首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of infusing superoxide dismutase (SOD) and catalase (CAT) into the coronary circulation were investigated in isolated, working rat hearts prior to and during a 15 minute episode of regional ischemia followed by 30 minutes reperfusion. Aortic output, left ventricular pressure and dP/dT were recorded. Compared to untreated hearts, SOD and CAT significantly improved function during reperfusion, but had no effect during the pre-ischemic or the ischemic period. To investigate possible transport of SOD and CAT into rat myocytes, cryotome sections of isolated, Langendorff perfused rat hearts were exposed to rabbit antibody prepared against the exogenous SOD and CAT. Bound antibody was detected by the indirect-fluorescent antibody test. The interior of myocytes from rat hearts exposed to SOD and CAT bound antibodies prepared against these enzymes, whereas myocytes from rat hearts not exposed to exogenous SOD and CAT only bound the CAT antibodies. This indicates the anti-SOD we prepared is specific for exogenous SOD, and also suggests exogenous SOD can gain access to the cytoplasm of myocytes from the coronary circulation.  相似文献   

2.
The usefulness of different enzyme and immunohistochemical stains to distinguish reversible and irreversible myocardial cell injury after experimental coronary artery occlusion of varying duration and reperfusion with or without superoxide dismutase as adjunct was investigated. Biopsies or parts of the infarcted and non-infarcted area were rapidly frozen and sectioned in series for enzyme and immunohistochemical evaluation. Sections were stained for the demonstration of phosphorylase, myofibrillar ATPase and mitochondrial oxidative enzymes and also with periodic acid-Schiff, alizarin red S and routine histological stains. Other sections in series were stained with antibodies against fibronectin and the intermediate filament proteins desmin and vimentin. In 49 biopsies a blind quantitative estimation of the area stained for fibronectin, phosphorylase and alizarin red S was performed and evaluated statistically. Phosphorylase, periodic acid-Schiff, fibronectin and alizarin red S allowed delineation of affected myocardium after 30 min of ischaemia followed by reperfusion whereas with the other stains, affected myocardium was readily detectable only after 60 or 90 min of ischaemia followed by reperfusion as well as after 24 h of ischaemia without reperfusion. The immunostaining for fibronectin was very distinct and inversely related to the phosphorylase activity. We show that fibronectin is an excellent marker for damaged cells and that these positively stained myocytes are necrotic as confirmed ultrastructurally. Using alizarin red S as a marker of calcium accumulation in myocytes, a marked discrepancy was observed between the area of fibronectin-containing myocytes and that of myocytes stained by alizarin red S. Calcium accumulation in mitochondria is thus not a prerequisite for myocyte necrosis but does occur only in some of the irreversibly damaged cells. Of special interest is the finding that there was a significant reduction of intracellular calcium in pigs where superoxide dismutase had been used as an adjunct at reperfusion, thus supporting the theory that free radicals do play a role during reperfusion of ischaemic myocardium.  相似文献   

3.
The usefulness of different enzyme and immunohistochemical stains to distinguish reversible and irreversible myocardial cell injury after experimental coronary artery occlusion of varying duration and reperfusion with or without superoxide dismutase as adjunct was investigated. Biopsies or parts of the infarcted and non-infarcted area were rapidly frozen and sectioned in series for enzyme and immunohistochemical evaluation. Sections were stained for the demonstration of phosphorylase, myofibrillar ATPase and mitochondrial oxidative enzymes and also with periodic acid-Schiff, alizarin red S and routine histological stains. Other sections in series were stained with antibodies against fibronectin and the intermediate filament proteins desmin and vimentin. In 49 biopsies a blind quantitative estimation of the area stained for fibronectin, phosphorylase and alizarin red S was performed and evaluated statistically. Phosphorylase, periodic acid-Schiff, fibronectin and alizarin red S allowed delineation of affected myocardium after 30 min of ischaemia followed by reperfusion whereas with the other stains, affected myocardium was readily detectable only after 60 or 90 min of ischaemia followed by reperfusion as well as after 24 h of ischaemia without reperfusion. The immunostaining for fibronectin was very distinct and inversely related to the phosphorylase activity. We show that fibronectin is an excellent marker for damaged cells and that these positively stained myocytes are necrotic as confirmed ultrastructurally. Using alizarin red S as a marker of calcium accumulation in myocytes, a marked discrepancy was observed between the area of fibronectin-containing myocytes and that of myocytes stained by alizarin red S. Calcium accumulation in mitochondria is thus not a prerequisite for myocyte necrosis but does occur only in some of the irreversibly damaged cells. Of special interest is the finding that there was a significant reduction of intracellular calcium in pigs where superoxide dismutase had been used as an adjunct at reperfusion, thus supporting the theory that free radicals do play a role during reperfusion of ischaemic myocardium.  相似文献   

4.
Reactive oxygen species (ROS) have been implicated in the mechanism of postischemic contractile dysfunction, known as myocardial stunning. In this study, we examined protective effects of antioxidant enzymes, superoxide dismutase (SOD) and catalase, against ischemia/reperfusion-induced cardiac dysfunction and inhibition of Na+,K+-ATPase activity. Isolated Langendorff-perfused rabbit hearts were subjected to 15 min of global normothermic ischemia followed by 10 min reperfusion. The hearts treated with SOD plus catalase did not show significant recovery of left ventricular (LV) end-diastolic pressure compared with untreated ischemic reperfused hearts. Treatment with antioxidants had no protective effects on developed LV pressure or its maximal positive and negative first derivatives (+/-LVdP/dt). Myocardial stunning was accompanied by significant loss in sarcolemmal Na+,K+-ATPase activity and thiol group content. Inhibition of enzyme activity and oxidation of SH groups were not prevented by antioxidant enzymes. These results suggest that administration of SOD and catalase in perfusate do not protect significantly against cardiac dysfunction in stunned rabbit myocardium.  相似文献   

5.
Apelin, the endogenous ligand of the G protein-coupled APJ receptor, is a peptide mediator with emerging regulatory actions in the heart. The aim of the present studies was to explore potential roles of the apelin/APJ system in myocardial ischaemia/reperfusion injury. To determine the cardiac expression of apelin/APJ and potential regulation by acute ischaemic insult, Langendorff perfused rat hearts were subjected to regional ischaemia (left coronary artery occlusion, 35 min) or ischaemia followed by reperfusion (30 min). Apelin and APJ mRNA expression were then determined in ventricular myocardium by rt-PCR. Unlike APJ mRNA expression, which remained unchanged, apelin mRNA was upregulated 2.4 fold in ventricular myocardium from isolated rat hearts undergoing ischaemia alone, but returned back to control levels after 30 min reperfusion. We then proceeded to test the hypothesis that treatment with exogenous apelin is protective against ischaemia/reperfusion injury. Perfused hearts were subjected to 35 min left main coronary artery occlusion and 120 min reperfusion, after which infarct size was determined by tetrazolium staining. Exogenous Pyr(1)-apelin-13 (10(-8 )M) was perfused either from 5 min prior to 15 min after coronary occlusion, or from 5 min prior to 15 min after reperfusion. Whilst ineffective when used during ischaemia alone, apelin administered during reperfusion significantly reduced infarct size (47.6+/-2.6% of ischaemic risk zone compared to 62.6+/-2.8% in control, n=10 each, p<0.05) in hearts subject to temporary coronary occlusion followed by reperfusion. This protective effect was not abolished by co-administration of the PI3K inhibitor wortmannin (10(-7 )M, infarct size 49.8+/-4.1%, n=4) or the P70S6 kinase inhibitor rapamycin (10(-9 )M, 41.8+/-8.8%, n=4). In conclusion these results suggest that apelin may be a new and potentially important cardioprotective autacoid, upregulated rapidly after myocardial ischaemia and acting through an unknown pathway.  相似文献   

6.
Cardiovascular ageing is associated with an increase in cardiac susceptibility to ischaemia and reperfusion and production of reactive oxygen species has been suspected to be responsible for this age-associated particular vulnerability. To determine whether administration of antioxidant treatment could afford some protection against ischaemia and reperfusion during aging, isolated perfused hearts from adult and senescent rats were submitted to normoxia (180 min), prolonged low-flow ischaemia (15% of initial coronary flow;180 min) or low-flow ischaemia/reperfusion (45 min/30 min), without or with antioxidant enzymes (superoxide dismutase+catalase; 50IU/ml). Contractile function and coronary perfusion were measured and protein oxidation was quantitated in left ventricle after normoxia, ischaemia and ischaemia/reperfusion. Protein oxidation was higher in senescent than in adult hearts after ischaemia-reperfusion, in contrast to prolonged ischaemia. During prolonged ischaemia, antioxidant treatment prevented coronary vasoconstriction at both ages and delayed contractile dysfunction in senescent hearts but did not limit protein oxidation. During reperfusion, antioxidant treatment prevented coronary vasoconstriction and protein oxidation at both ages and considerably improved recovery of contractile function in senescent hearts. In conclusion, antioxidant treatment fully protects the senescent heart against ischaemia/reperfusion but not against prolonged ischaemia injury, indicating that oxidative stress plays a central role in the age-associated vulnerability to ischaemia-reperfusion.  相似文献   

7.
It has been hypothesised that activation of matrix metalloproteinase-2 (MMP-2) contributes to reversible myocardial dysfunction (stunning) following short-term ischaemia and reperfusion. Gelatin zymography was used to measure release of both pro-MMP-2 (72 kDa) and MMP-2 (62 kDa), into the coronary effluent from isolated, perfused rabbit hearts during 90 min aerobic perfusion (control), or low-flow ischaemia (15 or 60 min at 1 mL/min), followed by 60 min reperfusion. In controls, pro-MMP-2 was detected in the coronary effluent throughout the first 30 min of aerobic perfusion, but MMP-2 was not detected. In contrast, MMP-2 was detected in the coronary effluent during reperfusion after both 15 and 60 min ischaemia. However, while left ventricular systolic function was impaired after both 15 min and 60 min ischaemia, a significant increase in the release of MMP-2 was only detected in hearts following 60 min ischaemia. The dissociation between mechanical function and MMP-2 levels suggest that MMP-2 does not contribute to myocardial stunning in this model, but may contribute to myocardial dysfunction following prolonged ischaemia.  相似文献   

8.
目的:观察楤木皂苷(total saponins extracted from Aralia taibaiensis,s AT)对大鼠心肌缺血/再灌注(myocardia1 ischemia/reperfusion,MI/R)损伤的影响。方法:可逆性冠脉左前降支结扎缺血30 min再灌注3 h复制MI/R模型,将SD大鼠随机分为假手术组、模型组、s AT低、中、高剂量组,每组10只。采用伊文思蓝(EB)、2,3,5-氯化三苯基四氮唑蓝(TTC)双染法测定心肌梗死面积,苏木精-伊红(HE)染色法观察心肌病理学形态变化,并检测血清中乳酸脱氢酶(LDH)、肌酸激酶同工酶(CK-MB)、超氧化物歧化酶(SOD)、丙二醛(MDA)、过氧化氢酶(CAT)及谷胱甘肽过氧化物酶(GSH-Px)水平。结果:与模型组比较,s AT中、高剂量组可明显缩小心肌梗死面积(P0.05),并显著降低血清中LDH、CK-MB及MDA的含量,同时使得血清中SOD、CAT和GSH-Px的活性增加。且所有给药组心肌组织的病理损伤也小于模型组。结论:s AT对大鼠MI/R损伤具有保护作用,其机制可能与抗氧化作用相关。  相似文献   

9.
Superoxide dismutase scavenges oxygen radicals, which have been implicated in ischemia/reperfusion (I/R) injury in the heart. Our experiments were designed to study the effect of a moderate increase of copper/zinc superoxide dismutase (CuZnSOD) on myocardial I/R injury in TgN(SOD1)3Cje transgenic mice. A species of 0.8 kb human CuZnSOD mRNA was expressed, and a 273% increase in CuZnSOD activity was detected in the hearts of transgenic mice with no changes in the activities of other antioxidant enzymes. Furthermore, immunoblot analysis revealed no changes in the levels of HSP-70 or HSP-25 levels. Immunocytochemical study indicated that there was increased labeling of CuZnSOD in the cytosolic fractions of both endothelial cells and smooth muscle cells, but not in the myocytes of the hearts from transgenic mice. When these hearts were perfused as Langendorff preparations for 45 min after 35 min of global ischemia, the functional recovery of the hearts, expressed as heart rate x LVDP, was 48 +/- 3% in the transgenic hearts as compared to 30 +/- 5% in the nontransgenic hearts (p <.05). The improved cardiac function was accompanied by a significant reduction in lactate dehydrogenase release from the transgenic hearts. Our results demonstrate that overexpression of CuZnSOD in coronary vascular cells renders the heart more resistant to I/R injury.  相似文献   

10.
Curcumin modulates free radical quenching in myocardial ischaemia in rats   总被引:1,自引:0,他引:1  
This study was designed to investigate the protective effect of curcumin (CUR) against isoprenaline induced myocardial ischaemia in rat myocardium. The effect of single oral dose of curcumin (15 mg kg(-1)), administered 30 min before and/or after the onset of ischaemia, was investigated by assessing oxidative stress related biochemical parameters in rat myocardium. Curcumin pre and post-treatment (PPT) was shown to decrease the levels of xanthine oxidase, superoxide anion, lipid peroxides (LPs) and myeloperoxidase while the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) activities were significantly increased after curcumin PPT. Histopathological and transmission electron microscopical studies also confirmed the severe myocardial damage occurring as a consequence of isoprenaline induced ischaemia and they also showed the significant improvement effected by curcumin PPT. These findings provided evidence that curcumin was found to protect rat myocardium against ischaemic insult and the protective effect could be attributed to its antioxidant properties as well as its inhibitory effects on xanthine dehydrogenase/xanthine oxidase (XD/XO) conversion and resultant superoxide anion production.  相似文献   

11.
Methylprednisolone (MP), a synthetic glucocorticoid, is widely used clinically and experimentally as acute antiinflammatory treatment. The molecular actions of MP indicate that pretreatment with this drug may be cardioprotective. We investigated if giving rats MP prior to excising their hearts for Langendorff-perfusion protected cardiac function against oxidative stress, and if this was mediated by increasing antioxidant defence or influencing myocardial nitric oxide synthase (NOS). Rats (n=6-11 in each group) were injected with MP (40 mg/kg i.m.) or vehicle 24 and 12 h before Langendorff-perfusion with 30 min global ischaemia and 60 min reperfusion, or 10 min perfusion with 180 μmol/L hydrogen peroxide. Other hearts were exposed to 30 min global ischaemia 5 days after MP-injection. Additional hearts were sampled before, during, and after ischaemia for analyzing tissue activity of antioxidant enzymes. Tissue endothelial and inducible NOS (eNOS and iNOS) were investigated by immunoblotting and semiquantitative RT-PCR in a time-course after MP injection. Pretreatment with MP improved left ventricular function and increased coronary flow during postischaemic reperfusion, and this effect was sustained 5 days afterwards. When exposing hearts to hydrogen peroxide, MP improved coronary flow. Catalase, glutathione peroxidase, and oxidized glutathione were increased during reperfusion of MP-treated hearts compared to vehicle only. MP did not influence eNOS at protein or mRNA level. iNOS could not be detected by immunoblotting, indicating low cardiac enzyme content. Its mRNA initially increased the first hour after injection, thereafter decreased. In conclusions, pretreating rats with MP protects the heart against ischaemia-reperfusion dysfunction. This effect could be due to increase of tissue antioxidant activity during reperfusion. MP did not influence cardiac eNOS. mRNA for iNOS was influenced by MP, but the corresponding protein could not be detected.  相似文献   

12.
Our laboratory has previously reported that acetaminophen confers functional cardioprotection following cardiac insult, including ischemia/reperfusion, hypoxia/reoxygenation, and exogenous peroxynitrite administration. In the present study, we further examined the mechanism of acetaminophen-mediated cardioprotection following ischemia/reperfusion injury. Langendorff-perfused guinea pig hearts were exposed to acute treatment with acetaminophen (0.35 mM) or vehicle beginning at 15 min of a 30-min baseline stabilization period. Low-flow global myocardial ischemia was subsequently induced for 30 min followed by 60 min of reperfusion. At the completion of reperfusion, hearts were homogenized and separated into cytosolic and mitochondrial fractions. Mitochondrial swelling and mitochondrial cytochromec release were assessed and found to be significantly and completely reduced in acetaminophen- vs. vehicle-treated hearts following reperfusion. In a separate group of hearts, ventricular myocytes were isolated and subjected to fluorescence-activated cell sorting. Acetaminophen-treated hearts showed a significant decrease in late stage apoptotic myocytes compared with vehicle-treated hearts following injury (58 +/- 1 vs. 81 +/- 5%, respectively). These data, together with electron micrograph analysis, suggest that acetaminophen mediates cardioprotection, in part, via inhibition of the mitochondrial permeability transition pore and subsequent apoptotic pathway.  相似文献   

13.
缺血后心室功能减低(myocardial stunning)的发生机制迄今尚不明了。本实验以 Lang-cndorff 法在离体灌流的大鼠心脏,研究了全心缺血20min 及再灌注40min 后心肌 Ca~(2+)、Na~+K~+、Mg~(2+)及 H_2O 含量的变化,以及高渗甘露醇对缺血后功能低下心肌的影响。实验发现:(1)缺血/再灌注后心肌组织中 Ca~(2+),H_2O 的含量与非缺血组相比分别增加42%(P<0.01)及7.6%(P0.05)。(2)于再灌注同时给予12%高渗甘露醇可明显改善缺血后心室功能:再灌注40min 时,心率-左室压乘积恢复达缺血前的85%,而不给甘露醇仅恢复66.3%(p<0.01);高渗甘露醇同时消除了缺血后功能低下心肌中 Ca~(2+)超负荷与心肌水肿,此现象提示缺血/再灌注引起的肌膜非特异性通透性改变,很可能是钙进入细胞内的路径之一。本研究结果表明,心肌 Ca~(2+)超负荷及轻度心肌水肿参与了缺血后心室功能低下,高渗甘露醇在离体大鼠心脏可明显改善缺血后功能低下心肌的功能,此作用至少部分是由于其具有减低心肌钙与水含量的效应。  相似文献   

14.
It is well known that reperfusion damage of ischemic myocardium may be attributed to alterations in the antioxidant defense system against free radical aggression. In addition, the degree of myocardial damage may depend on the duration and severity of ischemia that precedes reperfusion. We carried out serial ischemic experiments (10, 30, 60 and 120 min) in ex-vivo rat hearts followed by 30 min reperfusion and we assayed the glutathione-dependent enzymatic activities (selenium-dependent glutathione-peroxidase: GSH-Px; selenium-independent glutathione peroxidase: GST-Px; glutathione-transferase: GST and glutathione-reductase: GS-SG-Red), Catalase activity (CAT) and non-proteic thiol compounds (NP-SH) at the end of reperfusion. We found a significant reduction of NP-SH, GSH-Px and CAT in ischemic/ reperfused hearts from 30 min on, while GST activity was increased. In addition, we observed the appearance of a selenium-independent glutathione peroxidase activity (GST-Px) belonging to the GST system. In conclusion, we found the longer the duration of ischemia the greater the inbalance between the myocardial antioxidant system especially the GST activation, suggesting in particular for GST-Px, a role in the control of the damage against oxygen toxicity during ischemia/reperfusion.  相似文献   

15.
Survival of cardiac patients undergoing heart surgery depends critically upon the recovery of myocardial energy metabolism during reperfusion of ischemic myocardium. The present study compares various parameters of myocardial energy metabolism using an isolated in situ pig heart. The left anterior descending (LAD) coronary artery was occluded for 60 min, followed by 60 min of global hypothermic cardioplegic arrest and 60 min of reperfusion. Free radical scavengers [superoxide dismutase SOD and catalase] were used to protect the ischemic heart from reperfusion injury. In both control and SOD plus catalase-treated groups, ATP, creatine phosphate (CP), ATP/ADP ratio, energy charge and phosphorylation potential dropped significantly during ischemic insult. After reperfusion, CP, ATP/ADP ratio and phosphorylation potential improved significantly, but they were restored to control level only in treated animals. In either case, free energy of ATP hydrolysis (delta G) lowered only by 5% during ischemia, but recovered promptly upon reperfusion. SOD and catalase also improved coronary blood flow and reduced creatine kinase release compared to those of untreated animals, suggesting improved myocardial recovery upon reperfusion. Our results suggest that SOD and catalase significantly improve the myocardial recovery during reperfusion by enhancing rephosphorylation steps, and the value of delta G is more critical compared to those of ATP and CP for myocardial recovery.  相似文献   

16.
In this study, we investigated the effects of isorhamnetin on myocardial ischaemia reperfusion (I/R) injury in Langendorff-perfused rat hearts. Isorhamnetin treatment (5, 10 and 20 μg/mL) significantly alleviated cardiac morphological injury, reduced myocardial infarct size, decreased the levels of marker enzymes (LDH and CK) and improved the haemodynamic parameters, reflected by the elevated levels of the left ventricular developed pressure (LVDP), coronary flow (CF) and the maximum up/down velocity of left ventricular pressure (+dp/dtmax). Moreover, isorhamnetin reperfusion inhibited apoptosis of cardiomyocytes in the rats subjected to cardiac I/R in a dose-dependent manner concomitant with decreased protein expression of Bax and cleaved-caspase-3, as well as increased protein expression of Bcl-2. In addition, I/R-induced oxidative stress was manifestly mitigated by isorhamnetin treatment, as showed by the decreased malondialdehyde (MDA) level and increased antioxidant enzymes activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). These results indicated that isorhamnetin exerts a protective effect against I/R-induced myocardial injury through the attenuation of apoptosis and oxidative stress.  相似文献   

17.
To examine the intracellular signaling mechanism of NO in ischemic myocardium, isolated working rat hearts were made ischemic for 30 min followed by 30 min of reperfusion. A separate group of hearts were pre-perfused with 3 mM L-arginine in the presence or absence of 650 M of protoporphyrin, a heme oxygenase inhibitor for 10 min prior to ischemia. The release of NO was monitored using an on-line amperometric sensor placed into the right atrium. The aortic flow and developed pressure were examined to determine the effects of L-arginine on ischemic/reperfusion injury. Induction for the expression of heme oxygenase was studied by Northern hybridization. For signal transduction experiments, sarcolemmal membranes were radiolabeled by perfusing the isolated hearts with [3H] myoinositol and [14C] arachidonic acid. Biopsies were processed to determine the isotopic incorporation into various phosphoinositols as well as phosphatidic acid and diacylglycerol. cGMP was assayed by radioimmunoassay and SOD content was determined by enzymatic analysis. The release of NO was diminished following ischemia and reperfusion and was augmented by L-arginine. L-arginine reduced ischemic/reperfusion injury as evidenced by the enhanced myocardial functional recovery. Protoporphyrin modulated the effects of L-arginine. cGMP, which was remained unaffected by ischemia and reperfusion, was stimulated significantly after L-arginine treatment. The NO-mediated augmentation of cGMP was reduced by protoporphyrin suggesting that part of the effects may be mediated by CO generated through the heme oxygenase pathway. Reperfusion of ischemic myocardium resulted in significant accumulation of radiolabeled inositol phosphate, inositol bisphosphate, and inositol triphosphate. Isotopic incorporation of [3H] inositol into phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate was increased significantly during reperfusion. Reperfusion of the ischemic heart prelabeled with [14C] arachidonic acid resulted in modest increases in [14C] diacylglycerol and [14C] phosphatidic acid. Pretreatment of the heart with L-arginine significantly reversed this enhanced phosphodiesteratic breakdown during ischemia and early reperfusion. However, at the end of the reperfision the inhibitory effect of L-arginine on the phosphodiesterases seems to be reduced. In L-arginine treated hearts, SOD activity was progressively decreased with the duration of reperfusion time. The results suggests for the first time that NO plays a significant role in transmembrane signaling in the ischemic myocardium. This signaling appears to be on- and off- nature, and linked with SOD content of the tissue. The signaling is transmitted via cGMP and opposes the effects of phosphodiesterases by inhibiting the ischemia/reperfusion-induced phosphodiesteratic breakdown. Our results also suggest that NO activates heme oxygenase which further stimulates the production of cGMP presumably by CO signaling. Thus, NO not only potentiates cGMP mediated intracellular signaling, it also functions as a retrograde messenger for CO signaling in heart.  相似文献   

18.
Staining with triphenyltetrazolium chloride (TTC), although controversial, has frequently been used for the delineation of myocardial infarction. This study was performed further to explore the reliability of the TTC method. In 24-h experiments pigs were subjected to closed-chest occlusion of the left anterior descending coronary artery for 30, 60 or 90 min followed by reperfusion with or without superoxide dismutase (SOD) as an adjunct. One TTC-stained slice from each heart was stabilized by microwave irradiation, gelatin-embedded, frozen in hexane chilled with dry ice and cryosectioned. Serial sections were stained with antibodies against fibronectin in order to identify irreversibly injured myocytes and with van Gieson histologically to confirm the necrotic tissue. A close correspondence of the infarct size was found between TTC stained slices and anti-fibronectin stained sections. The infarct size in the van Gieson stained sections also showed good correspondence but the area of infarction tended to be larger. In the experimental group subjected to 30 min ischaemia and with SOD as an adjunct, the estimated infarcted area in the TTC stained slices was significantly smaller than the area estimated from the anti-fibronectin stained sections. In sections viewed in the light microscope an inverse pattern of TTC and anti-fibronectin staining was observed. It was confirmed at the light microscopic level that myocytes containing an abundance of TTC deposits lacked fibronectin whereas myocytes stained with antifibronectin in general lacked TTC staining except for a zone approximately 0.5 mm wide which was located at the intersection between damaged and surviving myocytes where small TTC deposits were present. The width of the stained zone did not differ among the experimental groups. Thus, differences in estimated infarct size by the three methods used reflect problems in correctly delineating the border between living and dead myocardium rather than an interference by SOD on TTC staining.  相似文献   

19.
Occurrence of oxidative stress during myocardial reperfusion   总被引:1,自引:0,他引:1  
Reperfusion, without doubt, is the most effective way to treat the ischaemic myocardium. Late reperfusion may however cause further damage. Myocardial production of oxygen free radicals above the neutralizing capacity of the myocytes is an important cause of this reperfusion damage. There is evidence that prolonged ischaemia reduces the naturally occurring defence mechanisms of the heart against oxygen free radicals, particularly mitochondrial manganese superoxide dismutase, and intracellular pool of reduced glutathione. Consequently, reperfusion results in a severe oxidative damage, as evidenced by tissue accumulation and release of oxidized glutathione.An oxygen free radical-mediated impairment of mechanical function also occurs during reperfusion of human heart. In fact we observed during surgical reperfusion of coronary artery disease (CAD) patients, a prolonged and sustained release of oxidized glutathione;the degree of oxidative stress was inversely correlated with recovery of mechanical and haemodynamic function. These findings represent the rationale for therapeutic interventions which increase the cellular antioxidant capacities and improve the efficacy of myocardial reperfusion.  相似文献   

20.
目的:比较异丙酚和氯胺酮对大鼠离体缺血再灌注损伤心肌脂质过氧化的影响。方法:成年Wistar大鼠18只,雌雄不拘。体重240-300g,随机分为3组(T1=6):心肌缺血再灌注损伤组(I/R组),异丙酚组(P组),氯胺酮组(K组)。采用Langendorff灌装置建立离体心脏缺血再灌注模型,将心脏连接至Langendorff逆灌装置,3组均以K-H液平衡灌注10min后,再分别以K.H液、含30μmol/L。异丙酚的K-H液、含10μmol-L-1氯胺酮的K-H液灌注10min,然后全心停灌25min,再分别以停灌前相同的灌注液恢复灌注30min。留取冠脉流出液测定总LDH活性;灌注末取左室心肌组织置于2.5%的戊二醛固定,观察心肌的超微结构;心尖部心肌组织留待检测8-异前列腺素和SOD活性。结果:与I/R组比较,P组8-异前列腺素含量降低,SOD活性升高,LDH活性降低(P〈0.05);K组8-异前列腺素含量,SOD及LDH活性均无统计学意义(P〉0.05);与P组比较,K组8-异前列腺素含量升高,SOD及LDH活性降低(P〈0.05);P组心肌超微结构损伤较m组和K组也明显改善。结论:异丙酚可显著减轻心肌缺血再灌注损伤大鼠的脂质过氧化和心肌缺血再灌注损伤,而氯胺酮没有抗心肌缺血再灌注损伤心肌脂质过氧化的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号