首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mature parasite-infected erythrocyte surface antigen (MESA) is a protein exported to the membrane skeleton of the infected red cell, where it forms a strong noncovalent interaction with the host red cell protein, protein 4.1. The complete gene structure of MESA from the Ugandan isolate Palo Alto is described. Comparison to the previously reported MESA sequence from the Papua New Guinean cloned line D10 reveals strong conservation of the general gene structure of a short first exon and a long second exon. The exact exon/intron boundaries were determined by the generation and sequencing of a cDNA from this region. The MESA gene from both isolates consists of seven blocks of repeats that are identical in order. Repeat blocks are conserved to a high degree; however, differences are noted in most blocks in the form of scattered mutations or differences in repeat numbers. Previous work had shown that synthetic peptides spanning a 19-residue region could inhibit the binding of MESA to protein 4.1. Removal of this region from MESA almost completely abolished the binding of MESA to IOVs. Sequencing of this region from a number of laboratory and field isolates demonstrates complete conservation of the cytoskeletal binding domain and flanking sequences.  相似文献   

2.
During the maturation of intracellular asexual stages of Plasmodium falciparum parasite-encoded proteins are exported into the erythrocyte cytosol. A number of these parasite proteins attach to the host cell cytoskeleton and facilitate transformation of a disk-shaped erythrocyte into a rounded and more rigid infected erythrocyte able to cytoadhere to the vasculature. Knob formation on the surface of infected erythrocytes is critical for this cytoadherence to the host endothelium. P. falciparum proteins have been identified that localize to the parasite-infected erythrocyte membrane: the variant cytoadherence ligand erythrocyte membrane protein 1 (PfEMP1), the knob-associated histidine-rich protein (KAHRP) and the erythrocyte membrane protein 3 (PfEMP3). In this study, we have generated parasites expressing PfEMP3-green fluorescent protein chimeras and identified domains involved in entry to the secretory pathway, export across the parasitophorous vacuolar membrane and attachment to Maurer's clefts and the erythrocyte membrane. Solubility assays, fluorescence photobleaching experiments and immunogold electron microscopy suggest that the exported chimeric proteins are trafficked in a complex rather than in vesicles. This study characterizes elements involved in the tight but transient binding of PfEMP3 to Maurer's clefts and shows that the same elements are necessary for correct assembly under the erythrocyte membrane.  相似文献   

3.
In Plasmodium falciparum, the rhoptries involved in the invasion process are a pair of flask-shaped organelles located at the apical tip of invading stages. They, along with the more numerous micronemes and dense granules, constitute the apical complex in Plasmodium and other members of the phylum Apicomplexa. Several proteins of varying molecular weight have been identified in P. falciparum rhoptries. These include the 225-, 140/130/110-, 80/60/40-, RAP-1 80-, AMA-1 80-, QF3 80-, and 55-kDa proteins. Some of these proteins are lost during schizont rupture and release of merozoites. Others such as the 140/130/110-kDa complex are transferred to the erythrocyte membrane during invasion. The ring-infected surface antigen (RESA), a 155-kDa polypeptide located in dense granules also associates with the erythrocyte membrane during invasion. Erythrocyte-binding studies have demonstrated that both the 140/130/110-kDa rhoptry complex and RESA bind to inside-out-vesicles (IOVs) prepared from human erythrocytes. The 140/130/110-kDa complex also binds to erythrocyte membranes prepared by hypotonic lysis. These proteins, however, do not bind to intact human erythrocytes. In a heterologous erythrocyte model, both the 140/130/110-kDa complex and RESA are shown to bind directly to mouse erythrocytes. Other studies have shown that RESA associates with spectrin in the erythrocyte cytoskeleton. We have recently developed a liposome-binding assay to demonstrate the lipophilic binding properties of the P. falciparum rhoptry complex of 140/130/110 kDa. The rhoptry complex binds to liposomes containing neutrally, positively, and negatively charged phospholipids. However, liposomes containing phosphatidylethanolamine compete effectively for rhoptry protein binding to mouse erythrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Of the several proteins that bind along the cytoplasmic domain of erythrocyte membrane band 3, only the sites of interaction of proteins 4.1 and 4.2 remain to be at least partially localized. Using five independent techniques, we have undertaken to map and characterize the binding site of band 4.1 on band 3. First, transfer of a radioactive cross-linker (125I-2-(p-azido-salicylamido)ethyl-1-3-dithiopropionate) from purified band 4.1 to its binding sites on stripped inside-out erythrocyte membrane vesicles (stripped IOVs) revealed major labeling of band 3, glycophorin C, and glycophorin A. Proteolytic mapping of the stripped IOVs then demonstrated that the label on band 3 was confined largely to a fragment comprising residues 1-201. Second, competitive binding experiments with Fab fragments of monoclonal and peptide-specific polyclonal antibodies to numerous epitopes along the cytoplasmic domain of band 3 displayed stoichiometric competition only with Fabs to epitopes between residues 1 and 91 of band 3. Weak competition was also observed with Fabs to a sequence of the cytoplasmic domain directly adjacent to the membrane-spanning domain, but only at 50-100-fold excess of Fab. Third, band 4.1 protected band 3 from chymotryptic hydrolysis at tyrosine 46 and to a much lesser extent at a site within the junctional peptide connecting the membrane-spanning and cytoplasmic domains of band 3. Fourth, ankyrin, which has been previously shown to interact with band 3 both near a putative central hinge and at the N terminus competed with band 4.1 for band 3 in stripped IOVs. Since band 4.1 does not associate with band 3 near the flexible central hinge, the competition with ankyrin can be assumed to derive from a mutual association with the N terminus. Finally, a synthetic peptide corresponding to residues 1-15 of band 3 was found to mildly inhibit band 4.1 binding to stripped IOVs. Taken together, these data suggest that band 4.1 binds band 3 predominantly near the N terminus, with a possible secondary site near the junction of the cytoplasmic domain and the membrane.  相似文献   

5.
Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp) family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1) or a human Hsp70 (HSPA1A), indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentration-dependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria.  相似文献   

6.
7.
BACKGROUND: The development of Plasmodium falciparum within human erythrocytes induces a wide array of changes in the ultrastructure, function and antigenic properties of the host cell. Numerous proteins encoded by the parasite have been shown to interact with the erythrocyte membrane. The identification of new interactions between human erythrocyte and P. falciparum proteins has formed a key area of malaria research. To circumvent the difficulties provided by conventional protein techniques, a novel application of the phage display technology was utilised. METHODS: P. falciparum phage display libraries were created and biopanned against purified erythrocyte membrane proteins. The identification of interacting and in-frame amino acid sequences was achieved by sequencing parasite cDNA inserts and performing bioinformatic analyses in the PlasmoDB database. RESULTS: Following four rounds of biopanning, sequencing and bioinformatic investigations, seven P. falciparum proteins with significant binding specificity toward human erythrocyte spectrin and protein 4.1 were identified. The specificity of these P. falciparum proteins were demonstrated by the marked enrichment of the respective in-frame binding sequences from a fourth round phage display library. CONCLUSION: The construction and biopanning of P. falciparum phage display expression libraries provide a novel approach for the identification of new interactions between the parasite and the erythrocyte membrane.  相似文献   

8.
The malaria parasite Plasmodium falciparum assembles knob structures underneath the erythrocyte membrane that help present the major virulence protein, P. falciparum erythrocyte membrane protein-1 (PfEMP1). Membranous structures called Maurer's clefts are established in the erythrocyte cytoplasm and function as sorting compartments for proteins en route to the RBC membrane, including the knob-associated histidine-rich protein (KAHRP), and PfEMP1. We have generated mutants in which the Maurer's cleft protein, the ring exported protein-1 (REX1) is truncated or deleted. Removal of the C-terminal domain of REX1 compromises Maurer's cleft architecture and PfEMP1-mediated cytoadherance but permits some trafficking of PfEMP1 to the erythrocyte surface. Deletion of the coiled-coil region of REX1 ablates PfEMP1 surface display, trapping PfEMP1 at the Maurer's clefts. Complementation of mutants with REX1 partly restores PfEMP1-mediated binding to the endothelial cell ligand, CD36. Deletion of the coiled-coil region or complete deletion of REX1 is tightly associated with the loss of a subtelomeric region of chromosome 2, encoding KAHRP and other proteins. A KAHRP-green fluorescent protein (GFP) fusion expressed in the REX1-deletion parasites shows defective trafficking. Thus, loss of functional REX1 directly or indirectly ablates the assembly of the P. falciparum virulence complex at the surface of host erythrocytes.  相似文献   

9.
Infection of erythrocytes by the human malaria parasite Plasmodium falciparum results in dramatic modifications to the host cell, including changes to its antigenic and transport properties and the de novo formation of membranous compartments within the erythrocyte cytosol. These parasite-induced structures are implicated in the transport of nutrients, metabolic products, and parasite proteins, as well as in parasite virulence. However, very few of the parasite effector proteins that underlie remodeling of the host erythrocyte are functionally characterized. Using bioinformatic examination and modeling, we have found that the exported P. falciparum protein PFA0210c belongs to the START domain family, members of which mediate transfer of phospholipids, ceramide, or fatty acids between membranes. In vitro phospholipid transfer assays using recombinant PFA0210 confirmed that it can transfer phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin between phospholipid vesicles. Furthermore, assays using HL60 cells containing radiolabeled phospholipids indicated that orthologs of PFA0210c can also transfer phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine. Biochemical and immunochemical analysis showed that PFA0210c associates with membranes in infected erythrocytes at mature stages of intracellular parasite growth. Localization studies in live parasites revealed that the protein is present in the parasitophorous vacuole during growth and is later recruited to organelles in the parasite. Together these data suggest that PFA0210c plays a role in the formation of the membranous structures and nutrient phospholipid transfer in the malaria-parasitized erythrocyte.  相似文献   

10.
Plasmodium falciparum is a unicellular protozoan parasite and causative agent of a severe form of malaria in humans, accounting for very high worldwide fatality rates. At the molecular level, survival of the parasite within the human host is mediated by P. falciparum heat shock proteins (PfHsps) that provide protection during febrile episodes. The ATP-dependent chaperone activity of Hsp70 relies on the co-chaperone J domain protein (JDP), with which it forms a chaperone-co-chaperone complex. The exported P. falciparum JDP (PfJDP), PFA0660w, has been shown to stimulate the ATPase activity of the exported chaperone, PfHsp70-x. Furthermore, PFA0660w has been shown to associate with another exported PfJDP, PFE0055c, and PfHsp70-x in J-dots, highly mobile structures found in the infected erythrocyte cytosol. Therefore, the present study aims to conduct a structural and functional characterization of the full-length exported PfJDP, PFE0055c. Recombinant PFE0055c was successfully expressed and purified and found to stimulate the basal ATPase activity of PfHsp70-x to a greater extent than PFA0660w but, like PFA0660w, did not significantly stimulate the basal ATPase activity of human Hsp70. Small-molecule inhibition assays were conducted to determine the effect of known inhibitors of JDPs (chalcone, C86) and Hsp70 (benzothiazole rhodacyanines, JG231 and JG98) on the basal and PFE0055c-stimulated ATPase activity of PfHsp70-x. In this study, JG231 and JG98 were found to inhibit both the basal and PFE0055c-stimulated ATPase activity of PfHsp70-x. C86 only inhibited the PFE0055c-stimulated ATPase activity of PfHsp70-x, consistent with PFE0055c binding to PfHsp70-x through its J domain. This research has provided further insight into the molecular basis of the interaction between these exported plasmodial chaperones, which could inform future antimalarial drug discovery studies.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-020-01181-2.  相似文献   

11.
Infection of erythrocytes by the malaria parasite Plasmodium falciparum results in the export of several parasite proteins into the erythrocyte cytoplasm. Changes occur in the infected erythrocyte due to altered phosphorylation of proteins and to novel interactions between host and parasite proteins, particularly at the membrane skeleton. In erythrocytes, the spectrin based red cell membrane skeleton is linked to the erythrocyte plasma membrane through interactions of ankyrin with spectrin and band 3. Here we report an association between the P. falciparum histidine-rich protein (PfHRP1) and phosphorylated proteolytic fragments of red cell ankyrin. Immunochemical, biochemical and biophysical studies indicate that the 89 kDa band 3 binding domain and the 62 kDa spectrin-binding domain of ankyrin are co-precipitated by mAb 89 against PfHRP1, and that native and recombinant ankyrin fragments bind to the 5' repeat region of PfHRP1. PfHRP1 is responsible for anchoring the parasite cytoadherence ligand to the erythrocyte membrane skeleton, and this additional interaction with ankyrin would strengthen the ability of PfEMP1 to resist shear stress.  相似文献   

12.
Adherence of Plasmodium falciparum‐infected erythrocytes to host endothelium is conferred through the parasite‐derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene family plays a role in many host cell modifications including binding the intracellular domain of PfEMP1. Here, we show that conditional reduction of the PHIST protein PFE1605w strongly reduces adhesion of infected erythrocytes to the endothelial receptor CD36. Adhesion to other endothelial receptors was less affected or even unaltered by PFE1605w depletion, suggesting that PHIST proteins might be optimized for subsets of PfEMP1 variants. PFE1605w does not play a role in PfEMP1 transport, but it directly interacts with both the intracellular segment of PfEMP1 and with cytoskeletal components. This is the first report of a PHIST protein interacting with key molecules of the cytoadherence complex and the host cytoskeleton, and this functional role seems to play an essential role in the pathology of P. falciparum.  相似文献   

13.
The human malarial parasite Plasmodium falciparum exports proteins to destinations within its host erythrocyte, including cytosol, surface and membranous profiles of parasite origin termed Maurer's clefts. Although several of these exported proteins are determinants of pathology and virulence, the mechanisms and trafficking signals underpinning protein export are largely uncharacterized-particularly for exported transmembrane proteins. Here, we have investigated the signals mediating trafficking of STEVOR, a family of transmembrane proteins located at the Maurer's clefts and believed to play a role in antigenic variation. Our data show that, apart from a signal sequence, a minimum of two addition signals are required. This includes a host cell targeting signal for export to the host erythrocyte and a transmembrane domain for final sorting to Maurer's clefts. Biochemical studies indicate that STEVOR traverses the secretory pathway as an integral membrane protein. Our data suggest general principles for transport of transmembrane proteins to the Maurer's clefts and provide new insights into protein sorting and trafficking processes in P. falciparum.  相似文献   

14.
Multiple glucose-6-phosphate dehydrogenase (G6PD)-deficient alleles have reached polymorphic frequencies because of the protection they confer against malaria infection. A protection mechanism based on enhanced phagocytosis of parasitized G6PD-deficient erythrocytes that are oxidatively damaged is well accepted. Although an association of this phenotype with the impairment of the antioxidant defense in G6PD deficiency has been demonstrated, the dysfunctional pathway leading to membrane damage and modified exposure of the malaria-infected red cell to the host is not known. Thus, in this study, erythrocytes from the common African variant G6PD A- were used to analyze by redox proteomics the major oxidative changes occurring in the host membrane proteins during the intraerythrocytic development of Plasmodium falciparum, the most lethal malaria parasite. Fifteen carbonylated membrane proteins exclusively identified in infected G6PD A- red blood cells revealed selective oxidation of host proteins upon malarial infection. As a result, three pathways in the host erythrocyte were oxidatively damaged in G6PD A-: (1) traffic/assembly of exported parasite proteins in red cell cytoskeleton and surface, (2) oxidative stress defense proteins, and (3) stress response proteins. Additional identification of hemichromes associated with membrane proteins also supports a role for specific oxidative modifications in protection against malaria by G6PD polymorphisms.  相似文献   

15.
The human malaria parasite Plasmodium falciparum exports determinants of virulence and pathology to destinations within the host erythrocyte, including the erythrocyte cytoplasm, plasma membrane and membrane profiles of parasite origin termed Maurer's clefts. Most of the exported proteins contain a conserved pentameric motif termed plasmodial export element (PEXEL)/vacuolar transfer signal (VTS) that functions as a cleavable sorting signal permitting export to the host erythrocyte. However, there are some exported proteins, such as the skeleton-binding protein 1 (PfSBP1) that lack the PEXEL/VTS motif and that are not N-terminally processed, suggesting the presence of alternative sorting signals and/or mechanisms. In this study, we have investigated trafficking of PfSBP1 to the Maurer's clefts. Our data show that the transmembrane domain of PfSBP1 functions as an internal signal sequence for entry into the parasite's secretory pathway and for transport to the parasite plasma membrane. Trafficking beyond the parasite's plasma membrane required additional N-terminal domains, which are characterized by a high negative net charge. Biochemical data indicate that these domains affect the solubility and extraction profile, the orientation of the protein within the membrane and the subcellular localization. Our findings suggest new principles of protein export in P.   falciparum -infected erythrocytes.  相似文献   

16.
Plasmepsin II, an aspartic protease from the human intraerythrocytic parasite Plasmodium falciparum, is involved in degradation of the host cell hemoglobin within the acidic food vacuole of the parasite. Previous characterization of enzymatic activities from Plasmodium soluble extracts, responsible for in vitro hydrolysis of erythrocyte spectrin, had shown that the hydrolysis process occurred at pH 5.0 and involved aspartic protease(s) cleaving mainly within the SH3 motif of the spectrin alpha-subunit. Therefore, we used a recombinant construct of the erythroid SH3 motif as substrate to investigate the involvement of plasmepsins in spectrin hydrolysis. Using specific anti-plasmepsin II antibodies in Western blotting experiments, plasmepsin II was detected in chromatographic fractions enriched in the parasite SH3 hydrolase activity. Involvement of plasmepsin II in hydrolysis was demonstrated by mass spectrometry identification of cleavage sites in the SH3 motif, upon hydrolysis by Plasmodium extract enzymatic activity, and by recombinant plasmepsin II. Furthermore, recombinant plasmepsin II digested native spectrin at pH 6.8, either purified or situated in erythrocyte ghosts. Additional degradation of actin and protein 4.1 from ghosts was observed. Specific antibodies were used in confocal imaging of schizont-infected erythrocytes to localize plasmepsin II in mature stages of the parasite development cycle; antibodies clearly labeled the periphery of the parasites. Taken together, these results strongly suggest that, in addition to hemoglobin degradation, plasmepsin II might be involved in cytoskeleton cleavage of infected erythrocytes.  相似文献   

17.
Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and differential mRNA splicing. Finally, the spectrum of interactions of the 4.1 proteins overlaps with that of another membrane-cytoskeleton linker, ankyrin. Both ankyrin and 4.1 link to the actin cytoskeleton via spectrin, and we hypothesize that differential regulation of 4.1 proteins and ankyrins allows highly selective control of cell surface protein accumulation and, hence, function. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé  相似文献   

18.
A major part of virulence for Plasmodium falciparum malaria infection, the most lethal parasitic disease of humans, results from increased rigidity and adhesiveness of infected host red cells. These changes are caused by parasite proteins exported to the erythrocyte using novel trafficking machinery assembled in the host cell. To understand these unique modifications, we used a large-scale gene knockout strategy combined with functional screens to identify proteins exported into parasite-infected erythrocytes and involved in remodeling these cells. Eight genes were identified encoding proteins required for export of the parasite adhesin PfEMP1 and assembly of knobs that function as physical platforms to anchor the adhesin. Additionally, we show that multiple proteins play a role in generating increased rigidity of infected erythrocytes. Collectively these proteins function as a pathogen secretion system, similar to bacteria and may provide targets for antivirulence based therapies to a disease responsible for millions of deaths annually.  相似文献   

19.
Plasmodium falciparum is the protozoan parasite that causes the most virulent of human malarias. The blood stage parasites export several hundred proteins into their host erythrocyte that underlie modifications linked to major pathologies of the disease and parasite survival in the blood. Unfortunately, most are 'hypothetical' proteins of unknown function, and those that are essential for parasitization of the erythrocyte cannot be 'knocked out'. Here, we combined bioinformatics and genome-wide expression analyses with a new series of transgenic and cellular assays to show for the first time in malaria parasites that microarray read out from a chemical perturbation can have predictive value. We thereby identified and characterized an exported P. falciparum protein resident in a new vesicular compartment induced by the parasite in the erythrocyte. This protein, named Erythrocyte Vesicle Protein 1 (EVP1), shows novel dynamics of distribution in the parasite and intraerythrocytic membranes. Evidence is presented that its expression results in a change in TVN-mediated lipid import at the host membrane and that it is required for intracellular parasite growth, but not invasion. This exported protein appears to be needed for the maintenance of an essential tubovesicular nutrient import pathway induced by the pathogen in the host cell. Our approach may be generalized to the analysis of hundreds of 'hypothetical' P. falciparum proteins to understand their role in parasite entry and/or growth in erythrocytes as well as phenotypic contributions to either antigen export or tubovesicular import. By functionally validating these unknowns, one may identify new targets in host-microbial interactions for prophylaxis against this major human pathogen.  相似文献   

20.
The intracellular survival of Plasmodium falciparum within human erythrocytes is dependent on export of parasite proteins that remodel the host cell. Most exported proteins require a conserved motif (RxLxE/Q/D), termed the Plasmodium export element (PEXEL) or vacuolar targeting sequence (VTS), for targeting beyond the parasitophorous vacuole membrane and into the host cell; however, the precise role of this motif in export is poorly defined. We used transgenic P. falciparum expressing chimeric proteins to investigate the function of the PEXEL motif for export. The PEXEL constitutes a bifunctional export motif comprising a protease recognition sequence that is cleaved, in the endoplasmic reticulum, from proteins destined for export, in a PEXEL arginine- and leucine-dependent manner. Following processing, the remaining conserved PEXEL residue is required to direct the mature protein to the host cell. Furthermore, we demonstrate that N acetylation of proteins following N-terminal processing is a PEXEL-independent process that is insufficient for correct export to the host cell. This work defines the role of each residue in the PEXEL for export into the P. falciparum -infected erythrocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号