首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of dissimilatory iron-reducing bacteria (DIRB) may provide a means of remediating contaminated subsurface soils. The factors controlling the rate and extent of bacterial F(III) mineral reduction are poorly understood. Recent research suggests that molecular-scale interactions between DIRB cells and Fe(III) mineral particles play an important role in this process. One of these interactions, cell adhesion to Fe(III) mineral particles, appears to be a complex process that is, at least in part, mediated by a variety of surface proteins. This study examined the hypothesis that the flagellum serves as an adhesin to different Fe(III) minerals that range in their surface area and degree of crystallinity. Deflagellated cells of the DIRB Shewanella algae BrY showed a reduced ability to adhere to hydrous ferric oxide (HFO) relative to flagellated cells. Flagellated cells were also more hydrophobic than deflagellated cells. This was significant because hydrophobic interactions have been previously shown to dominate S. algae cell adhesion to Fe(III) minerals. Pre-incubating HFO, goethite, or hematite with purified flagella inhibited the adhesion of S. algae BrY cells to these minerals. Transposon mutagenesis was used to generate a flagellum-deficient mutant designated S. algae strain NF. There was a significant difference in the rate and extent of S. algae NF adhesion to HFO, goethite, and hematite relative to that of S. algae BrY. Amiloride, a specific inhibitor of Na + -driven flagellar motors, inhibited S. algae BrY motility but did not affect the adhesion of S. algae BrY to HFO. S.algae NF reduced HFO at the same rate as S. algae BrY. Collectively, the results of this study support the hypothesis that the flagellum of S. algae functions as a specific Fe(III) mineral adhesin. However, these results suggest that flagellum-mediated adhesion is not requisite for Fe(III) mineral reduction.  相似文献   

2.
Eicosanoids from the Rhodophyta: new metabolism in the algae   总被引:2,自引:2,他引:0  
Red marine algae are shown in this work to be a rich source of eicosanoid-type natural products. This is the first isolation of several of these mammalian arachidonic acid metabolites from any marine or terrestrial plant source (12-HETE, 12-HEPE, 6(E)-LTB4, hepoxilin B3). A few of these represent truly novel substances never previously isolated from nature [12(R), 13(S)-diHETE]. Inherent in these seaweed natural product structures is evidence for a highly evolved lipoxygenase-type metabolism that matches or exceeds the complexity of comparable metabolic routes in mammalian systems. As these compounds are produced by algae in relatively large quantities (0.1–5.0% of crude lipid extracts), these plants could be important commercial resources for these expensive and rare biochemicals. Further, we suggest that this metabolism is important to physiological processes in red algae that are completely unknown at present. For example, it is possible that they act in an exocrine sense to coordinate reproductive events, a hypothesis under current investigation through culture studies.This paper was presented at the mini-symposium Bioactive Compounds from Algae, Y. Shimizu, Convener.  相似文献   

3.
Extracellular carbonic anhydrase (CAe) is expressed by many, but not all, autotrophic species of aquatic unicellular protists. We measured CAe activities in unicellular marine algae characteristic of either high nutrient spring, fall, and winter blooms or low nutrient summer populations to provide ecological/evolutionary information about the enzyme. Highest activities occurred in spring bloom and opportunistic diatoms exposed to long photoperiods (16 h) when pH was highest and CO2 was lowest. Lower activities were recorded for a fall-bloom diatom exposed to the long photoperiod, and lowest values were found under all culture conditions for one diatom and a number of flagellated species typical of summer low nutrient environments. Other potential sources of variance in measurements of CAe activity were examined. Maximum activities of CAe were recorded for the diatom, Skeletonema costatum (Greville) Cleve, during late exponential phase of growth and within 8 h of the beginning of the photoperiod. We concluded that ecological factors are important in determining CAe activities in marine unicellular protists. Potential functions of CAe in the metabolism of marine unicellular algae are discussed.  相似文献   

4.
We present the results of an intensive sampling program carried out from 2000 to 2007 along both coasts of Costa Rica, Central America. The presence of 44 species of benthic marine algae is reported for the first time for Costa Rica. Most of the new records are Rhodophyta (27 spp.), followed by Chlorophyta (15 spp.), and Heterokontophyta, Phaeophycea (2 spp.). Overall, the currently known marine flora of Costa Rica is comprised of 446 benthic marine algae and 24 Cyanobacteria. This species number is an under estimation, and will increase when species of benthic marine algae from taxonomic groups where only limited information is available (e.g., microfilamentous benthic marine algae, Cyanobacteria) are included. The Caribbean coast harbors considerably more benthic marine algae (318 spp.) than the Pacific coast (190 spp.); such a trend has been observed in all neighboring countries. Compared to other Central American countries, Costa Rica has the highest number of reported benthic marine algae; however, Panama may have a similarly high diversity after unpublished results from a Rhodophyta survey (Wysor, unpublished) are included. Sixty-two species have been found along both the Pacific and Caribbean coasts of Costa Rica; we discuss this result in relation to the emergence of the Central American Isthmus.  相似文献   

5.
Shewanella algae, S. putrefaciens, and Photobacterium damselae subsp. damselae are indigenous marine bacteria and human pathogens causing cellulitis, necrotizing fasciitis, abscesses, septicemia, and death. Infections are rare and are most often associated with the immunocompromised host. A study was performed on the microbiological flora of oysters and seawater from commercial oyster harvesting sites in the Delaware Bay, New Jersey. From 276 water and shellfish samples tested, 1,421 bacterial isolates were picked for biochemical identification and 170 (12.0%) of the isolates were presumptively identified as S. putrefaciens, 26 (1.8%) were presumptively identified as P. damselae subsp. damselae, and 665 (46.8%) could not be identified using the API 20E identification database. Sequencing of the 16S rRNA genes of 22 S. putrefaciens-like isolates identified them as S. abalonesis, S. algae, S. baltica, S. hafniensis, S. marisflavi, S. putrefaciens, Listonella anguillarum, and P. damselae. Beta-hemolysis was produced by some S. algae and P. damselae isolates, while isolates of S. baltica and L. anguillarum, species perceived as nonpathogenic, also exhibited beta-hemolysis and growth at 37 degrees C. To our knowledge, this is the first time these beta-hemolytic strains were reported from shellfish or seawater from the Delaware Bay. Pathogenic Shewanella and Photobacterium species could pose a health threat through the ingestion of contaminated seafood, by cuts or abrasions acquired in the marine environment, or by swimming and other recreational activities.  相似文献   

6.
A search for fucoidan-degrading enzymes and other O-glycosylhydrolases has been performed among 51 strains of marine bacteria of the family Flavobacteriaceae isolated from red, green, and brown algae, as well as from the sea urchin Strongylocentrotus intermedius and the holothurian Apostichopus japonicus. Over 40% of the studied strains synthesized fucoidanases. The marine bacteria Mesonia algae KMM 3909(T) (an isolate from green alga Acrosiphonia sonderi), as well as Maribacter sp. KMM 6211 and Gramella sp. KMM 6054 (associants of the sea urchin S. intermedius), were the best producers of fucoidanases. Xylose effectively induced the biosynthesis of fucoidanases in these strains. None of the 15 strains of marine bacteria belonging to the genus Arenibacter produced polysaccharide hydrolases.  相似文献   

7.
Some marine algae can form volatile aldehydes such as n-hexanal, hexenals, and nonenals. In higher plants it is well established that these short-chain aldehydes are formed from C18 fatty acids via actions of lipoxygenase and fatty acid hydroperoxide lyase, however, the biosynthetic pathway in marine algae has not been fully established yet. A brown alga, Laminaria angustata, forms relatively higher amounts of C6- and C9-aldehydes. When linoleic acid was added to a homogenate prepared from the fronds of this algae, formation of n-hexanal was observed. When glutathione peroxidase was added to the reaction mixture concomitant with glutathione, the formation of n-hexanal from linoleic acid was inhibited, and oxygenated fatty acids accumulated. By chemical analyses one of the major oxygenated fatty acids was shown to be (S)-13-hydroxy-(Z, E)-9, 11-octadecadienoic acid. Therefore, it is assumed that n-hexanal is formed from linoleic acid via a sequential action of lipoxygenase and fatty acid hydroperoxide lyase (HPL), by an almost similar pathway as the counterpart found in higher plants HPL partially purified from the fronds has a rather strict substrate specificity, and only 13-hydroperoxide of linoleic acid, and 15-hydroperoxide of arachidonic acid are the essentially suitable substrates for the enzyme. By surveying various species of marine algae including Phaeophyta, Rhodophyta and Chlorophyta it was shown that almost all the marine algae have HPL activity. Thus, a wide distribution of the enzyme is expected.  相似文献   

8.
Uric acid deposits in symbiotic marine algae   总被引:1,自引:0,他引:1  
The symbiosis between cnidarians and dinoflagellate algae is not understood at the cell or molecular level, yet this relationship is responsible for the formation of thousands of square kilometres of coral reefs. We have investigated the nature of crystalline material prominent within marine algal symbionts of Aiptasia sp. anemones. This material, which has historically been considered to be calcium oxalate, is shown to be uric acid. We demonstrate that these abundant uric acid stores can be mobilized rapidly, thereby allowing the algal symbionts to flourish in an otherwise N-poor environment. This is the first report of uric acid accumulation by symbiotic marine algae. These data provide new insight and considerations for understanding the physiological basis of algal symbioses, and represent a new and previously unconsidered aspect of N metabolism in cnidarian, and a variety of other, marine symbioses.  相似文献   

9.
Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited.  相似文献   

10.
Despite promises that ‘healthy’ marine systems show increased resilience, the effects of ecosystem management strategies on invasion success in marine systems is still unclear. We show that resistance to the invasive alga, Sargassum horneri, in a temperate reef system occurs through alternate mechanisms in different ecosystem states. In an old marine protected area (MPA), invasion of S. horneri was suppressed, likely due to competitive pressure from native algae, resulting from protection of urchin predators. In a nearby fished urchin barren, invasion of S. horneri was also suppressed, due to herbivory by urchins whose predators are fished. Within newer MPAs with intermediate levels of interacting species, S. horneri was abundant. Here, neither competition from native algae nor herbivory was sufficient to prevent invasion. We confirm that invasion in marine systems is complex and show that multiple mechanisms in single systems must be considered when investigating biotic resistance hypotheses.  相似文献   

11.
The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (~150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome.  相似文献   

12.
藻类对多环芳香烃(PAHs)的富集和代谢   总被引:1,自引:0,他引:1  
概述了藻类对PAHs的富集和代谢的研究进展。环境中多环芳香烃(PAHs)的污染能导致严重的健康问题,利用生物特别是微生物去除污染环境中的PAHs是一项新的技术。藻类对PAHs的富集与有机污染物的类型、藻类的种类及藻类的生物量有关,活细胞和死细胞对PAHs均有富集能力。还阐述了PAHs在真菌、细菌和藻类体内代谢的途径以及代谢过程中起关键作用的酶,PAHs在藻类中的代谢途径和细菌及真菌都不同,谷胱甘肽转移酶(GST)在藻类代谢PAH过程中起重要作用,但细胞色素P450酶所起的作用则不详。  相似文献   

13.
Hydrogen metabolism in blue-green algae.   总被引:12,自引:0,他引:12  
H Bothe  E Distler  G Eisbrenner 《Biochimie》1978,60(3):277-289
  相似文献   

14.
Dimethylsulfoniopropionate, an osmolyte of marine algae, is thought to be the major precursor of dimethyl sulfide, which plays a dominant role in biogenic sulfur emission. The marine sulfate-reducing bacterium Desulfobacterium strain PM4 was found to degrade dimethylsulfoniopropionate to 3-S-methylmercaptopropionate. The oxidation of one of the methyl groups of dimethylsulfoniopropionate was coupled to the reduction of sulfate; this process is similar to the degradation betaine to dimethylglycine which was described earlier for the same strain. Desulfobacterium PM4 is the first example of an anaerobic marine bacterium that is able to demethylate dimethylsulfoniopropionate.Abbreviations DMSP dimethylsulfoniopropionate - DMS dimethyl sulfide - MMPA 3-S-methylmercaptopropionate  相似文献   

15.
Many green algae cannot develop normally when they are grown under axenic conditions. Monostroma oxyspermum, for example, proliferates unicellularly in an aseptic culture, but develops into a normal foliaceous gametophyte in the presence of some marine bacteria. More than 1000 bacterial strains were isolated from marine algae and sponges and assayed for their ability to induce the morphogenesis of unicellular M. oxyspermum. Fifty bacterial strains exhibiting morphogenesis-inducing activity against unicellular M. oxyspermum were isolated. The partial gyrB (approximately 1.2 kbp) and 16S rDNA (approximately 1.4 kbp) sequences of about 40 active strains were determined, and their phylogenetic relationships were analysed. All these strains were located within the Cytophaga-Flavobacterium-Bacteroides (CFB) complex, and most of these strains were clustered in a clade comprising Zobellia uliginosa. On the other hand, these bacteria also exhibited morphogenetic activity against germ-free spores of Ulva pertusa, Ulva conglobata and Enteromorpha intestinalis. Moreover, these bacteria induced the release of spores from the leafy young gametophyte of M. oxyspermum. These results indicate that strains belonging to several groups in the CFB complex play an important role in the normal development of green algae in the marine coastal environment.  相似文献   

16.
Ethene (ethylene; H2C = CH2) is one of a range of non-methane hydrocarbons (NMHC) that affect atmospheric chemistry and global climate. Ethene acts as a hormone in higher plants and its role in plant biochemistry, physiology and ecology has been the subject of extensive research. Ethene is also found in seawater, but despite evidence that marine microalgae and seaweeds can produce ethene directly, its production is generally attributed to photochemical breakdown of dissolved organic matter. Here we confirmed ethene production in cultured samples of the macroalga Ulva (Enteromorpha) intestinalis. Ethene levels increased substantially when samples acclimatized to low light conditions were transferred to high light, and ethene addition reduced chlorophyll levels by 30%. A range of potential inhibitors and inducers of ethene biosynthesis were tested. Evidence was found for ethene synthesis via the 1-aminocylopropane-1-acrylic acid (ACC) pathway and ACC oxidase activity was confirmed for cell-free extracts. Addition of acrylate, a potential ethene precursor in algae that contain the compatible solute dimethylsulphoniopropionate, doubled the ethene produced but no acrylate decarboxylase activity was found. Nonetheless the data support active production of ethene and we suggest ethene may play a multifaceted role in algae as it does in higher plants.  相似文献   

17.
A comparison between the ATP concentrations based on peak height light emission values (0 to 3 s) and integrated light flux determinations (15 to 75 s) for a variety of seawater samples revealed that the integrated method of light detection consistently yielded higher ATP concentrations, ranging from 1.38 to 2.35 times larger than the corresponding peak ATP values. A significant correlation (r = 0.923) was observed for a plot of ΔADP (i.e., integrated ATP - peak ATP) versus GTP + UTP, suggesting that the analytical interference on the ATP assay was the result of the presence of non-adenine nucleotide triphosphates. Size-fractionation studies revealed an enrichment of the non-adenine nucleotide triphosphates, relative to ATP, in the smallest size fraction analyzed (<10 μm). Investigations were conducted with 20 species of unicellular marine algae to determine their intracellular nucleotide concentrations, and these determinations were compared to the levels measured in lab cultures of the marine bacterium Serratia marinorubra. These results indicated that the intracellular GTP/ATP ratios in S. marinorubra increase in direct proportion to the rate of cell growth, and that the GTP/ATP ratios in bacteria are much greater than in growing algae, presumably due to the differences in rates of cellular biosynthesis. It is concluded that quantitative determinations of GTP/ATP ratios in environmental sample extracts may be useful for measuring microbial growth.  相似文献   

18.
栅藻对水环境中镍的累积效应与机理分析   总被引:1,自引:0,他引:1  
对不同Scenedesmus品种的藻细胞从含镍水溶液 (10mg/L)中累积金属镍的能力进行了分析 ,结果表明 :藻细胞对镍的生物累积量表现出明显的品种差异性。ScenedesmusquadricaudaFACHB 4 4和ScenedesmusquadricaudaFACHB 5 0 6表现出很强的累积能力 (累积量达到 5~ 6mgNi /g干重 ) ,而Scenedesmussp .FACHB 4 16和Scenedesmussp .FACHB 4 89在相同条件对金属镍累积量要少得多 (1~ 1.5mgNi /g干重 )。这种差异可能与不同品种藻细胞间的形态结构和生理特性是相关的。对S .quadricaudaFACHB 4 4重金属抗性和累积能力进一步的分析表明 ,S .quadricaudaFACHB 4 4用于含镍重金属废水处理是非常有效的 ,在高浓度 (10 0mg/L)的镍溶液中 ,藻细胞的最大累积量能达到 (2 6 .7mgNi/g干重 )。对该藻细胞镍累积动力学分析发现 :藻细胞对镍的生物累积包括一个快速的被动吸附过程 (5min ,结合 70 %的镍 )和一个缓慢的耗能累积过程 (2~ 3h时间内的累积量占总量的 2 0 %~ 30 % )。与其他藻类相比 ,S .quadricaudaFACHB 4 4对水溶液中镍的耗能累积量明显高于其他藻类。透射电子显微镜(TEM)和X射线能谱 (EDX)分析结果均表明 ,藻细胞耗能累积的镍主要集中在原生质体中 ,尤以淀粉粒和染色质中为多。  相似文献   

19.
Marine microalgae and cyanobacteria are very rich in several chemical compounds and, therefore, they may be used in several biological applications related with health benefits, among others. This review brings the research up-to-date on the bioactive compounds produced by marine unicellular algae, directly or indirectly related to human health. It covers and goes through the most studied applications of substances such as PUFA, sterols, proteins and enzymes, vitamins and pigments, in areas so diverse as human and animal nutrition, therapeutics, and aquaculture. The great potential of marine microalgae and the biocoumpounds they produce are discussed in this review.  相似文献   

20.
青岛3种海藻元素变迁的同步辐射X射线荧光研究   总被引:3,自引:0,他引:3  
为了研究海藻体内元素的变迁在监测海洋环境污染状况方面的应用,作者利用同步辐射X射线荧光,对分别在1985年7月和1999年7月采自中国山东省青岛海滨的浒苔(Enteroinorpha prolifera)、海蒿子(Sargassum pallidum) 和鸭毛藻(Symphyocladia latiuscula)进行了元素的分析。研究结果表明,各种不同的海藻,各自有相当稳定的XRF谱型。同1985年样品的XRF谱相比,在1999年的所有样品中,许多元素的峰强都明显增高了。Br的含量在鸭毛藻中最高,海蒿子次之,浒苔最少。同1985年相比,1999年的鸭毛藻中Br的含量几乎无变化,可能在1985年就已接近饱和。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号