首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A commercial preparation of -amylase, Biotempase, obtained from Biocon India Pvt. Ltd., and crude glucoamylase produced from Aspergillus sp. NA21 were used to hydrolyse tapioca powder, a non-conventional starchy substrate. Among various concentrations of starch (15–35%, dry weight/volume) tried for maximum liquefaction; slurry made with 25% substrate concentration proved optimal. An economical process of liquefaction was carried out using steam under pressure (0.2–0.3 bar, 104–105 °C) to liquefy a 25% slurry in just 45 min, contrary to a slower process carried out at 95 °C in a water bath. For liquefaction of starch a pH of 5.0 proved to be optimum. The dose of Biotempase as prescribed by the supplier could be reduced by 33% achieving the same degree of liquefaction, by addition of CaCl2 to the starch slurry at the concentration of 120 mg/l. The conditions for the saccharification of liquefied starch were optimized to be 60 °C and pH 5.0, producing 90% saccharification in 24 h. Supplementation of divalent ions Ca2+, Mg2+ and Zn2+ in the process of saccharification showed no effect. Finally glucose was found to be the main hydrolysis product in the saccharification of tapioca starch.  相似文献   

2.
The thermophilic fungus,Humicola sp isolated from soil, secreted extracellular -galactosidase in a medium cotaining wheat bran extract and yeast extract. Maximum enzyme production was found in a medium containing 5% wheat bran extract as a carbon source and 0.5% beef extract as a carbon and nitrogen source. Enzyme secretion was strongly inhibited by the presence of Cu2+, Ni2+ and Hg2+ (1mM) in the fermentation medium. Production of enzyme under stationary conditions resulted in 10-fold higher activity than under shaking conditions. The temperature range for production of the enzyme was 37° C to 55°C, with maximum activity (5.54 U ml–1) at 45°C. Optimum pH and temperature for enzyme activity were 5.0 and 60° C respectively. One hundred per cent of the original activity was retained after heating the enzyme at 60°C for 1 h. At 5mM Hg2+ strongly inhibited enzyme activity. TheK m andV max forp-nitrophenyl--d-galactopyranoside were 60M and 33.6 mol min–1 mg–1, respectively, while for raffinose those values were 10.52 mM and 1.8 mol min–1 mg–1, respectively.  相似文献   

3.
An alkaline 5-phosphodiesterase (5-PDE) from barley (Hordeum distichum) malt sprouts was partially purified by thermal treatment and acetone precipitation to diminish phosphomonoesterase (PME) activity. 5-PDE was purified 40-fold to a specific activity of 30 U mg–1 protein with a final yield of about 32%. With synthetic substrate, the enzyme had an optimum pH of 8.9, maximum activity at 70 °C over 10 min, and a Km of 0.26 mM. The partially purified enzyme was activated by 10 mM Mg2+ up to 168% of the original activity, while Zn2+, Mn2+ and Cu2+ ions, chelating agent (EDTA) and NaN3 (1–10 mM), and 5-ribonucleotides (1–5 mM) were inhibitory. Final enzyme preparation was stable over 8 d at 4 °C), at 70 °C for up to 120 min and without loss of activity over 90 d at –18 °C.  相似文献   

4.
An economical protocol, which is simple, rapid and reproducible for the production of maltose by enzymatic hydrolysis of tapioca starch, has been optimized. The protocol involves liquefaction of 35% (w/w) tapioca starch by bacterial -amylase at 78±2°C to 3 to 5% (w/w) reducing sugars, followed by maximal (85±3% w/w maltose equivalent) saccharification with barley -amylase and pullulanase at 50°C for 24 to 30 h. The post-saccharification recovery protocol comprised decolourization by charcoal, de-dextrinization by denatured spirit precipitation, de-ionization by passage through cation and anion exchangers and dehydration by vacuum drying. A white crystalline maltose powder was obtained with specifications comparable to commercial high purity maltose. The protocol yields at least 60% (w/w) recovery of maltose and is suitable for use by the pharmaceutical industry. The protocol is unique in that it utilizes cheap and easily hydrolysed tapioca starch, leaves no mother liquor, enabling higher recovery of maltose, and allows almost quantitative recovery of limit maltodextrins, a value-added marketable by-product.  相似文献   

5.
Summary An extracellular -amylase was purified to homogeneity from the culture supernatant ofClostridium acetobutylicum ATCC 824 grown in synthetic medium containing starch by using a combination of ammonium sulfate fractionation, anion exchange chromatography and HPLC-gel filtration. The molecular weight of the 160-fold purified -amylase was determined by SDS-PAGE to be 61 kDa. HPLC analysis of end-products of enzyme activity on various substrates indicated that the enzyme acted specifically in an endo-fashion on the -1,4-glucosidic linkages. Enzyme activity was optimal over a pH range of 4.5–5.0 and temperature of 55°C, but was rapidly inactivated at higher temperatures. Addition of calcium chloride (2–5 mM) increased -amylase activity by ca. 20%, while the addition of 19 g ml–1 of acarbose (a differential inhibitor of amylases) resulted in 50% inhibition. TheV max andK m of -amylase were 2.17 mg min–1 and 3.28 mg ml–1 on amylose, and 1.67 mg min–1 and 1.73 mg ml–1 on soluble starch, respectively.  相似文献   

6.
Summary The decreasing effect of -adrenergic blockade on skin resistance to vapor diffusion and the onset of cutaneous water evaporation in the pigeon (Columba livia) was investigated. Oral administration of 1, 2.3 and 5 mg propranolol to pigeons (268±53 g) initiated intensive trans-cutaneous water evaporation (CWE) up to 29.1 mg H2O·cm–2·h–1 in resting birds at 30°C air temperature (Ta), but had only a slight effect on CWE of birds exposed to 50 °C Ta.After 7 h of effective -adrenergic blockade (oral administration of 5 mg propranolol), skin and body temperature stabilized at 39.0±0.5 °C and 41.0±0.7 °C, compared to 40.2±0.8 °C and 41.9±0.6 °C in the control group, respectively. A slight hypothermia was accompanied by feather fluffing.Intradermal injection of 0.001, 0.01 and 0.12 mg propranolol also caused intensive CWE. Local -adrenergic blockade in relatively low blocker doses (0.001 and 0.01 mg propranolol) decreased skin resistance from a high value of 44.5 s·cm–1 to about 6.0 s·cm–1, and caused a sharp increase in CWE from a control value of about 4 to a high of 26.4 mg H2O·cm–2·h–1 during the first two hours of exposure to 30°C Ta.The possible role of -adrenergic blockade in regulation of trans-cutaneous water evaporation of latent heat dissipation is discussed.  相似文献   

7.
A recombinant strain of Saccharomyces cerevisiae, secreting -galactosidase from Kluyveromyces lactis, grew efficiently with more than 60 g lactose l–1. The growth rate (0.23 h–1) in a cheese-whey medium was close to the highest reported hitherto for other recombinant S. cerevisiae strains that express intracellular -galactosidase and lactose-permease genes. The conditions for growth and -galactosidase secretion in this medium were optimized in a series of factorial experiments. Best results were obtained at 23 °C for 72 h. Since the recombinant strain produced less than 3% ethanol from the lactose, it was also assayed for the production of fructose 1,6-bisphosphate from cheese whey, and 0.06 g l–1 h–1 were obtained.  相似文献   

8.
Rotifer cultures of Brachionus plicatilis (SINTEF-strain, length 250 m) rich in 3 fatty acids were starved for > 5 days at variable temperature (0–18 °C). The net specific loss rate of rotifer numbers were 0.04 day–1 (range 0–0.08 day–1) at 5–18 °C, but reached values up to 0.25 day–1 at 0–3 °C. The loss rate was independent on culture density (range 40–1000 ind ml–1), but was to some extent dependent on the initial physiological state of the rotifers (i.e., egg ratio).The loss rate of lipids was 0.02–0.05 day–1 below 10 °C, where the potential growth rate of the rotifer is low (0–0.09 day–1). The loss rate of lipids increased rapidly for higher temperatures where the rotifer can maintain positive growth, and reached 0.19 day–1 at 18 °C. The Q10 for the lipid loss rate versus temperature was higher than the Q10 for respiration found in other strains. This may suggest that other processes than respiration were involved in lipid catabolism. The content of 3 fatty acids became reduced somewhat faster than the lipids (i.e. in particular 22:6 3), but the fatty acid per cent distribution remained remarkably unaffected by the temperature during starvation.The results showed that rotifer cultures could be starved for up to 4 days at 5–8 °C without essential quantitative losses of lipids, 3 fatty acids, and rotifers. The rotifers exhausted their endogenous lipids through reproduction (anabolism) and respiration (including enhanced locomotion) at higher temperatures. At lower temperatures, the mortality rate became very high.  相似文献   

9.
The -amylases of Streptomyces sp. IMD 2679 produced yields of 79% (w/w) maltose from starch by reactions other than simple hydrolysis. The enzymes also had a low affinity (Km 8.0–8.2 mm) for maltotriose and each possessed a temperature maximum in the range 60–65°C.  相似文献   

10.
The sensitivity to gibberellic acid (GA3) of aleurone protoplasts isolated from a single harvest of an inbred line of Avena fatua seed that had been after-ripened over anhydrous CaCl2 at 25±2°C and 4±2°C for three years was assessed. Protoplasts isolated from aleurones of seed stored at 25°C produced substantially more -amylase in response to 10–7 M GA3 than those isolated from aleurones of seed stored at 4°C. The apparent difference in responsiveness does not appear to be due to a change in the duration of the lag phase between addition of GA3 and the production of -amylase. The dose response of aleurone protoplasts to GA3, measured as -amylase production, is complex and appears to have three phases. Protoplasts from seed stored at both temperatures respond appreciably to 10–14 M GA3. With increasing concentrations of GA3, up to 10–9 M, -amylase production increases similarly in protoplasts from both lots of seed, reaching a level approximately 2.7–3.8 times greater than when no GA3 is applied. GA3-induced -amylase production increases markedly as the concentration is raised from 10–9 M to 10–6 M, and the response then appears to be saturated. Over this part of the response curve protoplasts from the two seed lots differ markedly in their responsiveness to GA3. Those from seed stored at 25°C produce considerably more -amylase, >130-fold higher than the minus GA3 control, than those from seed stored at 4°C, <35-fold higher than the minus GA3 control. This apparent difference in the responsiveness of aleurone protoplasts to GA3 could be correlated with the loss of embryo dormancy in seed stored at 25°C. Seed stored at 4°C retained the dormancy characteristics present immediately after harvesting.  相似文献   

11.
Granum  Espen  Myklestad  Sverre M. 《Hydrobiologia》2002,477(1-3):155-161
A new method is described for the combined determination of -1,3-glucan and cell wall polysaccharides in diatoms, representing total cellular carbohydrate. The glucan is extracted by 0.05 mol l–1 H2SO4 at 60 °C for 10 min, and the cell wall polysaccharides are subsequently hydrolyzed by 80% H2SO4 at 0–4 °C for 20 h. Each carbohydrate fraction is determined by the phenol-sulphuric acid method. The method has been demonstrated for axenic cultures of the marine diatom Skeletonema costatum and natural marine phytoplankton populations dominated by diatoms. Cellular glucan and cell wall polysaccharides were determined with standard deviations of 1–3% and 2–5%, respectively.  相似文献   

12.
An easily scaled-up technique has been designed to purify -mannanase from Bacillus licheniformis. Using flocculation, ultrafiltration and ion-exchange chromatography, the enzyme was purified 33-fold with a final recovery of 47% and a specific activity of 4341 U mg–1protein. The enzyme had maximum activity at 60 °C and pH 7.0. It was stable at 50 °C and pH 6.0 for 6 h, but lost all of its activity when held at 70 °C and pH 6.0 for 1 h.  相似文献   

13.
An -amylase from a hyper-producing strain of Bacillus (sp. E2) was stable at 70°C for 30 min but was quickly inactivated at higher temperatures. In the presence of 10mm Ca2+ and starch (20% w/v), however, the enzyme was stable at 90°C for 10 min and after 30 min at 100°C still retained 26% of its initial activity.  相似文献   

14.
The effect of -alanyl-L-histidinato zinc (AHZ) on protein components in osteoblastic MC3T3-E1 cells was investigated. Cells were cultured for 3 days at 37°C in CO2 incubator in plastic dishes containing -modified minimum essential medium supplemented with 10% fetal bovine serum. After the cultures, the medium was exchanged for that containing 0.1% bovine serum albumin plus various concentrations of AHZ or other reagents, and the cells were cultured further 3 or 6 days. The homgenate of cells was analyzed with SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The presence of AHZ (10–7 to 10–5 M) caused an appreciable increase of many protein components in cells. Especially, the 67 killo-dalton (kDa) and 44 kDa proteins which are the major components from control cells were clearly increased by the presence of AHZ. Furthermore, the concentrations of osteocalcin, insulin-like growth factor-I and transforming growth factor- in the culture medium secreted from osteoblastic cells were markedly increased by the presence of AHZ (10–6 and 10–5 M). The effect of AHZ was a greater than that of zinc sulfate (10–6 and 10–5 M). The present findings suggest that AHZ can increase many proteins which are involved in the stimulation of bone formation and cell proliferation in osteoblastic cells.  相似文献   

15.
The monoaldehyde derivative of -cyclodextrin was attached to trypsin via reductive alkylation with NaBH4. The thermostability was enhanced from 49.5 °C to 60 °C for modified trypsin. The activation free energy of thermal inactivation at 50 °C was increased by 3.2 kJ mol–1. The conjugated enzyme retained 100% of its initial activity after 3 h incubation at pH 9.  相似文献   

16.
Kim CS  Ji ES  Oh DK 《Biotechnology letters》2003,25(20):1769-1774
Kluyveromyces lactis -galactosidase gene, LAC4, was expressed in Escherichia coli as a soluble His-tagged recombinant enzyme under the optimized culture conditions. The expressed protein was multimeric with a subunit molecular mass of 118 kDa. The dimeric form of the -galactosidase was the major fraction but had a lower activity than those of the multimeric forms. The purified enzyme required Mn2+ for activity and was inactivated irreversibly by imidazole above 50 mM. The activity was optimal at 37 and 40 °C for o-nitrophenyl--d-galactopyranoside (oNPG) and lactose, respectively. The optimum pH value is 7. The K m and V max values of the purified enzyme for oNPG were 1.5 mM and 560 mol min–1 mg–1, and for lactose 20 mM and 570 mol min–1 mg–1, respectively.  相似文献   

17.
-Amylase from a still culture filtrate of Tricholoma matsutake, an ectomycorrhizal fungus, was isolated and characterized. The enzyme was purified to a homogeneous preparation with Toyopearl-DEAE, gel filtration, and Mono Q column chromatography. The -amylase was highly purified (3580 fold) with a recovery of 10.5% and showed a single protein band by SDS-PAGE. The enzyme was most active at pH 5.0–6.0 toward soluble starch and stable within the broad pH range 4.0–10.0. This -amylase was a relatively thermostable enzyme (optimum temperature, 60°C; thermal stability, 50°C). The molecular mass was 34kDa by size-exclusion chromatography and 46kDa by SDS-PAGE. This enzyme was not inhibited by the Hg2+ ion. Measurement of viscosity and TLC and HPLC analysis of the hydrolysates obtained from amylose showed that the amylase from T. matsutake is an endo-type (-amylase). Substrate specificity was tested using amylose with different polysaccharides. This -amylase readily hydrolyzed the -1,4 glucoside bond in soluble starch and amylose A (MW, 2900), but did not hydrolyze the -1,6 bond and cyclic polysaccharides such as - and -cyclodextrin.  相似文献   

18.
Filamentous fungi, isolated from the enriched surface of garden soil, were screened for -galactosidase production after growing on wheat-bran/carbohydrate substrate. One isolate,Aspergillus niger, had the highest enzyme activity (5.1×10–2 units/mg protein) at pH 5.0 and 50°C. Treatment of cowpea flour with the crude enzyme reduced the raffinose and stachyose content by 95% and 82% respectively. This technique could therefore be useful in controlling the flatulence activity of cowpeas.  相似文献   

19.
The effects of and -adrenergic stimulation in amphibian superfused hearts and ventricular strips were studied. Superfusion with 3×10–8 M isoproterenol produced a positive inotropic effect, as detected by a 92±24% increase in the maximal rate of contraction and a positive lusitropic effect characterized by a decrease in both the ratio (23±5%) and the half relaxation time (t1/2) (19±4%). The mechanical behavior induced by the -agonist was associated with an increase in the intracellular cAMP levels from control values of 173±19 to 329±28 nmol/mg wet tissue. Hearts superfused with32P in the presence of isoproterenol showed a significant increase in Tn 1 phosphorylation (from 151±13 to 240±44 pmol32P/mg MF protein) without consistent changes in phosphorylation of C-protein. In sarcoplasmic reticulum membrane vesicles, no phospholamban phosphorylation was detected either by -adrenergic stimulation of superfused hearts or when phosphorylation conditions were optimized by direct treatment of the vesicles with cAMP-dependent protein kinase (PKA) and [y 32P] ATP.The effect of -adrenergic stimulation on ventricular strips was studied at 30 and 22°C. At 30°C, the effects of 10–5 to 10–4M phenylephrine on myocardial contraction and relaxation were diminished to non significant levels by addition of propranolol. At 22°C, blockage with propranolol left a remanent positive inotropic effect (10% of the total effect of phenylephrine) and changed the phenylephrine-induced positive lusitropic effect into a negative lusitropic action. These propranolol-resistant effects were abolished by prazosin. Our results suggest that in amphibian heart, both the inotropic and lusitropic responses to catecholamines are mainly due to a -adrenergic stimulation which predominates over the -adrenergic response. Phospholamban phosphorylation seems not to be involved in mediating the positive lusitropic effect of -adrenergic agents whereas phosphorylation of troponin 1 may play a critical role.  相似文献   

20.
Summary 5-Nucleotidase has been purified from rat glioblastoma cells (Rugli cells). The enzyme has been solubilized from plasma membranes by using Triton X-100 and CHAPS. Two affinity chromatographies on concanavalin A and 5-AMP-Sepharose render the purified enzyme with a high specific activity (76.36 mol AMP-min–1-mg–1). The purified enzyme gives a single polypeptide band on SDS-PAGE with an apparent molecular mass of 74 kDa. Active forms with an apparent molecular mass of 135 kDa and 268 kDa are observed when the purified enzyme is analyzed by gel filtration in the presence of either 0.6% sodium deoxycholate or 0.1% Triton X-100, respectively. The purified 5-nucleotidase presents optimum activity at pH 7.8–8.1 either in the presence or in the absence of Me2+. A linear Arrhenius plot is observed in the 25–46° C temperature range and an activation energy of 33.7 KJ/mol is calculated. The enzyme is inhibited by EDTA; the activity is partially restored by different divalent cations as Zn2+, Mn2+, and Co2+. The hydrolysis of nucleosides 5-monophosphate shows Michaelis kinetic. The enzyme is inhibited by nucleosides di- and triphosphate. 5-Nucleotidase is a glycoprotein, being its activity inhibited at different extent by various lectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号