首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
To study rearrangement of T cell receptor (TCR) genes, transgenic mice were generated with a TCR beta minilocus in germline configuration, containing three V beta, two D beta, fourteen J beta and two C beta gene segments and the TCR beta enhancer. Using the polymerase chain reaction as an analytical tool both partial DJ as well as complete VDJ rearrangements were seen, indicating that the minilocus contained all sequence elements required for rearrangment. Rearrangements of minilocus gene segments were restricted to T cells in the thymus and the periphery and did not occur in B cells. V beta 8.3 and V beta 5 sequences encoded by the minilocus were expressed on the surface of peripheral T cells at high frequencies. Transgenic mice with TCR minilocus genes will be a useful system to identify DNA sequence elements required for regulation of rearrangement in vivo.  相似文献   

3.
4.
5.
6.
7.
One approach to the production of human monoclonal antibodies focusses on the creation of transgenic mice bearing human immunoglobulin gene miniloci. Whilst such loci undergo lymphoid-specific gene rearrangement, only a small proportion of mouse B cells express the human immunoglobulin chains; the miniloci thus contribute poorly to serum immunoglobulin. Attributing this poor performance to competition between the transgenic and endogenous immunoglobulin loci, we crossed mice bearing a human immunoglobulin heavy-chain (HulgH) minilocus with animals that had been rendered B cell-deficient by disruption of their endogenous heavy-chain locus. The results were dramatic: the human minilocus rescued B cell differentiation such that effectively all B cells now expressed human mu chains. The concentration of antibody in the mouse serum recognised by anti-human mu increased to a concentration about one sixth that in human serum. The HulgH antibodies are heterogenous with diversity being generated by both combinatorial and junctional processes. Following antigen challenge, specific antibody is elicited but at low titre.  相似文献   

8.
To determine whether T cell receptor genes follow the same principle of allelic exclusion as B lymphocytes, we have analyzed the rearrangements and expression of TCR alpha and beta genes in the progeny of the CD3+, CD4-/CD8- M14T line. Here, we show that this line can undergo secondary rearrangements that replace the pre-existing V alpha-J alpha rearrangements by joining an upstream V alpha gene to a downstream J alpha segment. Both the productively and nonproductively rearranged alleles in the M14T line can undergo secondary rearrangements while its TCR beta genes are stable. These secondary recombinations are usually productive, and new forms of TCR alpha polypeptides are expressed in these cells in association with the original C beta chain. Developmental control of this V alpha-J alpha replacement phenomenon could play a pivotal role in the thymic selection of the T cell repertoire.  相似文献   

9.
10.
TdT is a nuclear enzyme that catalyzes the addition of random nucleotides at Ig and TCR V(D)J junctions. In this paper we analyze human IgH rearrangements generated from transgenic minilocus mice in the presence or absence of TdT. In the absence of TdT, the pseudo-VH gene segment present in the minilocus is rearranged dramatically more frequently. Additionally, JH6 gene segment utilization is increased as well as the number of rearrangements involving only VH and JH gene segments. Thus, the recombination of IgH gene segments that are flanked by 23-nt spacer recombination signal sequences may be influenced by TdT expression. Extensive analysis indicates that these changes are independent of antigenic selection and cannot be explained by homology-mediated recombination. Thus, the role played by TdT may be more extensive than previously thought.  相似文献   

11.
The helper T cell clone 3H.25 is specific for hen egg white lysozyme and the class II MHC molecule I-Ab. This TH cell has three rearrangements in the beta-chain gene family-a V beta-D beta-J beta 1 and a D beta 2-J beta 2 rearrangement on one homolog and a D beta 1-J beta 2 rearrangement on the other. These observations demonstrate that this functional T lymphocyte expresses only a single V beta gene segment and, accordingly, exhibits allelic exclusion of beta-chain gene expression. The rearranged 3H.25 V beta gene segment is the same as that expressed in a T helper cell specific for cytochrome c and an I-Ek MHC molecule. Thus, there is no simple correlation between the V beta gene segment and antigen specificity or MHC restriction.  相似文献   

12.
T cells can be divided into two groups on the basis of the expression of either alpha beta or gamma delta T-cell receptors (TCRs). Because the TCR delta chain locus lies within the larger TCR alpha chain locus, control of the utilization of these two receptors is important in T-cell development, specifically for determination of T-cell type: rearrangement of the alpha locus results in deletion of the delta coding segments and commitment to the alpha beta lineage. In the developing thymus, a relative site-specific recombination occurs by which the TCR delta chain gene segments are deleted. This deletion removes all D delta, J delta, and C delta genes and occurs on both alleles. This delta deletional mechanism is evolutionarily conserved between mice and humans. Transgenic mice which contain the human delta deleting elements and as much internal TCR delta chain coding sequence as possible without allowing the formation of a complete delta chain gene were developed. Several transgenic lines showing recombinations between deleting elements within the transgene were developed. These lines demonstrate that utilization of the delta deleting elements occurs in alpha beta T cells of the spleen and thymus. These recombinations are rare in the gamma delta population, indicating that the machinery for utilization of delta deleting elements is functional in alpha beta T cells but absent in gamma delta T cells. Furthermore, a discrete population of early thymocytes containing delta deleting element recombinations but not V alpha-to-J alpha rearrangements has been identified. These data are consistent with a model in which delta deletion contributes to the implementation of a signal by which the TCR alpha chain locus is rearranged and expressed and thus becomes an alpha beta T cell.  相似文献   

13.
The variable region genes of the T cell receptor (TCR) alpha and beta chains are assembled by somatic recombination of separate germline elements. During thymocyte development, gene rearrangements display both an ordered progression, with beta chain formation preceding alpha chain, and allelic exclusion, with each cell containing a single functional beta chain rearrangement. Although considerable evidence supports the view that the individual loci are regulated independently, signaling molecules that may participate in controlling TCR gene recombination remain unidentified. Here we report that the lymphocyte-specific protein tyrosine kinase p56lck, when overexpressed in developing thymocytes, provokes a reduction in V beta--D beta rearrangement while permitting normal juxtaposition of other TCR gene segments. Our data support a model in which p56lck activity impinges upon a signaling process that ordinarily permits allelic exclusion at the beta-chain locus.  相似文献   

14.
15.
Ig H chain (IgH) allelic exclusion remains a puzzling topic. Here, we address the following question: Do phenotypic IgH allelically included cells exist in normal mice and, if so, at what frequency? Sorted cells from heterozygous mice were evaluated for the expression of both IgM allotypes by double intracytoplasmic stainings. Dual expressors were found at a frequency of 1 in 104 splenic B cells. These data were confirmed by direct sequencing of IgH-rearranged alleles obtained after single cell (or clone) PCR on dual expressors. Typically, these cells have one rearranged J558 VH whereas, in the other allele, a D-proximal VH gene is used. Interestingly, dual expressors have rearranged IgH alleles with similar CDR3 lengths. These results show that, in contrast to the kappa L chain and the TCR beta-chain, IgH allelic exclusion is the result of an extremely stringent mechanism. We discuss two non-mutually exclusive scenarios for the origin of IgH dual expressors: 1) IgH allelically included cells arise when the first allele to rearrange productively is unable to form a pre-BCR; dual expressors could be a subset of this population in which, upon conventional L chain rearrangement, both IgH are expressed at the surface; and 2) synchronous rearrangement of the IgH alleles.  相似文献   

16.
Allelic exclusion prevents pre-B cells from generating more than one functional H chain, thereby ensuring the formation of a unique pre-BCR. The signaling processes underlying allelic exclusion are not clearly understood. IL-7R-dependent signals have been clearly shown to regulate the accessibility of the Ig H chain locus. More recent work has suggested that pre-BCR-dependent attenuation of IL-7R signaling returns the H chain loci to an inaccessible state; this process has been proposed to underlie allelic exclusion. Importantly, this model predicts that preventing pre-BCR-dependent down-regulation of IL-7R signaling should interfere with allelic exclusion. To test this hypothesis, we made use of transgenic mice that express a constitutively active form of STAT5b (STAT5b-CA). STAT5b-CA expression restores V(D)J recombination in IL-7R(-/-) B cells, demonstrating that IL-7 regulates H chain locus accessibility and V(D)J recombination via STAT5 activation. To examine the effects of constitutively active STAT5b on allelic exclusion, we crossed STAT5b-CA mice (which express the IgM(b) allotype) to IgM(a) allotype congenic mice. We found no difference in the percentage of IgM(a)/IgM(b)-coexpressing B cells in STAT5b-CA vs littermate control mice; identical results were observed when crossing STAT5b-CA mice with hen egg lysozyme (HEL) H chain transgenic mice. The HEL transgene enforces allelic exclusion, preventing rearrangement of endogenous H chain genes; importantly, rearrangement of endogenous H chain genes was suppressed to a similar degree in STAT5b-CA vs HEL mice. Thus, attenuation of IL-7R/STAT5 signaling is not required for allelic exclusion.  相似文献   

17.
Expression of a beta-chain, as a pre-TCR, in T cell precursors prevents further rearrangements on the alternate beta allele through a strict allelic exclusion process and enables precursors to undergo differentiation. However, whether allelic exclusion applies to the TCR delta locus is unknown and the role of the gamma delta TCR in gamma delta lineage commitment is still unclear. Through the analysis of the rearrangement status of the TCR gamma, delta, and beta loci in human gamma delta T cell clones, expressing either the TCR V delta 1 or V delta 2 variable regions, we show that the rate of partial rearrangements at the delta locus is consistent with an allelic exclusion process. The overrepresentation of clones with two functional TCR gamma chains indicates that a gamma delta TCR selection process is required for the commitment of T cell precursors to the gamma delta lineage. Finally, while complete TCR beta rearrangements were observed in several V delta 2 T cell clones, these were seldom found in V delta 1 cells. This suggests a competitive alpha beta/gamma delta lineage commitment in the former subset and a precommitment to the gamma delta lineage in the latter. We propose that these distinct behaviors are related to the developmental stage at which rearrangements occur, as suggested by the patterns of accessibility to recombination sites that characterize the V delta 1 and V delta 2 subsets.  相似文献   

18.
During thymus development, the TCR beta locus rearranges before the TCR alpha locus. Pairing of productively rearranged TCR beta-chains with an invariant pT alpha chain leads to the formation of a pre-TCR and subsequent expansion of immature pre-T cells. Essentially nothing is known about the TCR V beta repertoire in pre-T cells before or after the expression of a pre-TCR. Using intracellular staining, we show here that the TCR V beta repertoire is significantly biased at the earliest developmental stage in which VDJ beta rearrangement has occurred. Moreover (and in contrast to the V(H) repertoire in immature B cells), V beta repertoire biases in immature T cells do not reflect proximity of V beta gene segments to the DJ beta cluster, nor do they depend upon preferential V beta pairing with the pT alpha chain. We conclude that V gene repertoires in developing T and B cells are controlled by partially distinct mechanisms.  相似文献   

19.
Mice carrying transgenic human immunoglobulin gene miniloci can be used for the production of human monoclonal antibodies. The human variable region (V) gene segments in these miniloci undergo productive rearrangement in mouse lymphoid tissue to yield a population of B lymphocytes expressing a repertoire of antibodies. Many of the miniloci studied to date have included only a small number of germline gene segments in an artificially compact configuration. Here we describe the use of the bacteriophage P1 cloning system to create mice carrying the core region of the human immunoglobulin heavy chain (IgH) locus. Three P1 clones carrying overlapping regions of the human IgH locus (spanning the five JH-proximal VHsegments, the entire DHand JHclusters, and the Cμ and Cδ constant regions) were injected into mouse eggs and appear to have reconstituted the core region of the locus (>180 kb) following homologous recombination with each other. While this translocus yielded a titer of serum immunoglobulin similar to that obtained with a smaller plasmid-based minilocus, the P1-based locus gave rise to substantially greater diversification by somatic hypermutation. Such diversification is important for obtaining high-affinity antibodies. The results show the usefulness of the P1 system in facilitating the manipulation and recreation of large transgenes.  相似文献   

20.
T cell development occurs in the thymus and is critically dependent on productive TCRβ rearrangement and pre-TCR expression in DN3 cells. The requirement for pre-TCR expression results in the arrest of thymocytes at the DN3 stage (β checkpoint), which is uniquely permissive for V-DJβ recombination; only cells expressing pre-TCR survive and develop beyond the DN3 stage. In addition, the requirement for TCRβ rearrangement and pre-TCR expression enforces suppression of TCRβ rearrangement on a second allele, allelic exclusion, thus ensuring that each T cell expresses only a single TCRβ product. However, it is not known whether pre-TCR expression is essential for allelic exclusion or alternatively if allelic exclusion is enforced by developmental changes that can occur in the absence of pre-TCR. We asked if thymocytes that were differentiated without pre-TCR expression, and therefore without pause at the β checkpoint, would suppress all V-DJβ rearrangement. We previously reported that premature CD28 signaling in murine CD4(-)CD8(-) (DN) thymocytes supports differentiation of CD4(+)CD8(+) (DP) cells in the absence of pre-TCR expression. The present study uses this model to define requirements for TCRβ rearrangement and allelic exclusion. We demonstrate that if cells exit the DN3 developmental stage before TCRβ rearrangement occurs, V-DJβ rearrangement never occurs, even in DP cells that are permissive for D-Jβ and TCRα rearrangement. These results demonstrate that pre-TCR expression is not essential for thymic differentiation to DP cells or for V-DJβ suppression. However, the requirement for pre-TCR signals and the exclusion of alternative stimuli such as CD28 enforce a developmental "pause" in early DN3 cells that is essential for productive TCRβ rearrangement to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号