首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K M Yen  M Sullivan  I C Gunsalus 《Plasmid》1983,9(2):105-111
Introduction of the transposon Tn5 to serve as a marker allows electron microscope heteroduplex mapping of the naphthalene oxidation genes on the approximately 83-kb NAH7 and the related approximately 85-kb SAL1 plasmids. The electron microscope-mapped gene positions on the NAH7 plasmid are in close agreement with those mapped previously by restriction digestion. The SAL1 plasmid can be considered as a mutant NAH7 plasmid which fails to direct the conversion of naphthalene to salicylate because of a mutational block but retains intact coding sequences for salicylate oxidation. Analysis of heteroduplex molecules formed between the SAL1 and NAH7::Tn5 EcoRI fragments and the known NAH7/SAL1 homology strongly suggest that the SAL1 DNA is completely homologous to NAH7 DNA except that a approximately 2.5-kb DNA segment constituting most of the nahA gene is replaced by approximately 4.6-kb nonhomologous DNA.  相似文献   

2.
We have examined the extent to which the degradative plasmids SAL, NAH, and TOL of the Inc P-9 incompatibility group share common DNA sequences. The homology we observe using 32P-labeled SAL and NAH DNA probes can be assigned to six regions of the TOL (pWWO) restriction endonuclease cleavage map. At least three of these regions are probably related to transfer and replication functions, whereas a fourth region is related to the common metacleavage pathway. Restriction endonuclease maps of the SAL and NAH plasmids are derived and the relationships between these plasmids discussed.  相似文献   

3.
Summary Plasmid inter-relationships were studied by hybridisation of a radioactively labelled DNA probe to endonuclease-derived fragmentation patterns of plasmids bound to a nitrocellulose filter. The degradative plasmids SAL and NAH were found to be very closely related, but probably one did not give rise to the other by just a single deletion or insertion. Relationships between SAL and other degradative plasmids are complex; substantial homology was found with TOL and other plasmids encoding toluate dissimilation and significant homology was found with OCT.  相似文献   

4.
Both caprolactams and salicylate biodegradation by Pseudomonas salicylate/caprolactam degraders are controlled by large conjugative plasmids (SAL/CAP). Some of these plasmids have been assigned to the P-7 incompatibility group. The new salicylate 1-hydroxylase gene (scpA) has been detected in SAL/CAP plasmids and partially sequenced. The scpA gene was equally related to the closest homolog genes nahG (NAH7), salA (P. reinekei MT1), and nahU (pND6-1); however, the identity rate did not exceed 72–74%. The synthesis of salicylate 1-hydroxylase ScpA was not induced by salicylate. This enzyme had wide substrate specificity and exhibited the highest specific activity toward 4-methylsalicylate and nonsubstituted salicylate substrates. Furthermore, conjugative pseudomonads’ plasmids of salicylate degradation without the classical nah2 operon, which harbors only salicylate 1-hydroxylase gene nahU have been described for the first time.  相似文献   

5.
Metabolic plasmids conferring on Pseudomonas putida the aromatic growth phenotypes naphthalene, Nah+, salicylate, Sal+, or toluate, Tol+, have been isolated as covalently closed circular DNA in 100 μg amounts. Plasmid DNA was banded in CsCl-ethidium bromide density gradients and sedimentation rates measured in sucrose gradients and by analytical centrifuge. The plasmid sizes found, in millions, were /NAH 42, /SAL 43, /TOL 55, 42. Transformation of metabolic plasmid free P. putida with the isolated DNA confirmed the respective aromatic pathway gene contents.  相似文献   

6.
Salicylate 5-hydroxylase (SAL5H), m-hydroxybenzoate 6-hydroxylase (MHB6H), and p-hydroxybenzoate 3-hydroxylase (PHB3H) from Gram-positive Rhodococcus erythropolis strain S1 were characterized physicochemically and immunochemically. The subunit size and amino acid composition of SAL5H, MHB6H, and PHB3H from strain S1 showed properties similar to those of other flavin-containing aromatic compound monooxygenases such as p-hydroxybenzoate hydroxylase and salicylate 1-hydroxylase (SAL1H), belonging to p-hydroxybenzoate hydroxylase-class, except for homotetrameric structure and cofactor specficity. The N-terminal amino acid sequence of MHB6H from strain S1 indicated significant similarity of ADP-binding region in the N-terminal portion of the enzyme with that known for SAL1H from Pseudomonas putida. Immunochemical properties, determined while conducting serological experiments, showed SAL5H and MHB6H from strain S1 to be immunologically different from PHB3H from strain S1, while SAL5H and MHB6H to apparently share partial antigenic determinants.  相似文献   

7.
Research in recent years has demonstrated that the Trypanosoma cruzi cysteine protease cruzain (TCC) is a valid chemotherapeutic target, since inhibitors of this protease affect the pathology appropriately. By exploring the N-acylhydrazones (NAH) as privileged structures usually present in antiparasitic agents, we investigated a library of 16 NAH bearing the 3-(4-substituted-aryl)-1,2,4-oxadiazole scaffold (NAH 3ah, 4ah). The in vitro bioactivity against epimastigote and trypomastigote forms of T. cruzi was evaluated, and some NAH under study exhibited antitrypanosomal activity at concentrations that are not toxic to mammalian cells. The series of compounds based on the 3-(4-substituted-aryl)-1,2,4-oxadiazole scaffold revealed the remarkable importance of each substituent at the phenyl’s 4-position for the inhibitory activity. Non-nitrated compounds 3a and 4e were found to be as potent as the reference drug, Benznidazole. In addition, the molecular origin of the antitrypanosomal properties for these series was investigated using docking studies of the TCC structure.  相似文献   

8.
Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria isolated from PAH-contaminated soils were analyzed genotypically and phenotypically for their capacity for metabolism of naphthalene and other PAH substrates. The methods used for the analyses were DNA hybridization using NAH7-derived gene probes, PAH spray plate assays, 14C-PAH mineralization assays, and dioxygenase activity assays. The results of the analyses showed a dominant number of PAH-degrading bacteria with a NAH7-like genotype. The results support the continued use of the nahA probe for contaminated soils to monitor the genetic potential of indigenous microorganisms to degrade PAHs. However, the finding of non-it nahA-hybridizing PAH-degrading bacteria show the limitation of NAH7-derived gene probes. Fifteen percent (13/89) of PAH-degrading bacteria isolated were not detected with the nahA gene probe. Four isolates (designated A5PH1, A8AN3, B1PH2, and B10AN1) did not hybridize with any of the NAH7-derived gene probes ( nahA, nahG, nahH, and nahR) used in this study. Considering the numerous unculturable microorganisms in nature and their potential genotypes, NAH7-derived gene probes may underestimate the microbial potential to catabolize PAHs. This necessitates development of new gene probes for enumeration and isolation of PAH-degrading bacteria to better understand the in situ microbial potential to degrade PAHs.  相似文献   

9.
Significant selective enrichments of mutants defective in catabolic pathways can be achieved by exposure of pseudomonad cells to halogenated analogs of growth substrates. Between 3 and 95% of viable clones rescued from such enrichments have been defective in specific catabolic pathways. This has been demonstrated for eight different catabolic pathways for aromatic compounds in pseudomonads, in which the genes are located on plasmids or on the chromosome. The plasmid-encoded pathways studied include those for the catabolism of p-cymene (CYM), m- and p-xylenes (TOL), naphthalene (NAH), salicylate (SAL), and 4-methylphthalate (MOP), and the chromosome-encoded pathways include those for p-hydroxybenzoate, monohydric phenols, and p-anisate utilization. The recalcitrance of halogenated compounds may, in part, be explained by these observations, which introduce an as yet not widely recognized factor in assessment of biodegradability of halogenated compounds and their effects on the transformation of the natural substrates.  相似文献   

10.
The application of different approaches for preparing DNAs coding for peptide hormones was demonstrated. The libraries of human, bovine and porcine pituitaries cDNA were obtained starting from their total mRNAs. Screening of these libraries revealed clones containing human, bovine and porcine growth hormone sequences, cDNAs for bovine ACTH-beta-lipotropin precursor and for bovine and porcine prolactin. The gene of human calcitonin was created by combination of chemical and enzymatic synthesis. This synthetic gene was further cloned in pBR322. The expression of cloned human growth hormone cDNA under control of different Escherichia coli promoters was studied and physico-chemical and biological properties of the growth hormone produced by E. coli were tested.  相似文献   

11.
The present study explored the role of endogenous alpha-MSH in the alteration of meal patterns induced by nicotine (NIC) withdrawal. Male Sprague Dawley rats bearing third ventricle cannulas were placed in computerized food intake monitors. On days 1-21, the rats were given 4 mg/kg/day of NIC or saline (SAL) in four equal i.p. doses during the dark period. NIC suppressed (P < 0.05) food intake only during the first week. The normalization of food intake occurred when the reduced meal size of the NIC injected rats was countered by an increase in meal number. Despite the normalization of 24-h food intake, body weight in NIC rats was decreased (P < 0.05) for 21 days. On day 22, the rats were divided into 4 groups (n's = 7-8 each) and injected into the third ventricle with various doses of the alpha-MSH agonist MTII or artificial cerebrospinal fluid (aCSF): SAL + aCSF, SAL + MTII, NIC + aCSF, NIC + MTII. Infusion of MTII (30 ng/rat) suppressed (P < 0.01) dark phase food intake in both groups, but the NIC + MTII group ate (P < 0.05) more than the SAL + MTII group. Meal number during the dark phase was suppressed by MTII, but the NIC + MTII group took significantly more meals that the SAL + MTII group. Infusion of MTII suppressed meal size in SAL and NIC treated rats, but this effect was attenuated in NIC treated rats. All meal parameters normalized by the day after i.c.v. infusion. These data indicate that NIC treatment differentially affects the neural controls of meal number and meal size and attenuates the suppression by MTII of meal number and meal size.  相似文献   

12.
Part of the human host innate immune response involves the secretion of bactericidal lipids on the skin and delivery of triglycerides into abscesses to control invading pathogens. Two Staphylococcus aureus lipases, named SAL1 and SAL2, were identified in the community-associated methicillin-resistant S. aureus strain USA300, which, presumably, are produced and function to degrade triglycerides to release free fatty acids. We show that the SAL2 lipase is one of the most abundant proteins secreted by USA300 and is proteolytically processed from the 72-kDa proSAL2 to the 44-kDa mature SAL2 by the metalloprotease aureolysin. We show that spent culture supernatants had lipase activity on both short- and long-chain fatty acid substrates and that deletion of gehB, encoding SAL2, resulted in the complete loss of these activities. With the use of gas chromatography-mass spectrometry, we show that SAL2 hydrolyzed trilinolein to linoleic acid, a fatty acid with known antistaphylococcal properties. When added to cultures of USA300, trilinolein and, to a lesser extent, triolein inhibited growth in a SAL2-dependent manner. This effect was shown to be due to the enzymatic activity of SAL2 on these triglycerides, since the catalytically inactive SAL2 Ser412Ala mutant was incapable of hydrolyzing the triglycerides or yielding delayed growth in their presence. Overall, these results reveal that SAL2 hydrolyzes triglycerides of both short- and long-chain fatty acids and that the released free fatty acids have the potential to cause significant delays in growth, depending on the chemical nature of the free fatty acid.  相似文献   

13.
Summary The fidelity of translation in the yeast Saccharomyces cerevisiae is controlled by a number of gene products. We have begun a molecular analysis of such genes and here describe the cloning and analysis of one of these genes, SAL3. Mutations at this locus, and at least four other unlinked loci (designated SAL1-SAL5), increase the efficiency of the tRNA ochre suppressor SUQ5, and are thus termed allosuppressors. We have cloned the SAL3 gene from a yeast genomic library by complementation of a sal3 mutation. Integration of the cloned sequence into the yeast chromosome was used to confirm that the SAL3 gene had been cloned. SAL3 gene is present in a single copy in the yeast genome, is transcribed into a 2.3-kb polyadenylated mRNA and encodes a protein of Mr 80 000. The size of the SAL3 gene product strongly suggests that it is not a ribosomal protein.  相似文献   

14.
Polymeric nanoparticles have emerged as a promising approach for drug delivery systems. We prepared chitosan (CS)/sodium alginate (SAL) polyelectrolyte complex nanoparticles (CS/SAL NPs) via a simple and mild ionic gelation method by adding a CS solution to a SAL solution, and investigated the effects of molecular weight of the added CS, and the SAL:CS mass ratio on the formation of the polyelectrolyte complex nanoparticles. The well-defined CS/SAL NPs with near-monodisperse particle size of about 160 nm exhibited a pH stable structure, and pH responsive properties with a negatively or positively charged surface. The so-called “electrostatic sponge” structure of the polyelectrolyte complex nanoparticles enhanced their drug-loading capacity towards the differently charged model drug molecules, and favored controlled release. We also found that the drug-loading capacity was influenced by the nature of the drugs and the drug-loading media, while drug release was affected by the solubility of the drugs in the drug-releasing media. The biocompatibility and biodegradability of the polyelectrolytes in the polyelectrolyte complex nanoparticles were maintained by ionic interactions. These results indicate that CS/SAL NPs can represent a useful technique for pH-responsive drug delivery systems.  相似文献   

15.
Plasmid NAH7 was transferred from Pseudomonas putida PpG7 to P. putida R20 [R20(NAH7)], an antagonist of Pythium ultimum. The plasmid did not affect growth or survival of R20(NAH7) and was stably maintained under nonselective conditions in broth and soil and on sugar beet seeds. Plasmid NAH7 conferred to R20(NAH7) the ability to utilize salicylate in culture, agricultural field soil, and on sugar beet seeds. The metabolic activity of R20(NAH7), but not the wild-type R20, was greatly increased in soil by amendment with salicylate (250 μg/g) as measured by induced respiration. Population densities of R20(NAH7) were also enhanced in salicylate-amended soil, increasing from approximately 1 × 105 CFU/g to approximately 3 × 108 CFU/g after 35 h of incubation. In contrast, population densities of R20(NAH7) in nonamended soil were approximately 3 × 106 CFU/g of soil after 35 h of incubation. The concentration of salicylate in soil affected the rate and extent of population increase by R20(NAH7). At 50 to 250 μg of salicylate per g of soil, population densities of R20(NAH7) increased to approximately 108 CFU/g of soil by 48 h of incubation, with the fastest increase at 100 μg/g. A lag phase of approximately 24 h occurred before the population density increased in the presence of salicylate at 500 μg/g; at 1,000 μg/g, population densities of R20(NAH7) declined over the time period of the experiment. Population densities of R20(NAH7) on sugar beet seeds in soils amended with 100 μg of salicylate per g were not increased while ample carbon was present in the spermosphere. However, after carbon from the seed had been utilized, population densities of R20(NAH7) decreased significantly less (P = 0.005) on sugar beet seeds in soil amended with salicylate than in nonamended soil.  相似文献   

16.
In this work we present an evolutionary tree based on the differences in the physico-chemical properties involved in amino acid substitutions, instead of considering, for its construction, only the number of changes between species. Phylogenetic trees were constructed from the differences in bulkiness, refractivity index, hydrophobicity, polarity and optical rotation of 9 vertebrate calcitonins. A correlation of the form y=a xb was found between the number of changes (x) and the differences in any given physico-chemical property (y). This correlation implies that the evolutionary time can not be evaluated directly from the number of changes between species.  相似文献   

17.
Tetrahydroisoquinolines (TIQs) might be formed endogenously and can act centrally to promote a mechanism governing alcohol drinking behaviour. The possibility that biosynthesis occurs through a stereospecific enzymatic reaction is considered. Several TIQs were transformed into diastereomers by a two-step derivatization with N-methyl-N-trimethylsilyltrifluoracetamide and R-(−)-2-phenylbutyrylic acid and were analyzed by gas chromatography-mass spectrometry (GC-MS). High resolution of the TIQ enantiomers was achieved. This method was applied to the quantification of the enantiomers of salsolinol (SAL) in urine and plasma of healthy humans. Deuterated SAL was used as the internal standard. SAL was extracted from biological material using phenulboronic Deuterated SAL was used as the internal standard. SAL was extracted from biological material using phenylboronic phase cartridges and transformed into diastereomers. The sensitivity and specificity of the assay permit the determination of the enantiomeric composition of SAL in plasma and urine. The limit of quantification was found to be 100 pg/ml for each enantiomer. The described method has the advantage that optimal resolution of the SAL enantiomers without peak overlapping between analyte and other compounds can be achieved. Contrary to other findings, our GC-MS studies have demonstrated that endogenously formed SAL is racemic in plasma as well as in urine of healthy subjects.  相似文献   

18.
Summary Some physico-chemical properties of the DNAs released from the actinophages SH3, SH10, SH11, and SH12 are described. The four phage DNAs have a linear double-stranded secondary structure and are unique with respect to their high G·C contents which, from melting studies and buoyant density experiments, were found to be in the range of 68–73 mol-%. The DNA molecular weights were determined by sedimentation velocity experiments and by electron microscopic length measurements, the mean values of the two corresponding data sets being 34.0·106 (SH3), 26.7·106 (SH10), 26.1·106 (SH11), and 28.7·106 (SH12) with a mean relative error of ±5%. From different observations it was concluded that SH10 DNA, and possibly also SH11 and SH12 DNA, have cohesive ends and can undergo intramolecular or intermolecular association to form ring-like monomers or linear and ring-like multimers. Cleavage of the DNAs of SH3, SH10, SH11, and SH12 by EcoRI restriction endonuclease delivered two, one, zero, and two cleavage sites, respectively, and by BamHI restriction endonuclease eight, zero, zero, and zero cleavage sites, respectively.  相似文献   

19.
Naphthalene plasmids in pseudomonads.   总被引:11,自引:4,他引:7       下载免费PDF全文
A rapid method beginning with the direct lysis of bacteria in alkaline sodium dodecyl sulfate was used to detect naphthalene plasmids in pseudomonads. The strains NCIB 9816, PG, ATCC 17483, and ATCC 17484, which can grow on naphthalene as the sole source of carbon and energy, were examined. All except ATCC 17483 contained more than one plasmid. ATCC 17483 did not contain any plasmids. The largest pair of plasmids found in each of NCIB 9816 and PG(NAH2 and NAH3, respectively) determined naphthalene metabolism and could be transferred by conjugation. This also transferred the unusually regulated meta pathway enzymes for catechol metabolism. NAH2 determines the constitutive production of low concentrations of catechol 2,3-dioxygenase and 2-hydroxymuconic acid semialdehyde dehydrogenase, and NAH3 determines the constitutive production of high concentration of these. NAH2 and NAH3 gave identical fragments on digestion with BamHI or HindIII, but these were quite different from those of NAH. Nonetheless, NAH2 and NAH3 hybridized with NAH.  相似文献   

20.
In order to prepare a series of N-acetylheparosan (NAH)-related oligosaccharides, bacterial NAH produced in Escherichia coli strain K5 was partially depolymerized with heparitinase I into a mixture of even-numbered NAH oligosaccharides, having an unsaturated uronic acid (DeltaUA) at the non-reducing end. A mixture of odd-numbered oligosaccharides was derived by removing this DeltaUA in the aforementioned mixture by a 'trimming' reaction using mercury(II) acetate. Each oligosaccharide mixture was subjected to gel-filtration chromatography to generate a series of size-uniform NAH oligosaccharides of satisfactory purity (assessed by analytical anion-exchange HPLC), and their structures were identified by MALDITOF-MS, ESIMS, and 1H NMR analysis. As a result, a microscale preparation of a series of both even- and odd-numbered NAH oligosaccharides was achieved for the first time. The developed procedure is simple and systematic, and thus, should be valuable for providing not only research tools for heparin/heparan sulfate-specific enzymes and their binding proteins, but also precursor substrates with medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号