首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Sexual maturation in triploid rainbow trout, Salmo gairdneri Richardson   总被引:2,自引:0,他引:2  
This paper compares some morphological and endocrinological characteristics of diploid and triploid rainbow trout.
Significant differences were found between diploid and triploid females in GSI, condition factor, gut weight, liver weight and percentage dress-out, and between diploid and triploid males in GSI, condition factor and gut weight.
Diploid females had large, well-developed ovaries containing yolk-filled secondary oocytes whereas the triploids had only string-like ovaries containing nests of oogonia. No primary oocytes were present.
All the diploid males produced copious quantities of milt but it was possible to express a thin, watery milt containing motile spermatozoa from only two of the 12 triploid males. Testes weights in triploids were similar to those of diploids but, while the diploid testes were packed with spermatozoa, those of the triploids consisted mainly of spermatocytes and spermatids with few spermatozoa present. Measurements of the heads of spermatozoa revealed that those from triploids were larger and had a wider size range than those from diploids.
Levels of testosterone and 11-ketotestosterone in triploid and diploid males were not significantly different. However, levels of testosterone and 17β-oestradiol in diploid females were considerably higher than those of triploid females.  相似文献   

3.
David CJ  Pandian TJ 《Theriogenology》2006,65(6):1048-1070
Intergeneric androgenetic golden Buenos Aires tetra (BT), Hemigrammus caudovittatus was generated using sperm drawn from post-mortem males preserved at -20 degrees C for 10, 20, 30 and 40 days or fresh sperm to activate the UV-irradiated oocytes of black widow tetra (WT), Gymnocorymbus ternetzi. UV-irradiation (4.2 W/m(2)) of the oocytes for 3 min inactivated their nuclear genome. Fry hatched out from these activated oocytes were haploids; suffering haploid syndrome, they died before or within 48 h after hatching. Fresh BT sperm activated 95% oocytes; however, the sperm drawn from post-mortem males preserved at -20 degrees C for 60 (within glycerol packing) and 30 days (without glycerol packing) activated only 24 and 19% oocytes, respectively. Following activation, diploidy was restored by shocking the 25-min-old embryos at 41 degrees C for 2 min. Nuclear genomic inactivation of the oocytes was confirmed by (i) production of 100% haploids, (ii) karyotype and erythrocyte measurements, (iii) phenotypic markers, (iv) progeny testing and (v) species-specific marker. At hatching, survival of androgenotes decreased from 11% for those induced with fresh sperm to 4% for those generated using sperm from 30-day-old post-mortem males. Reproductive performance of the 'fresh' and 'cadaveric' F(0) and F(1) androgenetic males (Y(2)Y(2)) was superior to the control (X(1)Y(2)). Crosses involving homozygous (Y(2)Y(2)) 'fresh' F(0) androgenetic males with heterozygous females (X(1)X(2)) and F(0) homozygous males (Y(2)Y(2)) with females (X(2)X(2)) produced 2-4% unexpected female progenies. Paternal autosomes, inherited by the homozygous androgenetic female (X(2)X(2)), induced the production of female progenies in significantly less number of crosses than the crosses with heterozygous females (X(1)X(2)), which carried equal number of paternal and maternal autosomes. PCR analyses of the genomic DNA of normal male and unexpected F(1) and F(2) female progenies amplified by DMRT 1 specific primer produced bands of 237 and 300 bp length, and thereby confirmed that these unexpected females were genetic males. RAPD analyses of the androgenetic progenies showed that their genome was not contaminated with maternal genome.  相似文献   

4.
The dynamics of polar body release are important for creating polyploid shellfish. For producing triploids, these dynamics concern meiosis in diploid eggs and are well understood. For creating tetraploids, eggs from triploids are employed and the dynamics, variation, and environmental influences upon polar body release are less studied. We investigated the effects of several agents on the timing of 50% first polar body (PB1) release in eggs of triploids. PB1 release is generally slower in triploid eggs than diploid ones at 26 degrees C. Lowering the temperature (from 26 to 19 degrees C) had a marked effect on timing of 50% PB1 in both diploid and triploid eggs. While lower temperature merely slowed development in diploid eggs, it nearly halted it in triploid eggs. At any temperature, the variability in 50% PB1 release was much higher in triploid eggs than diploid ones; this variation occurred both within eggs from individual females and among eggs from different females. The amount of time eggs remain in seawater between the time they are stripped and fertilized (or time of hydration) also affected rate of meiosis. In triploid eggs, the average time necessary for the expulsion of 50% PB1 was 23 min post-fertilization (PF) for 75 min of hydration versus 29 min PF for 35 min. However, increasing the time of hydration had no effect on the variability in the timing among females. Serotonin also had no effect on the dynamics of polar body release in triploids. Variability among triploid females in timing of meiosis cannot be improved with any treatments we tried. Consequently we recommend that treatments of triploid eggs to produce tetraploids incorporate a single female at a time.  相似文献   

5.
The goal of this study was to compare the reproductive physiology of triploid and diploid European sea bass (Dicentrarchus labrax L.). Gonads of diploid and triploid fish (males and females) were examined both microscopically and macroscopically, together with the plasma levels of the major sex steroids produced (testosterone and estradiol-17beta) when fish were adults. Prior to sexual maturation, the gonadosomatic index (GSI) of triploid males was similar to that of diploids. However, the GSI in 4-year-old adult triploid males was 1.8 times lower than that of diploids (P < 0.05). All diploid males exhibited normal gonadal development. In contrast, in triploid males spermatogenesis was impaired during late meiosis, affecting severely spermiogenesis. This was achieved by an increasing imbalance in the amount of DNA present in daughter cells of the same type as spermatogenesis progressed, as demonstrated by abnormal cell sizes, culminating in inviable spermatids. Thus, no spermiating triploid fish were observed during 4 years, which included three full consecutive maturation cycles. Furthermore, the germ cells from triploids were significantly larger than those from diploids (P < 0.001). Seasonal profiles of plasma levels of testosterone in 4-year-old males were essentially similar in both ploidies. On the other hand, triploid females had rudimentary ovaries containing oogonia and primary oocytes that were arrested during meiotic prophase I, while diploid females exhibited all stages of ovarian development. Diploid females showed levels of testosterone and estradiol-17beta significantly higher than those of triploids (P < 0.05), in which no endocrine signs of maturation were observed at all. Regarding sex ratios, triploids had 10% more females than diploids (P < 0.05) but in both ploidies males predominated, as is usually found in this species under culture conditions. These results show that triploidy blocked the initial phases of meiosis in females and the latter ones in males, resulting in the absence of or reduced gonadal development, respectively. In conclusion, we provide an explanation for the lack of gonadal development in triploid male fish, and, to the best of our knowledge, we report for the first time a case in which induced triploidy completely blocks meiosis in both sexes, thus conferring functional sterility in the sea bass.  相似文献   

6.
P. E. Brandham 《Genetica》1982,59(1):29-42
In reciprocal crosses between diploid and triploid Aloineae the progeny are largely diploid or diploid plus one or two chromosomes, but in reciprocal crosses between triploids and tetraploids they are tetraploid or nearly so. Thus the triploids contribute circa haploid gametes to the progeny when crossed with diploids but circa diploid gametes when crossed with tetraploids. These results are compared with those of a number of earlier workers. It is concluded that the bias in the frequency of progeny types towards diploidy or tetraploidy, depending on the ploidy level of the plant which is crossed with the triploid, is caused by inter-embryo competition. Those embryos with an endosperm/embryo factor of 1.5, the value found in normal diploid/diploid crosses having triploid endosperms, are selected in preference to those with factors higher or lower than 1.5.Inter-gamete competition also occurs among the euploid and aneuploid gametes produced by the triploids. This is more pronounced on the male side, because the degree of survival of aneuploid pollen from the triploids into the next generation is much lower than that of aneuploid egg nuclei.Non-reduction in the triploids gives rise to occasional pentaploid progeny in crosses with tetraploids, but it is more probable that in diploid/triploid crosses tetraploid progeny are the products of non-reduction in the diploid.  相似文献   

7.
Muscle fibre growth dynamics in diploid and triploid rainbow trout   总被引:1,自引:0,他引:1  
The effect of triploidy on muscle fibre growth was determined by comparing hyperplasia and hypertrophy of white muscle fibres in all-female, diploid and triploid rainbow trout Oncorhynchus mykiss (100–400 mm total length). Conventional morphometry and protein and DNA concentrations were used to assess muscle fibre hyperplasia and hypertrophy in white muscle samples derived from an anterio-dorsal location. Muscle fibre distributions were significantly different between triploids and diploids in trout <300 mm. The proportion of fibres <20 μm was higher in diploids than in triploids and the proportion of fibres in the 20–40 μm category was higher in triploids than in diploids. This indicates that the hyperplastic fibres of triploids are larger than those of diploids. Larger hyperplastic fibres in triploids are probably due to the combined effect of increased nuclear size in triploids and the relatively high nucleus: cell ratio observed in small muscle fibres. These larger fibres may be less favourable to cellular metabolic exchange because of their smaller surface area to volume ratios, and perhaps account for reduced viability and growth observed in triploids during early life stages. On the other hand, the lack of difference in the distribution of fibres <20 μm between diploids and triploids at larger body size ranges (301–400 mm) imply that triploid trout may have higher rates of new fibre recruitment and growth capacity at these sizes. There was no difference between diploid and triploid trout in the mean size of muscle fibres; however, the number of fibres per unit area was reduced by 10% in triploids. No differences were observed in protein or DNA concentrations in muscle tissues between the two genetic groups. Since triploid nuclei have 1·5 times more DNA than diploid nuclei, this deviation from the expected muscle DNA concentration (1·3–1·4 times more DNA in triploids when the 10% reduction in fibre density is considered) suggests that the number of nuclei per muscle fibre is reduced. In both diploids and triploids, mean fibre size increased with body length while fibre density decreased. Similarly, protein concentration in the muscle tissue increased and DNA concentration declined with increasing body length. Protein/DNA ratio was strongly and positively correlated with fibre size. These results demonstrate that changes in DNA and protein concentrations can be used to assess hyperplasia and hypertrophy in muscle tissues. However, the morphometric procedure provides better insight into muscle fibre growth as it enables the direct visualization and analysis of muscle fibre distribution patterns.  相似文献   

8.
Triploid, parthenogenetic forms of the lungfluke, Paragonimus westermani, occur in Japan, Korea and China. The origin(s) of triploidy has been debated over the years. Sequences of two regions in the mitochondrial DNA, i.e. partial lrRNA (16S), and a portion of the non-coding region, were obtained from natural populations of P. westermani. All triploid individuals (Japan, Korea, China) and a single tetraploid individual (China) had identical sequences in the 16S region studied. Some sequence variation was observed among diploids, with those from Taiwan being distinct from the remainder. Both neighbour joining and parsimony trees using the 16S region placed diploid individuals from southwestern Japan close to the triploids and the tetraploid. The fragment amplified from the mitochondrial non-coding region showed dimorphism. One form (type A) consisted of 239 bp comprising two identical tracts of 70 bp separated by a tract of 93 bp. The second form (Type B) consisted of only a single 70 bp tract. All diploid individuals from Taiwan, China and Korea possessed type A, while those from Japan were polymorphic; individuals from Oita and Hyogo had type B, those from Chiba had type A, but both types were found in Mie. On the other hand, all of the triploid individuals and two tetraploid individuals possessed type B. Both the form present in the non-coding region and the 16S sequence suggest an affinity between a south-eastern group of diploid populations in Japan and the triploid form. A possible mechanism responsible for the origin of the triploid is discussed.  相似文献   

9.
Adult triploid zebrafish Danio rerio has previously been reported to be all male. This phenomenon has only been reported in one other gonochoristic fish species, the rosy bitterling Rhodeus ocellatus, despite the fact that triploidy is induced in numerous species. To investigate the mechanism responsible, we first produced triploid zebrafish and observed gonad development. Histological sections of juvenile triploid gonads showed that primary growth oocytes were able to develop in the juvenile ovary, but no cortical alveolus or more advanced oocytes were found. All adult triploids examined were male (n = 160). Male triploids were able to induce oviposition by diploid females during natural spawning trials, but fertilization rates were low (1.0 ± 3.1%) compared with diploid male siblings (67.4 ± 16.6%). The embryos produced by triploid sires were aneuploid with a mean ploidy of 2.4 ± 0.1n, demonstrating that triploid males produce aneuploid spermatozoa. After confirming that adult triploids are all male, we produced an additional batch of triploid zebrafish and exposed them (and a group of diploid siblings) to 100 ng/L estradiol (E2) from 5 to 28 dpf. The E2 treated triploids and nontreated triploids were all male. The nontreated diploids were also all male, but the E2 treated diploids were 89% female. This demonstrates that triploidy acts downstream of estrogen synthesis in the sex differentiation pathway to induce male development. Based on this and the observations of juvenile gonad development in triploids, we suggest that triploidy inhibits development of oocytes past the primary growth stage, and this causes female to male sex reversal.  相似文献   

10.
Summary First generation tetraploids were produced by hydrostatic pressure treatment before the first cleavage and raised until the adult stage. Their survival and growth were severely depressed when compared to the diploid control: after two years, no ovulated females were found although males produced sperm at 1 and 2 years of age and were mated individually with diploid females. The progenies were consistently normal with high survival rates. They were found to be almost all triploids by karyology, which failed to detect a significant rate of aneuploidies. However, the fertilizing ability of tetraploid males was always low (0 to 97% of the control; average 40%). Several arguments presented here support the hypothesis that diploid spermatozoas, which are wider than haploid ones, would be frequently blocked during their penetration through the micropyle canal. Second generation tetraploids were produced after such matings by heat shocks, causing the retention of the second polar body. Their survival and growth were much more satisfactory than in the first generation, although still lower than in diploid and triploid controls issuing from diploid parents. Performances of second generation triploids were comparable to those of diploids, and slightly better than those of conventional triploids issuing from diploid parents. 94.5% of the second generation tetraploids were male.  相似文献   

11.
Triploidy interferes with gametogenesis in all fish species tested so far. In fish it results in complete female sterility however, males are still able to develop testis. The reason why sterility levels in triploid fishes differ among species and between sexes is unclear. In the present study the reproductive capacity of triploid males of tench was studied. Flow cytometry revealed sperm cells of triploids to be largely aneuploid with high mosaic DNA, oscillating from haploid DNA to diploid DNA content. Analysis of variance showed an insignificant influence of ploidy level on the percentage of motile spermatozoa, as well as on spermatozoa velocity. Experimental crosses between normal diploid female and triploid males resulted in the appearance of triploid progeny, which exhibited genotypes composed of microsatellite alleles inherited from the founder female and additional allele derived from the donor male. We can conclude that the triploid males analysed in the present study were capable to fertilize eggs derived from diploid females.  相似文献   

12.
G. Ladizinsky 《Chromosoma》1974,47(1):109-117
Genome relationships between the three diploid oats, Avena strigosa (S.), A. longiglumis (L.) and A. prostrata (P.) were studied by chromosome pairing in diploid hybrids and in synthetic triploids and tetraploids combining these genomes. Fairly regular pairing in the diploid hybrid and typical autopolyploid behavior in the triploids and in the amphidiploid suggest small differentiation in the chromosome architecture of A. longiglumis and A. prostrata. A. strigosa diverges from the other two oats by complex chromosome rearrangements. Conspicuous preferential pairing took place in triploids with SSL, SSP and SPP genomic constitution. The low bivalent frequency in the SLL triploid suggests that preferential pairing in triploids with two S genomes is not a consequence of chromosome rearrangement but is rather of genetic origin. The presence of the three genomes in a triploid or a tetraploid caused considerable meiotic irregularities suggesting a better pairing competition of the S genome.  相似文献   

13.
Zietara MS  Kuusela J  Lumme J 《Hereditas》2006,143(2006):84-90
Diploid parthenogenesis, with rare sex, is considered as the basic mode of reproduction among the hermaphroditic and viviparous Gyrodactylus. A particular strain of the monogenean parasite Gyrodactylus salaris (RBT clone) was recognized by an invariable, unique mitochondrial DNA haplotype in rainbow trout (Oncorhynchus mykiss) farms. The RBT clone was shown to be triploid and asexual by analyzing a 493 bp sequence of a nuclear DNA marker. Three alleles were present as heterozygous in all 237 individuals sampled in years 2001-2005 from five isolated Finnish farms. The triploid clone probably originated from a diploid oocyte fertilized by a non-self hermaphrodite, most probably in a fish farm. Identical mitochondrial COI gene (1606 bp) was also found in G. salaris parasites on landlocked salmon (Salmo salar) in two rivers draining to the lake Kuitozero, Russian Karelia. In the river Pisto, the clone was triploid, but the diagnostic "short" nuclear allele of the RBT clone was replaced by an allele typical for salmon specific parasites in the Lake Onega. The clone in the river Kurzhma was diploid, having lost the "short" allele, but still heterozygous for the other two alleles of the RBT clone. Evidently, the triploid parthenogenetic RBT clone had produced diploid oocytes, when (as a female) stimulated by a non-self mate in the new environment. The genetic reorganization coincided with a switch to the salmon host. Participation of triploids into the gene pool of the species is rarely reported in animals, and the triploidy is generally considered as an irreversible dead-end of the evolution. Liberalism in ploidy level may significantly add to the evolutionary options available for a parasite in ever-changing environments.  相似文献   

14.
We describe an unusually high infection rate of Gyrodactylus salaris Malmberg in juvenile Atlantic salmon Salmo salar L. of Baltic Sea origin, which are generally believed to be more resistant to G. salaris than East Atlantic salmon populations. Based on analyses of mitochondrial (complete cytochrome oxidase 1 [CO1] gene, 1548 bp) and nuclear (ADNAM1, 435 bp; internal transcribed spacer [ITS] rDNA region, 1232 bp) DNA fragments, the closest relatives of the characterized Estonian G. salaris strain were parasites found off the Swedish west coast and in Raasakka hatchery, Iijoki (Baltic Sea, Finland). Analyses of 14 microsatellite loci of the host S. salarrevealed that approximately 40% of studied fish were triploids. We subsequently identified triploid Atlantic salmon of Baltic origin as more susceptible to G. salaris infection than their diploid counterparts, possibly due to compromised complement-dependent immune pathways in triploid salmon. This is in accordance with earlier studies that have shown elevated susceptibility of triploids to various viral or bacterial pathogens, and represents one of the first reports of increased susceptibility of triploid salmonid fish to an ectoparasite. However, further experimental work is needed to determine whether triploid Atlantic salmon is generally more susceptible to G. salaris compared to their diploid counterparts, irrespective of the particular triploidization method and population of origin.  相似文献   

15.
Asexual reproduction in vertebrates is rare and generally considered an evolutionary dead end. Asexuality is often associated with polyploidy, and several hypotheses have been put forward to explain this relationship. So far, it remains unclear whether polyploidization in asexual organisms is a frequent or a rare event. Here we present a field study on the gynogenetic Amazon molly, Poecilia formosa. We used multilocus fingerprints and microsatellites to investigate the genetic diversity in 339 diploid and 55 triploid individuals and in 25 P. mexicana, its sexual host. Although multilocus DNA fingerprints found high clonal diversity in triploids, microsatellites revealed only two very similar clones in the triploids. Phylogenetic analysis of microsatellite data provided evidence for a monophyletic origin of the triploid clones of P. formosa. In addition, shared alleles within the triploid clones between the triploid and diploid genotypes and between asexual and sexual lineages indicate a recent origin of triploid clones in Poecilia formosa.  相似文献   

16.
The use of triploid fish may be of interest in research, e.g. study of how this condition affects the size and activity of cells. In addition, triploid fish are sterile and production of triploids in fish species that are marketed after reaching sexual maturity may be of economic interest. In the present study, the effects of triploidy on the activity of several components of the innate immune system of turbot (Psetta maxima L) were determined. Triploid turbot had bigger cells (erythrocytes and neutrophils) but the number of blood erythrocytes, leucocytes and thrombocytes was lower than in diploid fish. The differential cell count was similar in both types of fish. The respiratory burst and the phagocytic activities were higher in neutrophils of triploid turbot. However, because the number of neutrophils was higher in diploids, the total respiratory burst activity and the phagocytosis per microliter of blood was similar in both types of fish. No differences were found in serum complement, lysozyme or bactericidal activities. The results indicate that the activities of the humoral components of the innate immune system tested are similar in diploid and triploid fish and that the lower leucocyte number found in triploids is compensated for by higher cell activity.  相似文献   

17.
Loaches (Misgurnus anguillicaudatus) were collected from 35 localities in Japan and assayed by flow cytometry to determine ploidy status. No tetraploids were found, with samples from 33 localities having no or few (1.2–3.2%) triploids. Samples collected from Ichinomiya Town, Aichi Prefecture, showed a relatively high rate of triploidy (7.7%). Samples collected from a fish farm in Hirokami Village, Niigata Prefecture, also showed high proportions of triploids (2.0–15.8%), these triploid males being sterile, but the females producing both large-sized triploid and small-sized haploid eggs. Such eggs developed bisexually rather than gynogenetically, giving rise to viable tetraploid and diploid offspring after normal fertilization. Of eight diploid females obtained from the same locality, one produced a high incidence of viable diploid gynogens (55%) after gynogenetic induction by fertilization with UV-irradiated spermatozoa. These observations indicated the presence of diploid fish which produced both diploid and haploid eggs. Thus, triploid and diploid individuals were also produced after fertilization with haploid spermatozoa. These results suggested that the occurrence of such unreduced eggs may be a cause of natural polyploidization in this species.  相似文献   

18.
X. Guo  S. K. Allen-Jr. 《Genetics》1994,138(4):1199-1206
Mulinia lateralis, the dwarf surfclam, is a suitable model for bivalve genetics because it is hardy and has a short generation time. In this study, gynogenetic and triploid. M. lateralis were successfully induced. For gynogenesis, eggs were fertilized with sperm irradiated with ultraviolet light and subsequently treated with cytochalasin B to block the release of the second polar body (PB2). Triploidy was induced by blocking PB2 in normally fertilized eggs. The survival of gynogenetic diploids was very low, only 0.7% to 8 days post-fertilization (PF), compared with 15.2% in the triploid groups and 27.5% in the normal diploid control. Larvae in all groups metamorphosed at 8-10 days PF, and there was no significant post-larval mortality. At sexual maturation (2-3 months PF), all gynogenetic diploids were female, and there was no significant difference (P > 0.05) in sex ratio between diploids and triploids. These results suggested that the dwarf surfclam may have an XX-female, XY-male sex determination with Y-domination. Compared with diploids, triploids had a relative fecundity of 59% for females and 80% for males. Eggs produced by triploid females were 53% larger (P < 0.001) in volume than those from diploid females. In both length and weight measurements at three months PF, the gynogenetic diploids were not significantly (P > 0.33) different from normal diploid females, suggesting that inbreeding depression was minimal in meiosis II gynogens. Triploid clams were significantly larger (P < 0.001) than normal diploids. We hypothesize that the increased body-size in triploids was caused by a polyploid gigantism due to the increased cell volume and a lack of cell-number compensation.  相似文献   

19.
Population structure and growth parameters of Prussian carp (Carassius auratus gibelio) were studied in 12 freshwater ecosystems of the Donbass region (Eastern Ukraine). These ecosystems differed significantly with respect to their surface area, water transparency and annual concentrations of phosphorus and nitrogen. Amongst the studied ecosystems, diploid males and females as well as a smaller percentage of triploid females were found. The population structure of C. a. gibelio varied significantly in terms of the percentage of triploids and sex ratio amongst diploids. A considerable proportion of triploid females (>10%) was found in four ecosystems with intermediate surface area (38–50 ha) and relatively high growth rate of specimens. The sex ratio amongst diploids was significantly female-biased in seven of 12 ecosystems, including those where triploids were present in considerable numbers. The growth parameters of Prussian carp were significantly correlated with ecosystem characteristics, but the growth patterns of diploids and triploids were not significantly different from each other. The restricted distribution of triploid specimens suggests that the triploid form might counter diverse environmental challenges, whereas the diploid form of Prussian carp seems to be efficiently adapted to a wide range of ecosystem conditions.  相似文献   

20.
二倍体和三倍体太平洋牡蛎鳃扫描电镜的比较   总被引:1,自引:0,他引:1  
利用扫描电子显微镜技术对二倍体和三倍体太平洋牡蛎(Crassostrea gigas)鳃的表面结构进行了观察和比较。结果显示:三倍体牡蛎鳃丝的宽度、鳃丝间的距离较二倍体大;鳃丝的微细结构比二倍体更致密;鳃丝间通过丝问连接形成的孔洞大于二倍体。这些不同表明二倍体和三倍体呼吸及摄食可能存在差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号