首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Andrographolide, a diterpene lactone, is isolated from Andrographis paniculata which is well known for its medicinal properties. The biosynthetic route to andrographolide was studied using [1-13C]acetate, [2-13C]acetate and [1,6-13C2]glucose. The peak enrichment of eight carbon atoms in the 13C NMR spectra of andrographolide suggested that deoxyxylulose pathway (DXP) is the major biosynthetic pathway to this diterpene.The contribution of the mevalonic acid pathway (MVA) is indicated by the observed 13C-labeling pattern, and because the labeling patterns indicate a simultaneous contribution of both methyl erythritol phosphate (MEP) and MVA pathways it can be deduced that cross-talk occurs between plastids and cytoplasm.  相似文献   

2.
The objective of this study was to elucidate the biosynthetic route to 4-methyl-1-nonanol, the female-produced sex pheromone of the yellow mealworm beetle, Tenebrio molitor L. The biosynthetic route to the pheromone was examined by (i) allowing the females to feed on defatted bran coated with a stable isotope-labeled putative precursor ([1-13C]acetate, [1-13C]propionate, [1-13C]pentanoate, [1-13C]2-methylheptanoic acid, or [2H2]4-methylnonanoic acid); (ii) determining if the precursors were incorporated by analyzing the emitted pheromone by gas chromatography/selected ion monitoring-mass spectroscopy (GC/SIM-MS); (iii) where the pheromone was isotopically-enriched, determining the position of the isotopic label(s) through comparison of the MS fragmentation pattern with that of unlabelled 4-methyl-1-nonanol. Although the incorporation of [1-13C]acetate into 4-methyl-1-nonanol could not be detected, relatively large proportions of the pheromone were produced from the other precursors tested: 81% from [2H2]4-methylnonanoic acid, 45% from [1-13C]2-methylheptanoic acid, 16% from [1-13C]pentanoate, and 35% from [1-13C]propionate (27% from only one unit, and 7.8% from two units). The results indicate that 4-methyl-1-nonanol is produced through a modification of normal fatty acid biosynthesis: initiation of the pathway with one unit of propionate results in the uneven number of carbons in the chain; incorporation of another unit of propionate during elongation provides the methyl branch; reduction of 4-methylnonanoic acid produces the alcohol pheromone. The elucidation of the biosynthetic pathway of 4-methyl-1-nonanol biosynthesis in the yellow mealworm is the first step towards understanding the biochemistry of sex pheromone production in this species.  相似文献   

3.
Labelling experiments with [2-13C]- and [1,2-13C]acetate showed that both photopigments of Anacystis nidulans, chlorophyll a and phycocyanobilin, share a common biosynthetic pathway from glutamate. The fate of deuterium during these biosynthetic events was studied using [2-13C, 2-2H3]acetate as a precursor and determining the labelling pattern by 13C NMR spectroscopy with simultaneous [1H, 2H]-broadband decoupling. The loss of 2H (ca 20%) from the precursor occurred at an early stage during the tricarboxylic acid cycle. After formation of glutamate there was no further loss of 2H in the assembly of the cyclic tetrapyrrole intermediates or during decarboxylation and modification of the side-chains. Thus the labelling data support a divergence in the pathway to cyclic and linear tetrapyrroles after protoporphyrin IX.  相似文献   

4.
A new biosynthetic pathway, which can produce both vitamin B12 and large amounts of porphyrins from isopropanol, was identified in Arthrobacter hyalinus using carbon-13 stable isotope tracer techniques and carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy. Studies on the incorporation of [2-13C]isopropanol, [1- or 2-13C]sodium acetate, l-[1-13C]glutamate, and [1-, 2-, 3-, 4-, 5-13C]5-aminolevulinic acid into uroporphyrinogen III showed that isopropanol was metabolized into uroporphyrinogen III through acetyl CoA and that 5-aminolevulinic acid was produced from l-glutamic acid and not via Shemin's pathway.  相似文献   

5.
Feeding experiments have demonstrated the specific incorporation of radioactivity from dl-phenylalanine-[1-14C], l-phenylalanine-[U-14C], sodium acetate-[2-14C] and l-methionine-[methyl-14C] into the 3-benzylchroman-4-one eucomin in Eucomis bicolor. The labelling patterns indicate that eucomin is biosynthesized by the addition of a carbon atom derived from methionine onto a C15 chalcone-type skeleton. Radioactivity from 2′,4′,4-trihydroxy-6′-methoxychalcone-[methyl-14C] and 2′,4′-dihydroxy-4,6′-dimethoxychalcone-[6′-methyl-14C] was incorporated into eucomin, the latter compound being the better precursor, demonstrating the feasibility that 2′-methoxychalcones are biosynthetic precursors of the “homoisoflavonoids”. Possible biosynthetic relationships in this class of compounds are discussed.  相似文献   

6.
1. The following compounds, added to the growth medium of Fusarium javanicum, were converted into labelled javanicin with the percentage incorporations noted in parentheses: [Me-14C]methionine (0·83); [1-14C]acetate (0·70); [2-14C]malonate (0·07). 2. Labelled samples of javanicin were degraded by Zeisel reaction, Kuhn–Roth oxidation and reaction with sodium hypoiodite; acetic acid obtained from the Kuhn–Roth reaction was further degraded by the Schmidt reaction. Labelled methionine was used only for the formation of the methoxyl group, and the remaining carbon atoms were derived by the acetate-plus-polymalonate pathway. The methyl group attached directly to the naphthaquinone ring is derived by the reduction of a carboxyl group. 3. The demonstration of this biosynthetic pathway supports the assignment of the methoxyl group at position 7.  相似文献   

7.
Bacterial osmoadaptation involves the cytoplasmic accumulation of compatible solutes to counteract extracellular osmolarity. The halophilic and highly halotolerant bacterium Chromohalobacter salexigens is able to grow up to 3 m NaCl in a minimal medium due to the de novo synthesis of ectoines. This is an osmoregulated pathway that burdens central metabolic routes by quantitatively drawing off TCA cycle intermediaries. Consequently, metabolism in C. salexigens has adapted to support this biosynthetic route. Metabolism of C. salexigens is more efficient at high salinity than at low salinity, as reflected by lower glucose consumption, lower metabolite overflow, and higher biomass yield. At low salinity, by-products (mainly gluconate, pyruvate, and acetate) accumulate extracellularly. Using [1-13C]-, [2-13C]-, [6-13C]-, and [U-13C6]glucose as carbon sources, we were able to determine the main central metabolic pathways involved in ectoines biosynthesis from glucose. C. salexigens uses the Entner-Doudoroff pathway rather than the standard glycolytic pathway for glucose catabolism, and anaplerotic activity is high to replenish the TCA cycle with the intermediaries withdrawn for ectoines biosynthesis. Metabolic flux ratios at low and high salinity were similar, revealing a certain metabolic rigidity, probably due to its specialization to support high biosynthetic fluxes and partially explaining why metabolic yields are so highly affected by salinity. This work represents an important contribution to the elucidation of specific metabolic adaptations in compatible solute-accumulating halophilic bacteria.  相似文献   

8.
Production of 6-ethyl-5-hydroxy-2,7-dimethoxy-1,4-naphthoquinone was obtained by growth of Hendersonula toruloidea on Czapek-Dox broth supplemented with malt extract. Stationary cultures were grown at 28°C for 21–22 days yielding about 6 mg of metabolite per 700 ml of culture fluid. The best incorporations of isotopic tracers were obtained by addition at the 20th day of growth, followed by harvest 24–48 hr later. With [2-14C]acetate, incorporation values were in the range of 0.1–0.3% with dilution values from 2000 to 5900. With [1-14C]propionate, incorporations were much lower (0.04%) and dilutions much higher (120,000). Activity from [14CH3]methionine was incorporated only into the OCH3 groups (incorporation values, 0.5–0.7%). Nuclear magnetic resonance studies confirmed that propionate was not a precursor. Using [1,2-13C]acetate, substantial enrichments were obtained at all carbon atoms except those of the OCH3 groups. The following pairs of carbon atoms were shown to be derived from acetate units: C-1 + 2, C-3 + 4, C-5 + 10, C-6 + 7, C-8 + 9, C-11 + 12. The biosynthetic pathway is clearly that of acetate plus polymalonate. Experiments with [2-13C2H3]acetate suggested that the “starter” acetate unit was located at positions C-12 + 11.  相似文献   

9.
The chlorophyll repair potential of mature Cucumis chloroplasts incubated in a simple Tris-HCI/sucrose medium is described. The chloroplasts were isolated from green, fully expanded Cucumis cotyledons which were capable of chlorophyll repair. This was evidenced by a functional chlorophyll biosynthetic pathway in the mature tissue. The biosynthesis of protochlorophyllide from exogenous δ-aminolevulinic acid was used as a marker for the operation of the chlorophyll biosynthetic chain between δ-aminolevulinic acid and protochlorophyllide. The conversion of exogenous protochlorophyllide into chlorophyll a was used as a marker for the operation of the chlorophyll pathway beyond protochlorophyllide. It appeared from these studies that contrary to published reports, unfortified fully developed Cucumis chloroplasts incubated in Tris-HCl/sucrose without the addition of cofactors exhibited a partial and limited chlorophyll repair capability. Their net tetrapyrrole biosynthetic competence from δ-aminolevulinic acid was confined to the accumulation of coproporphyrin. No net tetrapyrrole biosynthesis beyond coproporphyrin was observed. However, the plastids were capable of incorporating small amounts of δ-amino-[4-14C]levulinic acid into [14C] protochlorophyllide but were incapable of converting exogenous protochlorophyllide into chlorophyll. After prolonged incubation of the unfortified chloroplasts in the dark, a fluorescent protochlorophyllide-like compound accumulated. This compound [Cp (E430-F631)] exhibited a soret excitation maximum at 430 nm (E430) and a fluorescence emission maximum at 631 nm (F631) in methanol/acetone (4 : 1, v/v). Cp (E430-F631) was shown to be neither protochlorophyllide nor zinc-protochlorophyllide but an enzymatic degradation product of chlorophyll. The exact chemical identity of this compound has not yet been determined.  相似文献   

10.
《Insect Biochemistry》1990,20(2):149-156
The precursors and directionality of synthesis of the methyl branched cuticular hydrocarbons and the female contact sex pheromone, 3,11-dimethyl-2-nonacosanone, of the German cockroach, Blattella germanica, were investigated by radiotracer and carbon-13 NMR techniques. The amino acids [G-3H]valine, [4,5-3H]isoleucine and [3,4-14C2]methionine labeled the hydrocarbon fraction in a manner indicating that the carbon skeletons of all three amino acids serve as the methyl branch group donor. The incorporation of [1,4-14C2]- and [2,3-14C2]succinates into the hydrocarbon and acylglycerol/polar lipid fractions indicated that succinate also served as a precursor to methylmalonyl-CoA. Carbon-13 NMR analyses showed that [1-13C]propionate labeled the carbon adjacent to the tertiary carbon, and, for the 3,x-dimethylalkanes, that carbon-4 and not carbon-2 was enriched. [1-13C]Acetate labeled carbon-2 of these hydrocarbons. This indicates that the methyl branching groups of the 3,x-dimethylalkanes were inserted early in the chain elongation process. [3,4,5-13C3]Valine labeled the methyl, tertiary and carbon adjacent to the tertiary carbon of the methyl branched alkanes. Thus, the methyl branched hydrocarbon was formed by the insertion of methylmalonyl units derived from propionate, isoleucine, valine, methionine and succinate early in chain elongation.  相似文献   

11.
Isolation and properties of naphthoate synthetase from Mycobacterium phlei   总被引:2,自引:0,他引:2  
Cell-free extracts obtained by sonication of Mycobacterium phlei cells contain an important enzyme of the menaquinone (= vitamin K2) biosynthetic pathway. This enzyme, naphthoate synthetase (1,4-dihydroxy-2-naphthoate synthetase), was partially purified by chromatography on Sepharose 6BCL. Conversion of o-succinylbenzoate to 1,4-dihydroxy-2-naphthoate was followed by a radioactivity assay using o-[2,3-14C2]succinylbenzoate, or by a spectrophotofluorometric assay. o-[1-13C]Succinylbenzoate was converted intact by the extracts to dihydroxynaphthoate containing 13C only in the carboxyl carbon atom. For maximum activity, the enzyme requires ATP, Mg2+, and coenzyme A. The pH optimum is 6.9 and the molecular weight approximately 44,000. In the presence of farnesyl pyrophosphate, the extracts convert o-[2,3-14C2]succinylbenzoate to 14C-containing menaquinone.  相似文献   

12.
《Insect Biochemistry》1990,20(3):245-250
The biosynthetic pathway of some terpenic hydrocarbons present in the larval osmeterial secretions of Luehdorfia (homogeneous type) and Papilio (heterogeneous type) species was examined by in vivo experiments, using 13C-labelled acetic acid which was topically applied to the everted osmeteria. GC-MS investigation demonstrated that 13C was incorporated into mono- and/or sesquiterpene hydrocarbons with the enrichment factor of approx. 0.5% (L. puziloi), 1.0% (P. protenor) and 2.9% (P. helenus) by treatment with 1,2-13C-enriched acetic acid, thereby substantiating de novo biosynthesis of terpenes from acetate precursors by these larvae. The incorporation pattern of [2-13C]- or [1,2-13C]acetic acid into the carbon framework of β-myrcene (L. puziloi) and (E)-β-farnesene (P. helenus) as revealed by 13C-NMR spectroscopy definitely elucidated the biosyntheses of terpenic compounds in both species by the familiar terpenoid synthetic system with the isoprenoid skeletal units that is widely known in plants. Partial correction of previous assignment of 13C-NMR spectra of β-myrcene and (E)-β-farnesene is also made.  相似文献   

13.
The biosynthesis of the iridoid glucoside lamalbid in Lamium barbatum, a plant species in the Lamiaceae, was investigated by administrating 13C-labeled intermediates of MVA and MEP pathways, respectively. The results demonstrated that [3,4,5-13C3]1-deoxy-d-xylulose 5-phosphate could be incorporated into lamalbid, whereas the incorporation of [2-13C1]mevalonolactone was not observed. Based on the 13C labeling pattern of lamalbid and the incorporation data, we deduce that the iridoid glucoside in L. barbatum is biosynthesized through the MEP pathway, whereas the classic MVA pathway is not utilized.  相似文献   

14.
Gibberellin A1 (GA1), which was identified as the major GA from the GA-producing fungus Phaeosphaeria sp. L487, was accumulated in the culture with a maltose-yeast extract medium, its amount in the culture filtrate being about 50 mg per liter after a 3-week culture. The new fungal biosynthetic pathway to GA1 from GA9 via GA4 was elucidated by feeding experiments with synthetic [17-2H2]GA9 and [17-2H2]GA4.  相似文献   

15.
The in vitro cultured liverwort Jungermannia subulata produces the unique molecule subulatin. In this study, we examined the incorporation of [1-13C] and [1,2-13C2] glucose, [2-13C] arabinose, [2-13C] caffeic acid, and [1-13C] phenylalanine into subulatin. The trilobatinoic acid C unit of subulatin incorporated 13C atoms from [1-13C] and [1,2-13C2] glucose and from [2-13C] arabinose but not from any other of the other precursors. Based on these results and labeling patterns, the trilobatinoic acid C unit of subulatin appears to be biosynthesized from arabinose-5-phosphate and phosphoenolpyruvate.  相似文献   

16.
Production of 6-ethyl-5-hydroxy-2,7-dimethoxy-1,4-naphthoquinone was obtained by growth of Hendersonula toruloidea on Czapek-Dox broth supplemented with malt extract. Stationary cultures were grown at 28°C for 21–22 days yielding about 6 mg of metabolite per 700 ml of culture fluid. The best incorporations of isotopic tracers were obtained by addition at the 20th day of growth, followed by harvest 24–48 hr later. With [2-14C]acetate, incorporation values were in the range of 0.1–0.3% with dilution values from 2000 to 5900. With [1-14C]propionate, incorporations were much lower (0.04%) and dilutions much higher (120,000). Activity from [14CH3]methionine was incorporated only into the OCH3 groups (incorporation values, 0.5–0.7%). Nuclear magnetic resonance studies confirmed that propionate was not a precursor. Using [1,2-13C]acetate, substantial enrichments were obtained at all carbon atoms except those of the OCH3 groups. The following pairs of carbon atoms were shown to be derived from acetate units: C-1 + 2, C-3 + 4, C-5 + 10, C-6 + 7, C-8 + 9, C-11 + 12. The biosynthetic pathway is clearly that of acetate plus polymalonate. Experiments with [2-13C2H3]acetate suggested that the “starter” acetate unit was located at positions C-12 + 11.  相似文献   

17.
This review deals with polyketides to which nature has developed different biosynthetic pathways in the course of evolution. The anthraquinone chrysophanol is the first example of an acetogenic natural product that is, in an organism-specific manner, formed via more than one polyketide folding mode: In eukaryotes, like e.g., in fungi, in higher plants, and in insects, it is synthesized via folding mode F, while in prokaryotes it originates through mode S. It has, more recently, even been found to be synthesized by a third pathway, named mode S′. Thus, chrysophanol is the first polyketide synthase product that originates through a divergent–convergent biosynthesis (depending on the respective producing organisms). A second example of a striking biosynthetic convergence is the isoquinoline alkaloids. While all as yet investigated representatives of this large family of plant-derived metabolites (more than 2500 known representatives!) are formed from aromatic amino acids, the biosynthetic origin of naphthylisoquinoline alkaloids like dioncophylline A is unprecedented in following a route to isoquinolines in plants: we have shown that such naphthylisoquinolines represent the as yet only known polyketidic di- and tetrahydroisoquinolines, originating from acetate and malonate units, exclusively. Both molecular halves, the isoquinoline part and the naphthalene portion, are even synthesized from a joint polyketide precursor, the first proven case of the F-type folding mode in higher plants. The biosynthetic origins of the natural products presented in this paper were elucidated by feeding 13C2-labeled acetate (or advanced precursors) to the respective producing organisms, with subsequent NMR analysis of their 13C2 incorporation patterns using the potent cryoprobe methodology, thus making the full polyketide folding pattern visible.  相似文献   

18.
19.
An incorporation study of [1-13C] and [1,2-13C2] labeled sodium acetates into sorbicillinol 1 established a ring closure system between C-1 and C-6 and the positions that were oxidized and/or methylated on a hexaketide chain. Subsequent investigations, using 13C-labeled 1 prepared from [1-13C] labeled sodium acetate, clearly demonstrated that both bisorbicillinol 2 and sorbicillin 6 incorporated 13C-labeled 1 into their carbon skeletons. 13C-labeled bisorbicillinols 2 derived from [1-13C]- and [2-13C]-labeled sodium acetates clearly indicate that these were on the biosynthetic route from 1 to bisorbibutenolide (bislongiquinolide) 3 and bisorbicillinolide 4 via 2 as a branching point in the fungus.  相似文献   

20.
The administration of l-tryptophan-[3-14C] to Lupinus hartwegii (3-day-old seedlings and 8-week-old plants) resulted in the formation of gramine-[methylene-14C], indicating that gramine is produced by the same biosynthetic route in this species as in barley. Radioactive indole-3-aldehyde, labelled specifically on its aldehyde carbon, was isolated from the 8-week-old plants. However no significant amount of this compound was detected in 7-day-old seedlings, and it is suggested that indole-3-aldehyde is formed by the metabolism of gramine in the maturing plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号