首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
血色素沉着是一种血浆铁沉积过多而导致的器官损伤性疾病,多种铁调节基因如HFE、HJV、HAMP和TfR2等的突变均可导致该病的发生,其中HAMP是最为重要的一种。HAMP基因编码一种名为海帕西啶的小肽,是小肠铁重吸收和巨噬细胞铁释放的负调节因子。海帕西啶含量的减少将导致血清铁过负荷和血色素沉着的发生,HFE、HJV和TfR2等基因可影响海帕西啶的表达,从而使海帕西啶成为血色素沉着的中央调节者。这些研究对血色素沉着发生机制的理解及其诊断和治疗具有重要意义。  相似文献   

2.
3.
Iron metabolism is a balancing act, and biological systems have evolved exquisite regulatory mechanisms to maintain iron homeostasis. Iron metabolism disorders are widespread health problems on a global scale and range from iron deficiency to iron-overload. Both types of iron disorders are linked to heart failure. Iron play a fundamental role in mitochondrial function and various enzyme functions and iron deficiency has a particular negative impact on mitochondria function. Given the high-energy demand of the heart, iron deficiency has a particularly negative impact on heart function and exacerbates heart failure. Iron-overload can result from excessive gut absorption of iron or frequent use of blood transfusions and is typically seen in patients with congenital anemias, sickle cell anemia and beta-thalassemia major, or in patients with primary hemochromatosis. This review provides an overview of normal iron metabolism, mechanisms underlying development of iron disorders in relation to heart failure, including iron-overload cardiomyopathy, and clinical perspective on the treatment options for iron metabolism disorders.  相似文献   

4.
Iron disorders of genetic origin are mainly composed of iron overload diseases, the most frequent being HFE-related hemochromatosis. Hepcidin deficiency underlies iron overload in HFE-hemochromatosis as well as in several other genetic iron excess disorders, such as hemojuvelin or hepcidin-related hemochromatosis and transferrin receptor 2-related hemochromatosis. Deficiency of ferroportin, the only known cellular protein iron exporter, produces iron overload in the typical form of ferroportin disease. By contrast, genetically enhanced hepcidin production, as observed in matriptase-2 deficiency, generates iron-refractory iron deficiency anemia. Diagnosis of these iron storage disorders is usually established noninvasively through combined biochemical, imaging and genetic approaches. Moreover, improved knowledge of the molecular mechanisms accounting for the variations of iron stores opens the way of novel therapeutic approaches aiming to restore normal iron homeostasis. In this review, we will summarize recent findings about these various genetic entities that have been identified owing to an exemplary interplay between clinicians and basic scientists.  相似文献   

5.
郭鑫  王福俤 《生命科学》2012,(8):917-926
铁代谢在维持生命活动中至关重要,机体铁代谢紊乱会导致贫血和人类遗传性血色病等诸多疾病,对人体健康造成危害。在铁代谢研究领域,小鼠模型具有人群及细胞模型所不具备的优势,可以最准确的表现相应基因及通路在铁代谢调控中的生理作用。利用基因敲除及转基因小鼠模型,许多铁代谢相关的基因及调控通路被发现,有助于深入了解铁稳态调控的分子机制。这些小鼠模型为治疗铁代谢紊乱相关疾病潜在药物的开发和评估提供了理想的平台。  相似文献   

6.
Hereditary hemochroamtosis (HH) refers to a unique clinicopathologic subset of iron overload syndromes that includes the disorder related to C282Y homozygous mutation of the hemochromatosis protein (HFE), the most common form of hereditary hemochromatosis. Recent reports have highlighted analogies with the class of disorders, known as the conformational diseases whereby HFE C282Y mutant protein forms aggregates and is subsequently retained in the endoplasmic reticulum (ER). In conformational disorders, accumulation of unfolded or misfolded proteins in the ER can activate a complex cascade linked to the regulation of diverse physiologic processes, disease onset and progression. To-date, reviews on HFE C282Y HH have largely dealt with the end-stage consequence of this disorder (iron overload). However, our review focuses on upstream molecular events resulting from the mislocalization of the aggregation-prone HFE C282Y protein leading to potential advances in treatment and diagnosis.  相似文献   

7.
L. S. Valberg 《CMAJ》1980,122(11):1240-1248
In healthy persons the plasma ferritin concentration is a sensitive index of the size of body iron stores. It has been successfully applied to large-scale surveys of the iron status of populations. It has also proved useful in the assessment of clinical disorders of iron metabolism. A low plasma ferritin level has a high predictive value for the diagnosis of uncomplicated iron deficiency anemia. It is of less value, however, in anemia associated with infection, chronic inflammatory disorders, liver disease and malignant hematologic diseases, for which a low level indicates iron deficiency and a high level excludes it, but intermediate levels are not diagnostic. Measuring the plasma ferritin concentration is also useful for the detection of excess body iron, particularly in idiopathic hemochromatosis, but again it lacks specificity in the presence of active hepatocellular disease. If iron overload is suspected in these circumstances determination of the iron content of a percutaneous liver biopsy specimen is required. In families with idiopathic hemochromatosis the combined determination of the plasma ferritin concentration and the transferrin saturation is a sufficient screen to identify affected relatives; however, estimation of the hepatic iron concentration is required to establish the diagnosis.  相似文献   

8.
The mystery surrounding the apparent lack of iron within the macrophages of individuals with hereditary hemochromatosis, a condition of excessive uptake of dietary iron, has yet to be fully explained. We have suggested that iron deficiency of macrophages in people with hereditary hemochromatosis mutations is associated with increased resistance to infection by Yersinia and other intracellular pathogens, a selection pressure resulting in unusually high current population frequencies of hereditary hemochromatosis mutations. Such selection pressure has been called Epidemic Pathogenic Selection (EPS). In support of the theory of EPS, a considerable number of virulent species of bacteria multiply mainly in iron-rich macrophages of their mammalian hosts. Among these fastidious pathogens are strains of Chlamydia, Coxiella, Francisella, Legionella, Mycobacterium, Salmonella and Yersinia. Iron deficiency of macrophages of persons with hereditary hemochromatosis gene mutations may result in increased resistance to members of these bacterial pathogens. People with genes that result in hereditary hemochromatosis may be protected against coronary artery disease associated with Chlamydia and Coxiella infection in the absence of iron overload. In the clinical setting, when a patient appears to be iron deficient, the reason for this should be carefully evaluated. Iron supplementation may adversely affect the health of individuals who have mounted an acute phase response to infection, injury or stress, or who carry genes predisposing them to iron overload disorders.  相似文献   

9.
Hereditary hemochromatosis and transfusional iron overload are frequent clinical conditions associated with progressive iron accumulation in parenchymal tissues, leading to eventual organ failure. We have discovered a new mechanism to reverse iron overload-pharmacological modulation of the divalent metal transporter-1 (DMT-1). DMT-1 mediates intracellular iron transport during the transferrin cycle and apical iron absorption in the duodenum. Its additional functions in iron handling in the kidney and liver are less well understood. We show that the L-type calcium channel blocker nifedipine increases DMT-1-mediated cellular iron transport 10- to 100-fold at concentrations between 1 and 100 microM. Mechanistically, nifedipine causes this effect by prolonging the iron-transporting activity of DMT-1. We show that nifedipine mobilizes iron from the liver of mice with primary and secondary iron overload and enhances urinary iron excretion. Modulation of DMT-1 function by L-type calcium channel blockers emerges as a new pharmacological therapy for the treatment of iron overload disorders.  相似文献   

10.
A simple compartmental model is developed for investigating the mechanism of iron homeostasis. In contrast to previous mathematical models of iron metabolism, the liver is included as a key site of iron regulation. Compartments for free iron in blood, diferric transferrin (Tf) in blood, hepatocytes, red blood cells, and macrophages are included, and their roles in iron regulation are explored. The function of hepcidin in regulating iron absorption is modeled through an inverse relationship between hepatocyte transferrin receptor 2 (TfR2) levels and the rate of iron export processes mediated by ferroportin (Fpn). Simulations of anemia and erythropoiesis stimulation support the idea that the iron demands of the erythroid compartment can be communicated through diferric Tf. The iron-responsive element of Fpn is found to be important for stabilizing intracellular iron stores in response to changing iron demands and allowing proper iron regulation through diferric Tf. The contribution of iron dysregulation to the pathogenesis of iron overload disorders is also investigated. It is shown that the characteristics of HFE hemochromatosis can be reproduced by increasing the setpoint of iron absorption in the duodenum to a level where the system cannot downregulate iron absorption to meet the iron excretion rate.  相似文献   

11.
The roles of iron in health and disease   总被引:7,自引:0,他引:7  
Iron is vital for almost all living organisms by participating in a wide variety of metabolic processes, including oxygen transport, DNA synthesis, and electron transport. However, iron concentrations in body tissues must be tightly regulated because excessive iron leads to tissue damage, as a result of formation of free radicals. Disorders of iron metabolism are among the most common diseases of humans and encompass a broad spectrum of diseases with diverse clinical manifestations, ranging from anemia to iron overload and, possibly, to neurodegenerative diseases. The molecular understanding of iron regulation in the body is critical in identifying the underlying causes for each disease and in providing proper diagnosis and treatments. Recent advances in genetics, molecular biology and biochemistry of iron metabolism have assisted in elucidating the molecular mechanisms of iron homeostasis. The coordinate control of iron uptake and storage is tightly regulated by the feedback system of iron responsive element-containing gene products and iron regulatory proteins that modulate the expression levels of the genes involved in iron metabolism. Recent identification and characterization of the hemochromatosis protein HFE, the iron importer Nramp2, the iron exporter ferroportin1, and the second transferrin-binding and -transport protein transferrin receptor 2, have demonstrated their important roles in maintaining body's iron homeostasis. Functional studies of these gene products have expanded our knowledge at the molecular level about the pathways of iron metabolism and have provided valuable insight into the defects of iron metabolism disorders. In addition, a variety of animal models have implemented the identification of many genetic defects that lead to abnormal iron homeostasis and have provided crucial clinical information about the pathophysiology of iron disorders. In this review, we discuss the latest progress in studies of iron metabolism and our current understanding of the molecular mechanisms of iron absorption, transport, utilization, and storage. Finally, we will discuss the clinical presentations of iron metabolism disorders, including secondary iron disorders that are either associated with or the result of abnormal iron accumulation.  相似文献   

12.
We quantified HFE genotype frequencies in specimens submitted by physicians grouped by specialty and determined associations of genotypes with initial diagnosis based on phenotyping in patients evaluated at an iron disorders center. Of 526 specimens (519 from Alabama), these "typical" hemochromatosis-associated genotypes were detected: 85 C282Y/C282Y, 50 C282Y/H63D, and 27 H63D/H63D. Respective frequencies of C282Y/C282Y in specimens from an iron disorders center (n = 156), gastroenterologists (n = 147), hematologists/medical oncologists (n = 85), liver transplant surgeons (n = 11), endocrinologists and rheumatologists (n = 9), and "other sources" (n = 7) were greater (p < 0.05) than in population controls. In 44 patients from an iron disorders center initially diagnosed as "presumed hemochromatosis," 27 (61.4%) had C282Y/C282Y, 10 (22.7%) had C282Y/H63D, and 3 (6.8%) had H63D/H63D. C282Y/C282Y was not detected in 48 patients with "abnormality probably not an iron overload disorder." A total of 20.5% of 44 family members of patients had "typical" hemochromatosis-associated HFE genotypes (7.0% controls; p = 0.02). We conclude that most physicians who submitted specimens identify patients by phenotyping who have greater frequencies of "typical" hemochromatosis-associated HFE genotypes than controls, and that HFE mutation testing is useful in detecting hemochromatosis in family members of persons with hemochromatosis or iron overload.  相似文献   

13.
Hepcidin is a 25-residue hepatic peptide that regulates iron absorption from the diet and tissue iron distribution. Inappropriately low Hepcidin expression is implicated in the pathogenesis of hereditary hemochromatosis and iron-loading anemias, like the thalassemias. Increased hepcidin expression mediates iron retention in the anemias of inflammation and plays a pathogenic role in iron-refractory iron-deficiency anemia (IRIDA). Because of its clinical importance, Hepcidin is expected to be a useful biomarker for diagnosis and management of iron-related disorders. So far an ELISA for human hepcidin and SELDI-TOF-MS based approaches have been applied to monitor urinary and/or serum hepcidin levels. Here we report a modified protocol for SELDI-TOF based detection of human, urinary hepcidin. We show that CM10 Proteinchips are superior to NP20 Proteinchips commonly used in previously reported protocols to sensitively and accurately detect urinary hepcidin. Application of this modified hepcidin assay accurately detects increased hepcidin levels in the urine of sepsis patients.  相似文献   

14.
遗传性血色病(Hereditary Hemochromatosis,HH)是一种西方常见的遗传性铁过载性疾病。目前已知的血色病基因主要包括剧硒、YfR2、HJV、FPN及HAMP。这些基因突变导致大量铁离子逐渐沉积在肝、心、胰腺等脏器的实质细胞,造成组织纤维化和结构改变,最终引起器官功能障碍和衰竭,常见症状有肝硬化、肝癌、糖尿病、心力衰竭、垂体及性腺功能减退、关节疾病和皮肤色素沉着等。当前,机体铁代谢分子机制研究的飞速发展,为深入了解血色病带来了契机。综合铁代谢研究领域最新进展,着重对血色病发展历程、发病机制、临床表现、诊断、治疗及中国血色病现状等方面展开综述。  相似文献   

15.
Hereditary hemochromatosis type I is an autosomal-recessive iron overload disease associated with a mutation in HFE gene. The most common mutation, C282Y, disrupts the disulfide bond necessary for the association of HFE with beta-2-microglobulin and abrogates cell surface HFE expression. HFE-deficient mice develop iron overload indicating a central role of the protein in the pathogenesis of hereditary hemochromatosis type I. However, despite significant effort, the role of the HFE protein in iron metabolism is still unknown. To shed a light on the molecular mechanism of HFE-related hemochromatosis we studied protein expression changes elicited by HFE-deficiency in the liver which is the organ critical for the regulation of iron metabolism. We undertook a proteomic study comparing protein expression in the liver of HFE deficient mice with control animals. We compared HFE-deficient animals with control animals with identical iron levels obtained by dietary treatment to identify changes specific to HFE deficiency rather than iron loading. We found 11 proteins that were differentially expressed in the HFE-deficient liver using two-dimensional electrophoresis and mass spectrometry identification. Of particular interest were urinary proteins 1, 2 and 6, glutathione-S-transferase P1, selenium binding protein 2, sarcosine dehydrogenase and thioredoxin-like protein 2. Our data suggest possible involvement of lipocalins, TNF-alpha signaling and PPAR alpha regulatory pathway in the pathogenesis of hereditary hemochromatosis and suggest future targeted research addressing the roles of the identified candidate genes in the molecular mechanism of hereditary hemochromatosis.  相似文献   

16.
The authors examine the utility of zinc protoporphyrin level in blood (ZPP) as diagnostic test for some anemias with different etiology. Our results show that the observed ZPP rise both in sideropenic anemia and lead poisoning, is related to TIBC increase. This relation demonstrates that both in these anemias a close correlation exists with disorders of iron metabolism. Furthermore such a correlation is not seen in thalassemic trait and in acquired non microcotic anemias.  相似文献   

17.
In both hereditary hemochromatosis and in the various forms of secondary hemochromatosis, there is a pathologic expansion of body iron stores due mainly to an increase in absorption of dietary iron. Excess deposition of iron in the parenchymal tissues of several organs (e.g. liver, heart, pancreas, joints, endocrine glands) results in cell injury and functional insufficiency. In the liver, the major pathological manifestations of chronic iron overload are fibrosis and ultimately cirrhosis. Evidence for hepatotoxicity due to iron has been provided by several clinical studies, however the specific pathophysiologic mechanisms for hepatocellular injury and hepatic fibrosis in chronic iron overload are poorly understood. The postulated mechanisms of liver injury in chronic iron overload include (a) increased lysosomal membrane fragility, perhaps mediated by iron-induced lipid peroxidation, (b) peroxidative damage to mitochondria and microsomes resulting in organelle dysfunction, (c) a direct effect of iron on collagen biosynthesis and (d) a combination of all of the above.  相似文献   

18.
Iron metabolism in mammals requires a complex and tightly regulated molecular network. The classical view of iron metabolism has been challenged over the past ten years by the discovery of several new proteins, mostly Fe (II) iron transporters, enzymes with ferro-oxydase (hephaestin or ceruloplasmin) or ferri-reductase (Dcytb) activity or regulatory proteins like HFE and hepcidin. Furthermore, a new transferrin receptor has been identified, mostly expressed in the liver, and the ability of the megalin-cubilin complex to internalise the urinary Fe (III)-transferrin complex in renal tubular cells has been highlighted. Intestinal iron absorption by mature duodenal enterocytes requires Fe (III) iron reduction by Dcytb and Fe (II) iron transport through apical membranes by the iron transporter Nramp2/DMT1. This is followed by iron transfer to the baso-lateral side, export by ferroportin and oxidation into Fe (III) by hephaestin prior to binding to plasma transferrin. Macrophages play also an important role in iron delivery to plasma transferrin through phagocytosis of senescent red blood cell, heme catabolism and recycling of iron. Iron egress from macrophages is probably also mediated by ferroportin and patients with heterozygous ferroportin mutations develop progressive iron overload in liver macrophages. Iron homeostasis at the level of the organism is based on a tight control of intestinal iron absorption and efficient recycling of iron by macrophages. Signalling between iron stores in the liver and both duodenal enterocytes and macrophages is mediated by hepcidin, a circulating peptide synthesized by the liver and secreted into the plasma. Hepcidin expression is stimulated in response to iron overload or inflammation, and down regulated by anemia and hypoxia. Hepcidin deficiency leads to iron overload and hepcidin overexpression to anemia. Hepcidin synthesis in response to iron overload seems to be controlled by the HFE molecule. Patients with hereditary hemochromatosis due to HFE mutation have impaired hepcidin synthesis and forced expression of an hepcidin transgene in HFE deficient mice prevents iron overload. These results open new therapeutic perspectives, especially with the possibility to use hepcidin or antagonists for the treatment of iron overload disorders.  相似文献   

19.
Hfe acts in hepatocytes to prevent hemochromatosis   总被引:2,自引:0,他引:2  
Hereditary hemochromatosis (HH) is a prevalent, potentially fatal disorder of iron metabolism hallmarked by intestinal hyperabsorption of iron, hyperferremia, and hepatic iron overload. In both humans and mice, type I HH is associated with mutations in the broadly expressed HFE/Hfe gene. To identify where Hfe acts to prevent HH, we generated mice with tissue-specific Hfe ablations. This work demonstrates that local Hfe expression in hepatocytes serves to maintain physiological iron homeostasis, answering a long-standing question in medicine and explaining earlier clinical observations.  相似文献   

20.
Iron-mediated organ damage is common in patients with iron overload diseases, namely, hereditary hemochromatosis. Massive iron deposition in parenchymal organs, particularly in the liver, causes organ dysfunction, fibrosis, cirrhosis, and also hepatocellular carcinoma. To obtain deeper insight into the poorly understood and complex cellular response to iron overload and consequent oxidative stress, we studied iron overload in liver-derived HepG2 cells. Human hepatoma HepG2 cells were exposed to a high concentration of iron for 3 days, and protein expression changes initiated by the iron overload were studied by two-dimensional electrophoresis and mass spectrometry. From a total of 1,060 spots observed, 21 spots were differentially expressed by iron overload. We identified 19 of them; 11 identified proteins were upregulated, whereas 8 identified proteins showed a decline in response to iron overload. The differentially expressed proteins are involved in iron storage, stress response and protection against oxidative stress, protein folding, energy metabolism, gene expression, cell cycle regulation, and other processes. Many of these molecules have not been previously suggested to be involved in the response to iron overload and the consequent oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号