首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HDGF (hepatoma-derived growth factor) stimulates cell proliferation by functioning on both sides of the plasma membrane as a ligand for membrane receptor binding to trigger cell signalling and as a stimulator for DNA synthesis in the nucleus. Although HDGF was initially identified as a secretory heparin-binding protein, the biological significance of its heparin-binding ability remains to be determined. In the present study we demonstrate that cells devoid of surface HS (heparan sulfate) were unable to internalize HDGF, HATH (N-terminal domain of HDGF consisting of amino acid residues 1-100, including the PWWP motif) and HATH(K96A) (single-site mutant form of HATH devoid of receptor binding activity), suggesting that the binding of HATH to surface HS is important for HDGF internalization. We further demonstrate that both HATH and HATH(K96A) could be internalized through macropinocytosis after binding to the cell surface HS. Interestingly, HS-mediated HATH(K96A) internalization is found to exhibit an inhibitory effect on cell migration and proliferation in contrast with that observed for HATH action on NIH 3T3 cells, suggesting that HDGF exploits the innate properties of both cell surface HS and membrane receptor via the HATH domain to affect related cell signalling processes. The present study indicates that MAPK (mitogen-activated protein kinase) signalling pathways could be affected by the HS-mediated HATH internalization to regulate cell migration in NIH 3T3 fibroblasts, as judged from the differential effect of HATH and HATH(K96A) treatment on the expression level of matrix metalloproteases.  相似文献   

2.
3.
Chen FF  Lin WH  Lin SC  Kuo JH  Chu HY  Huang WC  Chuang YJ  Lee SC  Sue SC 《Glycobiology》2012,22(5):649-661
Hepatoma-derived growth factor (HDGF) recognizes cell surface heparan sulfate to promote its internalization though binding to its N-terminal HATH (homologous to amino terminus of HDGF) domain. HDGF-related proteins (HRPs) all have the HATH domain in their N terminus. In this study, we report on the commonality of heparin binding in all HRPs with a broad range of heparin-binding affinity: HRP-4 is the strongest binder, and the lens epithelium-derived growth factor shows a relatively weak binding, with binding affinities (K(D)) showing 30-fold difference in magnitude. With the HDGF HATH domain used as a model, residue K19 was the most critical basic residue in molecular recognition and protein internalization, and with its proximal proline-tryptophan-tryptophan-proline motif, coordinated a conformational change when binding to the heparin fragment. Other basic residues, K21, K61, K70, K72 and R79, confer added contribution in binding that the total ionic interaction from these residues represents more than 70% of the binding energy. Because the positive-charged residues are conserved in all HRP HATH domains, heparin binding outside of cells might be of equal importance for all HRPs in mediating downstream signaling; however, distinct effects and/or distribution might be associated with the varying affinities to heparin.  相似文献   

4.
5.
6.
7.
RNA结合蛋白(RNA binding proteins,RBPs)通过与RNA相互作用,广泛参与到RNA的剪切、转运、编辑、胞内定位及翻译调控等过程中。RNA领域尤其是非编码RNA(non-coding RNA,ncRNA)研究的快速发展,催生了多种RBPs RNAs相互作用鉴定技术。这些技术反之又推动了 RNA领域的研究进程。本文对紫外交联免疫沉淀(ultraviolet crosslinking and immunoprecipitation,CLIP),CLIP cDNA文库高通量测序 (high-throughput sequencing of CLIP cDNA library,HITS-CLIP),光活化核苷增强的CLIP(photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation,PAR-CLIP),单核苷酸分离CLIP (individual nucleotide resolution CLIP,iCLIP),TRIBE (targets of RNA-binding protein identified by editing),RNA 标记,相互作用组捕获(interactome capture,IC) 和SerIC (serial RNA interactome capture)等RBPs-RNAs相互作用鉴定技术的基本原理和优缺点以及应用进行综述。  相似文献   

8.
9.
Lens epithelium-derived growth factor p75 (LEDGF/p75) is a nuclear autoantigen in atopic disorders implicated in cellular protection against stress-induced apoptosis. We observed that LEDGF/p75 was cleaved during apoptosis into fragments of 65 and 58 kD generated by caspases-3 and -7 cleaving at three sites: DEVPD30/G, DAQD486/G and WEID85/N. Sequence analysis revealed that the DEVPD30/G and WEID85/N sites lie within the highly conserved HATH (homologous to amino terminus of hepatoma-derived growth factor) region, also known as PWWP domain. Alignment of proteins containing this domain failed to reveal conservation of the DEVPD30/G and WEID85/N sites, suggesting that the HATH/PWWP domain of LEDGF/p75 may be specifically targeted by caspases. Overexpression of LEDGF/p75 protected HepG2 cells from serum starvation-induced cell death, whereas expression of the 65 kD fragment failed to protect. The apoptotic cleavage of LEDGF/p75 may contribute to the pathogenesis of atopic disorders by abrogating its pro-survival function and enhancing its immunogenicity.  相似文献   

10.
Lescure A  Allmang C  Yamada K  Carbon P  Krol A 《Gene》2002,291(1-2):279-285
Selenocysteine and selenoprotein synthesis require a complex molecular machinery in mammals. Among the key players is the RNA-protein complex formed by the selenocysteine insertion sequence (SECIS) binding protein (SBP2) and the SECIS element, an RNA hairpin in the 3' untranslated regions of selenoprotein messenger RNAs (mRNAs). We have isolated the DNA complementary to mRNA of the human SBP2, enabling us to establish that it differs from a previously reported human SBP2-like protein. Examination of the expression pattern revealed that the human SBP2 protein is encoded by a 4 kb long mRNA that is over-expressed in testis. Compared to the rat SBP2 sequence, the human SBP2 protein displays two highly conserved domains with 92 and 95% amino acid identity, the latter one containing the RNA binding domain. The inter-domain section carries 55% sequence identity, the remainder of the SBP2 sequences showing about 65% identity, values lower than expected for two mammalian proteins. Interestingly, we could show that the binding of human SBP2 to the SECIS RNA is stimulated by the selenoprotein-specialized elongation translation factor mSelB/eEFsec.  相似文献   

11.
Growth factor receptor mediated signaling is meanwhile recognized as a complex signaling network, which is initiated by recruiting specific patterns of adaptor proteins to the intracellular domain of epidermal growth factor receptor (EGFR). Approaches to globally identify EGFR‐binding proteins are required to elucidate this network. We affinity‐purified EGFR with its interacting proteins by coprecipitation from lysates of A431 cells. A total of 183 proteins were repeatedly detected in high‐resolution MS measurements. For 15 of these, direct interactions with EGFR were listed in the iRefIndex interaction database, including Grb2, shc‐1, SOS1 and 2, STAT 1 and 3, AP2, UBS3B, and ERRFI. The newly developed Cytoscape plugin ModuleGraph allowed retrieving and visualizing 93 well‐described protein complexes that contained at least one of the proteins found to interact with EGFR in our experiments. Abundances of 14 proteins were modulated more than twofold upon EGFR activation whereof clathrin‐associated adaptor complex AP‐2 showed 4.6‐fold enrichment. These proteins were further annotated with different cellular compartments. Finally, interactions of AP‐2 proteins and the newly discovered interaction of CIP2A could be verified. In conclusion, a powerful technique is presented that allowed identification and quantitative assessment of the EGFR interactome to provide further insight into EGFR signaling.  相似文献   

12.
Hepatoma-derived growth-factor-related protein 2 (HRP-2) belongs to a family with five additional members: hepatoma-derived growth factor (HDGF); lens epithelium-derived growth factor; and the HDGF-related proteins -1, -3 and -4. Very little is known regarding the function of HRP-2 in particular. This study shows for the first time heteromer formation of different members of the HRP family; HDGF and HRP-2. In addition, we discovered a previously unknown splice variant of HRP-2 mRNA encoding for a protein with a 53-amino acid deletion in its hath region. This HRP-2 isoform c interacts preferentially with a processed form of HDGF probably because of the loss of an α helix of HRP-2. Furthermore, in contrast to other isoforms of HRP-2, isoform c binds to chromatin similar to its most closely related family member lens epithelium-derived growth factor with potential consequences regarding its function in HIV integration. Interestingly, only the new HRP-2 isoform c and a processed form of HDGF are displaced from condensed mitotic metaphase chromatin. In conclusion, these observations provide a new perspective for understanding the biological functions of HDGF and related proteins.  相似文献   

13.
As a leading cause of cancer death among women, identification of pathophysiologically-relevant biomarkers for ovarian cancer is important. The heparin binding, hepatoma-derived growth factor (HDGF) is overexpressed in ovarian cancer cell lines and may have prognostic value, but the mechanism by which this predominantly nuclear protein is secreted or functions is unknown. In this study, we focused on the circumstances under which HDGF is released by cells and the functional relevance of extracellular HDGF in the context of ovarian cancer. Immunofluorescence imaging showed nuclear localization of HDGF in ovarian cells, but unlike what is reported for other cell types, HDGF was minimally secreted into the media. However, HDGF was passively released by necrotic and late apoptotic cells. Extracellular HDGF was functionally relevant as it stimulated phosphorylation of ERK 1/2 and P38 in both non-cancer and ovarian cancer cells, and enhanced cellular migration. Overall, our study uncovers a novel function of HDGF as a messenger of cellular condition (alarmin) which in-turn modulates cellular function-aspects that could be used as a biomarker for ovarian cancer.  相似文献   

14.
An experimental methodology that facilitates functional analysis of numerous protein–protein interactions, which have been found in genome‐wide interactome researches, has long been awaited. We propose herein an antagonistic inhibition‐based approach. The antagonizing polypeptide is generated in the course of interaction domain mapping based on yeast 2‐hybrid (Y2H) screening coupled with in vitro convergence of the Y2H‐selected fragments, which is performed in a formatted procedure. Using the coupled methodology, we first performed a high‐resolution mapping of an interdomain interaction network within budding yeast's Dam1 complex. Dam1 complex is a kinetochore protein complex composed of 10 essential subunits including Spc34p and Spc19p. The high‐resolution mapping revealed the overall network structure within the complex for the first time: Dam1 components form into two separated subnetworks on N‐terminal scaffolding domains of Spc34p and Spc19p, and the coiled‐coil interaction in their C‐terminal domains connects the subnetworks. Secondly, we show that the domain fragments converged in the high‐resolution mapping acted as potent inhibitors for the endogenous interactions when episomally overexpressed. The in vivo Dam1 interaction targeting with the fragments conferred a similar phenotype on the host cells; a critical and irreversible damage, which was accompanied with disturbed budding and chromosome mis‐segregation as a result of disorganized spindle. These phenotypes were strongly related to the cellular function of the Dam1 complex. The results and approach we demonstrated herein not only shed light on the Dam1 molecular architecture but also pave the road to reverse‐interactome analysis and discoveries of novel drugs that target disease‐related protein–protein interactions. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

15.
16.
Cutaneous malignant melanoma is the fastest increasing malignancy in humans. Hepatoma-derived growth factor (HDGF) is a novel growth factor identified from human hepatoma cell line. HDGF overexpression is correlated with poor prognosis in various types of cancer including melanoma. However, the underlying mechanism of HDGF overexpression in developing melanoma remains unclear. In this study, human melanoma cell lines (A375, A2058, MEL-RM and MM200) showed higher levels of HDGF gene expression, whereas human epidermal melanocytes (HEMn) expressed less. Exogenous application of HDGF stimulated colony formation and invasion of human melanoma cells. Moreover, HDGF overexpression stimulated the degree of invasion and colony formation of B16–F10 melanoma cells whereas HDGF knockdown exerted opposite effects in vitro. To evaluate the effects of HDGF on tumour growth and metastasis in vivo, syngeneic mouse melanoma and metastatic melanoma models were performed by manipulating the gene expression of HDGF in melanoma cells. It was found that mice injected with HDGF-overexpressing melanoma cells had greater tumour growth and higher metastatic capability. In contrast, mice implanted with HDGF-depleted melanoma cells exhibited reduced tumor burden and lung metastasis. Histological analysis of excised tumors revealed higher degree of cell proliferation and neovascularization in HDGF-overexpressing melanoma. The present study provides evidence that HDGF promotes tumor progression of melanoma and targeting HDGF may constitute a novel strategy for the treatment of melanoma.  相似文献   

17.
Recent advances in functional genomics have helped generate large-scale high-throughput protein interaction data. Such networks, though extremely valuable towards molecular level understanding of cells, do not provide any direct information about the regions (domains) in the proteins that mediate the interaction. Here, we performed co-evolutionary analysis of domains in interacting proteins in order to understand the degree of co-evolution of interacting and non-interacting domains. Using a combination of sequence and structural analysis, we analyzed protein-protein interactions in F1-ATPase, Sec23p/Sec24p, DNA-directed RNA polymerase and nuclear pore complexes, and found that interacting domain pair(s) for a given interaction exhibits higher level of co-evolution than the non-interacting domain pairs. Motivated by this finding, we developed a computational method to test the generality of the observed trend, and to predict large-scale domain-domain interactions. Given a protein-protein interaction, the proposed method predicts the domain pair(s) that is most likely to mediate the protein interaction. We applied this method on the yeast interactome to predict domain-domain interactions, and used known domain-domain interactions found in PDB crystal structures to validate our predictions. Our results show that the prediction accuracy of the proposed method is statistically significant. Comparison of our prediction results with those from two other methods reveals that only a fraction of predictions are shared by all the three methods, indicating that the proposed method can detect known interactions missed by other methods. We believe that the proposed method can be used with other methods to help identify previously unrecognized domain-domain interactions on a genome scale, and could potentially help reduce the search space for identifying interaction sites.  相似文献   

18.
Among the many PWWP-containing proteins, the largest group of homologous proteins is related to hepatoma-derived growth factor (HDGF). Within a well-conserved region at the extreme N-terminus, HDGF and five HDGF-related proteins (HRPs) always have a PWWP domain, which is a module found in many chromatin-associated proteins. In this study, we determined the solution structure of the PWWP domain of HDGF-related protein-3 (HRP-3) by NMR spectroscopy. The structure consists of a five-stranded beta-barrel with a PWWP-specific long loop connecting beta2 and beta3 (PR-loop), followed by a helical region including two alpha-helices. Its structure was found to have a characteristic solvent-exposed hydrophobic cavity, which is composed of an abundance of aromatic residues in the beta1/beta2 loop (beta-beta arch) and the beta3/beta4 loop. A similar ligand binding cavity occurs at the corresponding position in the Tudor, chromo, and MBT domains, which have structural and probable evolutionary relationships with PWWP domains. These findings suggest that the PWWP domains of the HDGF family bind to some component of chromatin via the cavity.  相似文献   

19.
Hepatoma-derived growth factor (HDGF) is a nuclear protein homologous to the high-mobility group B1 family of proteins. It is known to be released from cells and to act as a trophic factor for dividing cells. In this study HDGF was increased in spinal motor neurons of a mouse model of motor neuron degeneration, polyglutamine-tract-binding protein-1 (PQBP-1) transgenic mice, before onset of degeneration. HDGF promoted neurite extension and survival of spinal motor neurons in primary culture. HDGF repressed cell death of motor neurons after facial nerve section in newborn rats in vivo. We also found a significant increase in p53 in spinal motor neurons of the transgenic mice. p53 bound to a sequence in the upstream of the HDGF gene in a gel mobility shift assay, and promoted gene expression through the cis-element in chloramphenicol acetyl transfer (CAT) assay. Finally, we found that HDGF was increased in CSF of PQBP-1 transgenic mice. Collectively, our results show that HDGF is a novel trophic factor for motor neurons and suggest that it might play a protective role against motor neuron degeneration in PQBP-1 transgenic mice.  相似文献   

20.
A predicted interactome for Arabidopsis   总被引:5,自引:1,他引:4       下载免费PDF全文
The complex cellular functions of an organism frequently rely on physical interactions between proteins. A map of all protein-protein interactions, an interactome, is thus an invaluable tool. We present an interactome for Arabidopsis (Arabidopsis thaliana) predicted from interacting orthologs in yeast (Saccharomyces cerevisiae), nematode worm (Caenorhabditis elegans), fruitfly (Drosophila melanogaster), and human (Homo sapiens). As an internal quality control, a confidence value was generated based on the amount of supporting evidence for each interaction. A total of 1,159 high confidence, 5,913 medium confidence, and 12,907 low confidence interactions were identified for 3,617 conserved Arabidopsis proteins. There was significant coexpression of genes whose proteins were predicted to interact, even among low confidence interactions. Interacting proteins were also significantly more likely to be found within the same subcellular location, and significantly less likely to be found in conflicting localizations than randomly paired proteins. A notable exception was that proteins located in the Golgi were more likely to interact with Golgi, vacuolar, or endoplasmic reticulum sorted proteins, indicating possible docking or trafficking interactions. These predictions can aid researchers by extending known complexes and pathways with candidate proteins. In addition we have predicted interactions for many previously unknown proteins in known pathways and complexes. We present this interactome, and an online Web interface the Arabidopsis Interactions Viewer, as a first step toward understanding global signaling in Arabidopsis, and to whet the appetite for those who are awaiting results from high-throughput experimental approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号