer (pH 10.5) and the eluate is reconcentrated using an aluminum flocculation process. Viruses are eluted from the aluminum floc with glycine buffer (pH 11.5). Using this procedure, viruses in 1,900 liters (500 gallons) of tap water can be concentrated 100,000-fold in 3 h with an average recovery of 40 to 50%.  相似文献   

20.
We evaluated the efficiency of five membrane filters for recovery of Cryptosporidium parvum oocysts and Giardia lamblia cysts. These filters included the Pall Life Sciences Envirochek (EC) standard filtration and Envirochek high-volume (EC-HV) membrane filters, the Millipore flatbed membrane filter, the Sartorius flatbed membrane filter (SMF), and the Filta-Max (FM) depth filter. Distilled and surface water samples were spiked with 10 oocysts and 10 cysts/liter. We also evaluated the recovery efficiency of the EC and EC-HV filters after a 5-s backwash postfiltration. The backwashing was not applied to the other filtration methods because of the design of the filters. Oocysts and cysts were visualized by using a fluorescent monoclonal antibody staining technique. For distilled water, the highest percent recovery for both the oocysts and cysts was obtained with the FM depth filter. However, when a 5-s backwash was applied, the EC-HV membrane filter (EC-HV-R) was superior to other filters for recovery of both oocysts (n = 53 +/- 15.4 per 10 liters) and cysts (n = 59 +/- 11.5 per 10 liters). This was followed by results of the FM depth filter (oocysts, 28.2 +/- 8, P = 0.015; cysts, 49.8 +/- 12.2, P = 0.4260), and SMF (oocysts, 16.2 +/- 2.8, P = 0.0079; cysts, 35.2 +/- 3, P = 0.0079). Similar results were obtained with surface water samples. Giardia cysts were recovered at higher rates than were Cryptosporidium oocysts with all five filters, regardless of backwashing. Although the time differences for completion of filtration process were not significantly different among the procedures, the EC-HV filtration with 5-s backwash was less labor demanding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号