首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Increased temperature, atmospheric CO2 and change in precipitation patterns affect plant physiological and ecosystem processes. In combination, the interactions between these effects result in complex responses that challenge our current understanding. In a multi-factorial field experiment with elevated CO2 (CO2, FACE), nighttime warming (T) and periodic drought (D), we investigated photosynthetic capacity and PSII performance in the evergreen dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa in a temperate heath ecosystem. Photosynthetic capacity was evaluated using A/Ci curves, leaf nitrogen content and chlorophyll-a fluorescence OJIP induction curves. The PSII performance was evaluated via the total performance index PItotal, which integrates the function of antenna, reaction centers, electron transport and end-acceptor reduction according to the OJIP-test.The PSII performance was negatively influenced by high air temperature, low soil water content and high irradiance dose. The experimental treatments of elevated CO2 and prolonged drought generally down-regulated Jmax, Vcmax and PItotal. Recovery from these depressions was found in the evergreen shrub after rewetting, while post-rewetting up-regulation of these parameters was observed in the grass. Warming effects acted indirectly to improve early season Jmax, Vcmax and PItotal. The responses in the multi-factorial experimental manipulations demonstrated complex interactive effects of T × CO2, D × CO2 and T × D × CO2 on photosynthetic capacity and PSII performance. The impact on the O-J, J-I and I-P phases which determine the response of PItotal are discussed. The single factor effects on PSII performance and their interactions could be explained by parallel adjustments of Vcmax, Jmax and leaf nitrogen in combination. Despite the highly variable natural environment, the OJIP-test was very robust in detecting the impacts of T, D, CO2 and their interactions.This study demonstrates that future climate will affect fundamental plant physiological processes in a way that is not predictable from single factor treatments. The interaction effects that were observed depended upon both the growth strategy of the species considered, and their ability to adjust during drought and rewetting periods.  相似文献   

3.
为研究物种在不同群落中光合生理特征的变化,以亚高寒草甸围封恢复地为研究对象,对样地内3个不同组成群落进行样方调查,测定了物种高度及各群落垂直方向上光照强度以及群落中3个共有种披碱草(Elymus dahuricus)、刺儿菜(Cirsium setosum)和紫花苜蓿(Medicago sativa)的净光合速率(Aarea)、叶片氮含量(Nmass)、比叶重(LMA)及光合氮利用效率(PNUE)。结果表明:(1)3个样地的群落组成有明显的差异,豆科植物的增多可以一定程度上改善群落氮养分状况,但植物叶片Nmass还受到群落优势种竞争的影响。(2)同一物种在不同群落的高度不同,不同群落垂直方向上光照强度也不相同,导致同一物种在不同群落中能够获得的光照强度有一定差异。(3)在养分、光照强度有差异的情况下,不同植物的Aarea、LMA及PNUE在不同群落中的变化趋势不尽相同,而Narea与Aarea的关系在总体上、群落间及物种间变化不大,基本上显示了较强的正相关关系。由此可见,群落组成、结构引起的光照及氮素差异是导致同一物种光合生理特征在不同群落中变化的重要因素,但不同物种光合生理特征对光照及氮素变化的响应不同。  相似文献   

4.
Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.  相似文献   

5.
For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings. Experimental seedlings were established in a typical southern Swedish shrub community where they received 1 of 4 competition levels (above-ground, below-ground, above- and below-ground, or no competition), and leaf-level responses were examined between two growth flushes. Two years after establishment, first-flush leaves from seedlings receiving above-ground competition showed a maximum rate of photosynthesis (Amax) 40% lower than those of control seedlings. With the development of a second flush above the shrub canopy, Amax of these seedlings increased to levels equivalent to those of seedlings free of light competition. Shrubby competition reduced oak seedling transpiration such that seedlings exposed to above- and below-ground competition showed rates 43% lower than seedlings that were not exposed to competition. The impaired physiological function of oak seedlings growing amid competition ultimately led to a 60-74% reduction in leaf area, 29-36% reduction in basal diameter, and a 38-78% reduction in total biomass accumulation, but root to shoot ratio was not affected. Our findings also indicate that above-ground competition reduced Amax, transpiration and biomass accumulation more so than below-ground competition. Nevertheless, oak seedlings exhibited the ability to develop subsequent growth flushes with leaves that had an Amax acclimated to utilize increased light availability. Our findings highlight the importance of flush-level acclimation under conditions of heterogeneous resource availability, and the capacity of oak seedlings to initiate a positive response to moderate competition in a shrub community.  相似文献   

6.
With the ability to symbiotically fix atmospheric N2, legumes may lack the N-limitations thought to constrain plant response to elevated concentrations of atmospheric CO2. The growth and photosynthetic responses of two perennial grassland species were compared to test the hypotheses that (1) the CO2 response of wild species is limited at low N availability, (2) legumes respond to a greater extent than non-fixing forbs to elevated CO2, and (3) elevated CO2 stimulates symbiotic N2 fixation, resulting in an increased amount of N derived from the atmosphere. This study investigated the effects of atmospheric CO2 concentration (365 and 700 mol mol–1) and N addition on whole plant growth and C and N acquisition in an N2-fixing legume (Lupinus perennis) and a non-fixing forb (Achillea millefolium) in controlled-chamber environments. To evaluate the effects of a wide range of N availability on the CO2 response, we incorporated six levels of soil N addition starting with native field soil inherently low in N (field soil + 0, 4, 8, 12, 16, or 20 g N m–2 yr–1). Whole plant growth, leaf net photosynthetic rates (A), and the proportion of N derived from N2 fixation were determined in plants grown from seed over one growing season. Both species increased growth with CO2enrichment, but this response was mediated by N supply only for the non-fixer, Achillea. Its response depended on mineral N supply as growth enhancements under elevated CO2 increased from 0% in low N soil to +25% at the higher levels of N addition. In contrast, Lupinus plants had 80% greater biomass under elevated CO2 regardless of N treatment. Although partial photosynthetic acclimation to CO2 enrichment occurred, both species maintained comparably higher A in elevated compared to ambient CO2 (+38%). N addition facilitated increased A in Achillea, however, in neither species did additional N availability affect the acclimation response of A to CO2. Elevated CO2 increased plant total N yield by 57% in Lupinus but had no effect on Achillea. The increased N in Lupinus came from symbiotic N2 fixation, which resulted in a 47% greater proportion of N derived from fixation relative to other sources of N. These results suggest that compared to non-fixing forbs, N2-fixers exhibit positive photosynthetic and growth responses to increased atmospheric CO2 that are independent of soil N supply. The enhanced amount of N derived from N2 fixation under elevated CO2 presumably helps meet the increased N demand in N2-fixing species. This response may lead to modified roles of N2-fixers and N2-fixer/non-fixer species interactions in grassland communities, especially those that are inherently N-poor, under projected rising atmospheric CO2.  相似文献   

7.

Key message

The relative shade tolerance of T. cordata , F. sylvatica , and C. betulus in mature stands is based on different species-specific carbon and nitrogen allocation patterns.

Abstract

The leaf morphology and photosynthetic capacity of trees are remarkably plastic in response to intra-canopy light gradients. While most studies examined seedlings, it is not well understood how plasticity differs in mature trees among species with contrasting shade tolerance. We studied light-saturated net photosynthesis (A max), maximum carboxylation rate (V cmax), electron transport capacity (J max) and leaf dark respiration (R d) along natural light gradients in the canopies of 26 adult trees of five broad-leaved tree species in a mixed temperate old-growth forest (Fraxinus excelsior, Acer pseudoplatanus, Carpinus betulus, Tilia cordata and Fagus sylvatica), representing a sequence from moderately light-demanding to highly shade-tolerant species. We searched for species differences in the dependence of photosynthetic capacity on relative irradiance (RI), specific leaf area (SLA) and nitrogen per leaf area (N a ). The three shade-tolerant species (C. betulus, T. cordata, F. sylvatica) differed from the two more light-demanding species by the formation of shade leaves with particularly high SLA but relatively low N a and consequently lower area-based A max, and a generally higher leaf morphological and functional plasticity across the canopy. Sun leaf morphology and physiology were more similar among the two groups. The three shade-tolerant species differed in their shade acclimation strategies which are primarily determined by the species’ plasticity in SLA. Under low light, T. cordata and F. sylvatica increased SLA, mass-based foliar N and leaf size, while C. betulus increased solely SLA exhibiting only low intra-crown plasticity in leaf morphology and N allocation patterns. This study with mature trees adds to our understanding of tree species differences in shade acclimation strategies under the natural conditions of a mixed old-growth forest.  相似文献   

8.
Understanding of the extent of acclimation of light‐saturated net photosynthesis (An) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth system model (ESM) predictions. Given this, we analysed and modelled T‐dependent changes in photosynthetic capacity in 10 wet‐forest tree species: six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (Tgrowth): temperate – 15, 20 and 25 °C; tropical – 25, 30 and 35 °C. CO2 response curves of An were used to model maximal rates of RuBP (ribulose‐1,5‐bisphosphate) carboxylation (Vcmax) and electron transport (Jmax) at each treatment's respective Tgrowth and at a common measurement T (25 °C). SDS‐PAGE gels were used to determine abundance of the CO2‐fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and Tgrowth, An at current atmospheric CO2 partial pressure was Rubisco‐limited. Across all species, LMA decreased with increasing Tgrowth. Similarly, area‐based rates of Vcmax at a measurement T of 25 °C (Vcmax25) linearly declined with increasing Tgrowth, linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained Vcmax and An for leaves developed at higher Tgrowth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for Tgrowth‐mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet‐forest tree species. A new model is proposed that accounts for the effect of Tgrowth‐mediated declines in Vcmax25 on An, complementing current photosynthetic thermal acclimation models that do not account for T sensitivity of Vcmax25.  相似文献   

9.
Robin L. Chazdon 《Oecologia》1992,92(4):586-595
Summary Photosynthetic plasticity of two congeneric shrub species growing under natural field conditions was compared along transects spanning two canopy gaps in a Costa Rican rain forest. Piper arieianum is a shadetolerant species common in successional and mature forests, whereas P. sancti-felicis is a pioneer species abundant in abandoned clearings and large gaps. Twenty potted cuttings of each species were placed at regular intervals along two east-west transects crossing a small branch-fall gap and a large tree-fall gap. Along the transects, the percent of full sun photon flux density varied from less than 2% to 45%. After six months of growth under these conditions, leaves were monitored for incident photon flux density, photographic measures of light availability, photosynthetic capacity (Amax), leaf nitrogen content, leaf chlorophyll content, and specific leaf mass. Although both species demonstrated considerable plasticity in Amax across gap transects, P. sancti-felicis leaves had a superior capacity to track closely variation in light availability, particularly in the larger gap. For regressions of Amax on measures of light availability, P. sancti-felicis consistently showed a 3.5 to 5-fold higher coefficient of determination (R2) and a 3 to 4-fold higher slope than P. arieianum. In both species leaf nitrogen content per leaf area increased significantly with light availability, although P. sancti-felicis, again, showed a much stronger relationship between these variables. Across the transects, mean chlorophyll content per unit leaf area did not differ significantly between the species, whereas mean chlorophyll content per unit leaf dry mass was 3-times greater in leaves of P. sancti-felicis. Piper arieianum exhibited highly significant increases in chlorophyll a:b ratio with increased light availability, whereas P. sancti-felicis lacked significant variation in this trait across a gradient of light availability. Mean specific leaf mass did not vary significantly between species across the gap transects. The nature of the light acclimatory response differs quantitatively and qualitatively between these species. An important constraint on light acclimation of the shade-tolerant P. arieianum is its inability to increase photosynthetic nitrogen-use efficiency under conditions of high light availability. The lack of plasticity in chlorophyll a:b ratios does not restrict light acclimation of Amax in P. sancti-felicis. Leaves of P. arieianum exhibited symptoms of chronic photoinhibition in exposed microsites within the large gap. Species differences in the capacity to finely adjust Amax across a wide range of light conditions may be attributed to their maximum growth potential. Light acclimation in species with low maximum growth potential may be constrained at the cellular level by rates of protein and chlorophyll synthesis and at the whole-plant level by low maximum rates of uptake and supply of nutrients and water. For P. arieianum, restriction of photosynthetic plasticity is likely to limit competitive abilities of plants in high-light conditions of large gaps and clearings, whereas observed habitat restrictions for P. sancti-felicis do not appear to depend upon the highly-developed capacity for adjustment of Amax observed in this species.  相似文献   

10.
Environmental constraints disturb plant metabolism and are often associated with photosynthetic impairments and yield reductions. Among them, low positive temperatures are of up most importance in tropical plant species, namely in Coffea spp. in which some acclimation ability has been reported. To further explain cold tolerance, the impacts on photosynthetic functioning and the expression of photosynthetic-related genes were analyzed. The experiments were carried out along a period of slow cold imposition (to allow acclimation), after chilling (4 °C) exposure and in the following rewarming period, using 1.5-year-old coffee seedlings of 5 genotypes with different cold sensitivity: Coffea canephora cv. Apoatã, Coffea arabica cv. Catuaí, Coffea dewevrei and 2 hybrids, Icatu (C. arabica × C. canephora) and Piatã (C. dewevrei × C. arabica). All genotypes suffered a significant leaf area loss only after chilling exposure, with Icatu showing the lowest impact, a first indication of a higher cold tolerance, contrasting with Apoatã and C. dewevrei. During cold exposure, net photosynthesis and Chl a fluorescence parameters were strongly affected in all genotypes, but stomatal limitations were not detected. However, the extent of mesophyll limitation, reflecting regulatory mechanisms and/or damage, was genotype dependent. Overnight retention of zeaxanthin was common to Coffea genotypes, but the accumulation of photoprotective pigments was highest in Icatu. That down-regulated photochemical events but efficiently protected the photosynthetic structures, as shown, e.g., by the lowest impacts on Amax and PSI activity and the strongest reinforcement of PSII activity, the latter possibly reflecting the presence of a photoprotective cycle around PSII in Icatu (and Catuaí). Concomitant to these protection mechanisms, Icatu was the sole genotype to present simultaneous upregulation of caCP22, caPI and caCytf, related to, respectively, PSII, PSI and to the complex Cytb6/f, which could promote better repair ability, contributing to the maintenance of efficient thylakoid functioning. We conclude that Icatu showed the best acclimation ability among the studied genotypes, mostly due to a better upregulation of photoprotection and repair mechanisms. We confirmed the presence of important variability in Coffea spp. that could be exploited in breeding programs, which should be assisted by useful markers of cold tolerance, namely the upregulation of antioxidative molecules, the expression of selected genes and PSI sensitivity.  相似文献   

11.
The genus Flaveria consists of 23 species with significant variation in photosynthetic physiologies. We tested whether photosynthetic pathway variation in seven co-existing Flaveria species corresponds to geographic distributions or physiological performance in C3, C4, and intermediate species growing under natural conditions in south-central Mexico. We found that Flaveria pringlei (C3) was the most widely distributed species with multiple growth habits. Numerous populations of Flaveria kochiana (C4), a recently described species with a previously unknown distribution, were located in the Mixtec region of Oaxaca. Flaveria cronquistii (C3) and Flaveria ramosissima (C3-C4) were only located in the Tehuacán Valley region while Flaveria trinervia (C4) was widely distributed. Only one population of Flaveria angustifolia (C3-C4) and Flaveria vaginata (C4-like) were located near Izúcar de Matamoros. Midday leaf water potential differed significantly between Flaveria species, but did not vary according to growth habit or photosynthetic pathway. The quantum yield of photosystem II did not vary between species, despite large differences in leaf nitrogen content, leaf shape, plant size and life histories. We did not find a direct relationship between increasing C4 cycle characteristics and physiological performance in the Flaveria populations examined. Furthermore, C3 species were not found at higher elevation than C4 species as expected. Our observations indicate that life history traits and disturbance regime may be the primary controllers of Flaveria distributions in south-central Mexico.  相似文献   

12.
In this study, we tested for the temporal occurrence of photosynthetic acclimation to elevated [CO2] in the flag leaf of two important cereal crops, rice and wheat. In order to characterize the temporal onset of acclimation and the basis for any observed decline in photosynthetic rate, we characterized net photosynthesis, gs, gm, Ci/Ca, Ci/Cc, Vcmax, Jmax, cell wall thickness, content of Rubisco, cytochrome (Cyt) f, N, chlorophyll and carbohydrate, mRNA expression for rbcL and petA, activity for Rubisco, sucrose phosphate synthase (SPS) and sucrose synthase (SS) at full flag expansion, mid‐anthesis and the late grain‐filling stage. No acclimation was observed for either crop at full flag leaf expansion. However, at the mid‐anthesis stage, photosynthetic acclimation in rice was associated with RuBP carboxylation and regeneration limitations, while wheat only had the carboxylation limitation. By grain maturation, the decline of Rubisco content and activity had contributed to RuBP carboxylation limitation of photosynthesis in both crops at elevated [CO2]; however, the sharp decrease of Rubisco enzyme activity played a more important role in wheat. Although an increase in non‐structural carbohydrates did occur during these later stages, it was not consistently associated with changes in SPS and SS or photosynthetic acclimation. Rather, over time elevated [CO2] appeared to enhance the rate of N degradation and senescence so that by late‐grain fill, photosynthetic acclimation to elevated [CO2] in the flag leaf of either species was complete. These data suggest that the basis for photosynthetic acclimation with elevated [CO2] may be more closely associated with enhanced rates of senescence, and, as a consequence, may be temporally dynamic, with significant species variation.  相似文献   

13.
Steady state and dynamic responses of two tree fern species of contrasting origins, Dicksonia antarctica (of Gondwanan origin) and Cyathea australis (Pan-tropical), were studied over two consecutive years under field conditions in a wet sclerophyll forest of south-east Australia. Irrespective of their different origins, there were no significant differences in photosynthetic performance between the two species. Growth irradiance and leaf temperature, but not plant water status, was significantly related to photosynthetic and morphological traits. At a common leaf temperature, maximum light-use efficiency of photosystem II (Fv/Fm) was significantly lower in winter than in summer, suggesting some limitation to PSII efficiency potentially associated with cold winter mornings. Both species displayed seasonal acclimation in a number of measured photosynthetic parameters and frond traits (i.e. Fv/Fm, Asat, gs, NA, total chlorophyll, SLA). Acclimation of stomatal density to spatial variation in growth irradiance seemed limited in both species, although stomatal pattern differed between species. Because there were no significant differences between the two species in photosynthetic parameters, both species can be described by common carbon gain and water use models at the leaf scale.  相似文献   

14.
Previous modelling exercises and conceptual arguments have predicted that a reduction in biochemical capacity for photosynthesis (Aarea) at elevated CO2 may be compensated by an increase in mesophyll tissue growth if the total amount of photosynthetic machinery per unit leaf area is maintained (i.e. morphological upregulation). The model prediction was based on modelling photosynthesis as a function of leaf N per unit leaf area (Narea), where Narea = Nmass×LMA. Here, Nmass is percentage leaf N and is used to estimate biochemical capacity and LMA is leaf mass per unit leaf area and is an index of leaf morphology. To assess the relative importance of changes in biochemical capacity versus leaf morphology we need to control for multiple correlations that are known, or that are likely to exist between CO2 concentration, Narea, Nmass, LMA and Aarea. Although this is impractical experimentally, we can control for these correlations statistically using systems of linear multiple-regression equations. We developed a linear model to partition the response of Aarea to elevated CO2 into components representing the independent and interactive effects of changes in indexes of biochemical capacity, leaf morphology and CO2 limitation of photosynthesis. The model was fitted to data from three pine and seven deciduous tree species grown in separate chamber-based field experiments. Photosynthetic enhancement at elevated CO2 due to morphological upregulation was negligible for most species. The response of Aarea in these species was dominated by the reduction in CO2 limitation occurring at higher CO2 concentration. However, some species displayed a significant reduction in potential photosynthesis at elevated CO2 due to an increase in LMA that was independent of any changes in Narea. This morphologically based inhibition of Aarea combined additively with a reduction in biochemical capacity to significantly offset the direct enhancement of Aarea caused by reduced CO2 limitation in two species. This offset was 100% for Acer rubrum, resulting in no net effect of elevated CO2 on Aarea for this species, and 44% for Betula pendula. This analysis shows that interactions between biochemical and morphological responses to elevated CO2 can have important effects on photosynthesis.  相似文献   

15.
Leaf physiological and gas-exchange traits of a summer-green herbaceous perennial, Parasenecio yatabei, growing along a stream were examined in relation to leaf age. In its vegetative phase, the aerial part of this plant consists of only one leaf and provides an ideal system for the study of leaf longevity. Volumetric soil water content (SWC) decreased with increasing distance from the stream, whereas relative light intensity was nearly constant. The light-saturated net CO2 assimilation rate (A sat) and leaf stomatal conductance (gs) were approximately 1.5-fold and 1.4-fold higher, respectively, in the lower slope near the mountain stream than in the upper slope far from the mountain stream. The lifespan of aerial parts of vegetative plants significantly increased with decreasing SWC. The leaf mass-based nitrogen content of the leaves (N mass) was almost constant (ca. 2.2%); however, the maximum carboxylation rate by ribulose-1,5-biphosphate carboxylase/oxygenase (rubisco) (V cmax) and photosynthetic nitrogen use efficiency (PNUE, A sat/N area) decreased more slowly in the upper slope than in the lower slope. The higher leaf photosynthetic activity of P. yatabei plants growing lower on the slope leads to a decrease in V cmax and PNUE in the early growing season, and to a shorter leaf lifespan.  相似文献   

16.
濒危植物长叶榧的光合生理生态特性   总被引:3,自引:0,他引:3  
王强  金则新  郭水良  管铭  王兴龙 《生态学报》2014,34(22):6460-6470
利用Li-6400 XT便携式光合作用仪对林窗、林缘、林下3种生境中的长叶榧(Torreya ackii)在春、夏、秋、冬4个季节里的光合生理生态指标进行测定,探讨3种生境中长叶榧光合能力的季节变化及其对不同光环境的响应,分析其濒危机制,为长叶榧的迁地保护和种群的繁衍复壮提供理论依据。结果显示:(1)林窗、林缘的长叶榧净光合速率(Pn)日变化在夏季呈"双峰"曲线,其它3个季节均呈"单峰"曲线;林下的Pn日变化在4个季节均呈"单峰"曲线。(2)3种生境中最大净光合速率(Pnmax)、光饱和点(LSP)、表观量子效率(AQY)、最大羧化速率(Vcmax)、最大电子传递速率(Jmax)、磷酸丙糖利用率(TPU)均为夏季最高,使得夏季有较强的光合作用能力,但夏季林窗、林缘的长叶榧出现光合"午休"现象,光补偿点(LCP)、暗呼吸速率(Rd)也较高,使得夏季林窗生境的长叶榧日均Pn明显低于于秋季,林缘的日均Pn与秋季差异不显著。(3)4个季节的日均Pn、Pnmax、LSP、Vcmax、Jma、TPU均为林窗最高,林窗与林下差异显著,表明长叶榧具有阳性植物的特点,适宜生长在光照较强的林窗生境。(4)在生长旺盛的夏、秋季,长叶榧的LSP比伴生物种低,LCP比伴生物种高,对光适应的生态幅度较窄;与伴生物种相比,长叶榧的Pn较低,光合能力较弱,在激烈的种间竞争中处于不利地位,可能成为其濒危的一个重要原因。  相似文献   

17.
  • Phototropic leaf movement of plants is an effective mechanism for adapting to light conditions. Light is the major driver of plant photosynthesis. Leaf N is also an important limiting factor on leaf photosynthetic potential. Cotton (Gossypium hirsutum L.) exhibits diaheliotropic leaf movement. Here, we compared the long‐term photosynthetic acclimation of fixed leaves (restrained) and free leaves (allowed free movement) in cotton.
  • The fixed leaves and free leaves were used for determination of PAR, leaf chlorophyll concentration, leaf N content and leaf gas exchange. The measurements were conducted under clear sky conditions at 0, 7, 15 and 30 days after treatment (DAT).
  • The results showed that leaf N allocation and partitioning among different components of the photosynthetic apparatus were significantly affected by diaheliotropic leaf movement. Diaheliotropic leaf movement significantly increased light interception per unit leaf area, which in turn affected leaf mass per area (LMA), leaf N content (NA) and leaf N allocation to photosynthesis (NP). In addition, cotton leaves optimised leaf N allocation to the photosynthetic apparatus by adjusting leaf mass per area and NA in response to optimal light interception.
  • In the presence of diaheliotropic leaf movement, cotton leaves optimised their structural tissue and photosynthetic characteristics, such as LMA, NA and leaf N allocation to photosynthesis, so that leaf photosynthetic capacity was maximised to improve the photosynthetic use efficiency of light and N under high light conditions.
  相似文献   

18.
Mixed species plantations of Eucalyptus and N2-fixing species can be significantly more productive than monocultures. The aim of this study was to determine whether the improved growth resulted from increases in photosynthesis, light absorption and light-use efficiency, in addition to previously measured increases in leaf area, water-use efficiency and higher ratios of annual above-ground net primary production per unit of total annual below-ground carbon allocation in 1:1 mixtures near Cann River, Victoria, Australia. Light-saturated photosynthetic rate (A max), electron transport (J), stomatal conductance (g s) and foliar nitrogen concentrations were higher for Eucalyptus globulus trees growing in mixtures than those in monocultures. Similar increases in maximum rates of carboxylation (V cmax), Rubisco, chlorophyll, and phosphorus concentrations were not significant. In contrast, A max, V cmax and J did not vary between mixtures and monocultures for A. mearnsii, whose growth was negligible by age 15 years. Mixtures also absorbed 24 and 41% more light than E. globulus and A. mearnsii., respectively, and were 38 and 154% more light-use efficient in the mixtures compared to monocultures. The increased nutrient availability in mixtures appeared to increase productivity of E. globulus by increasing the photosynthetic capacity of the foliage, as well as the leaf area, light absorption and light-use efficiency of the canopy.  相似文献   

19.
荆条叶性状对野外不同光环境的表型可塑性   总被引:3,自引:0,他引:3  
杜宁  张秀茹  王炜  陈华  谭向峰  王仁卿  郭卫华 《生态学报》2011,31(20):6049-6059
光照是影响植物生长和分布的重要环境因子。对生长在野外5种不同光环境下(林外、阔叶林林缘、阔叶林林下、针叶林林窗和针叶林林下)的荆条的叶片进行取样研究,通过对光合作用光响应曲线、叶绿素荧光、叶绿素含量、叶片氮磷含量以及叶片形态的测量,来反映荆条对不同光环境的表型可塑性。研究结果表明,荆条叶片对于野外不同的光环境具有很好的适应机制,叶片功能性状受到结构性状的调节。低光下通过高的比叶面积(SLA)、单位质量叶绿素含量、光系统II最大量子产量,低的暗呼吸速率、光饱和点、光补偿点、叶绿素a,b的比值来提高对光能的利用效率,维持生长;高光下则通过与SLA有关的叶片结构的变化对光合作用进行调节。大多数的叶性状只受到日光照总量的影响,SLA的大小与日最高光强有关,可以对不同日变化模式的光照做出迅速的响应,是适应不同光照的敏感指标。尽管光照是不同光环境下影响荆条叶性状的主要环境因子,土壤养分含量同样会对叶性状产生影响,高土壤养分下的高叶长与叶柄长的比值体现了植物对资源获取和支撑结构之间分配的权衡。  相似文献   

20.
Rapid light curves (RLCs), based on pulse amplitude modulated (PAM) fluorometry, were used to investigate the spatio-temporal variability in photosynthesis versus irradiance parameters (α, Ik and Pmax) and the Fv/Fm ratio of the seagrass Zostera tasmanica (formerly Heterozostera tasmanica). Spatial variation was examined across scales ranging from within a leaf (cms) to across the bed (ms), using a nested analysis of covariance sampling design. Overall, significant variation was identified at all scales examined, excluding the largest scale (area). Patterns of variability differed among individual parameters; however a high percentage of the variation was consistently assigned to the covariates, age (within and between leaves) for all parameters, except Pmax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号