首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma lipoproteins of Duchenne muscular dystrophy patients and carriers of the disease, together with age- and sex-matched controls, were examined by density gradient ultracentrifugation and agarose gel electrophoresis. Analysis of density gradient profiles revealed a significant reduction in absorbance (435 nm) by low density and high density lipoproteins from Duchenne patients when compared with controls. Although no abnormalities were observed on electrophoresis of whole plasma samples, the isolated low density lipoprotein fractions from Duchenne patients and carriers displayed increased electrophoretic mobility compared with controls. The results obtained implicate the plasma lipoproteins, in particular the low density lipoproteins, as the primary site of the lesion in this disease.  相似文献   

2.
The major classes of lipoproteins were isolated from human plasma by ultracentrifugation in continuous density gradients using the Ti-14 and Ti-15 zonal rotors. Chylomicrons + VLDL, LDL, and HDL were separated from each other and from the more dense residual proteins (albumin fraction) of plasma by rate-zonal flotation in NaBr gradients in the density range 1.0-1.4. The chylomicron-VLDL fraction was subfractionated into constituent chylomicrons and VLDL by zonal ultracentrifugation in NaBr gradients in the density range 1.0-1.1. Plasma lipoproteins were analyzed for composition of lipids and content of protein, for electrophoretic mobility on paper, and for antigenic determinants by immunoelectrophoresis and immunodiffusion. Flotation constants (S(f)) of the LDL and HDL were calculated from measurements made in the analytical ultracentrifuge. Lipoproteins isolated from plasma by zonal ultracentrifugation were identical by these criteria to lipoproteins isolated by the usual procedure of sequential ultracentrifugation in solvents of increasing density. The procedure of zonal ultracentrifugation is rapid, quantitative, and less laborious than sequential techniques. Lipoproteins isolated by zonal ultracentrifugation are relatively uncontaminated by other proteins and extensive washing is therefore unnecessary. Zonal ultracentrifugation is more than a preparative method for the plasma lipoproteins; it is also an analytical procedure in that a record is obtained of the distribution and quantity of the lipoprotein within the continuous density gradient.  相似文献   

3.
Two density gradient ultracentrifugation methods, Redgrave et al. (1975. Anal. Biochem. 65: 42-49) and Nilsson et al. (1981. Anal. Biochem. 110: 342-348), currently used for the separation and analysis of plasma lipoproteins were compared with respect to their resolving power and capacity to obtain pure products as a function of time of ultracentrifugation using the same rotor (Beckman SW-40), speed (150,000 g), and temperature (14 degrees C). The effects of sucrose and salts were also investigated. The Redgrave gradient insured the separation of the major classes of plasma lipoproteins after 24 hr of centrifugation; however, equilibrium conditions were only reached after 48 hr, at which time the lipoproteins were contaminated by albumin. When the effluents from each rotor tube were continuously monitored at 280 nm, each lipoprotein band gave values that were higher than those from mass analyses. This was due to a light scattering effect, the extent of which was dependent on the concentration of lipoproteins and salts. Sucrose prevented the scattering effect and was found to bind irreversibly to the apolipoproteins. In contrast, after 66 hr centrifugation, the lipoproteins obtained from the Nilsson gradient exhibited a close correspondence between protein mass and absorbance values at 280 nm, had no scattering effect, and were uncontaminated by albumin. The difference in spectroscopic behavior between the Redgrave and the Nilsson procedures was attributed to three factors: 1) the presence of sucrose in the latter gradient and incorporation of this sugar into lipoproteins as assessed by mass and radioactivity measurements; 2), the salt density to which the serum samples were exposed to at the beginning of the ultracentrifugation; and 3) the final lipoprotein concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Procedures for the separation of plasma lipoprotein classes and subclasses by zonal ultracentrifugation are described. The main density classes, very low density lipoproteins (VLDL), low density lipoproteins (LDL) and high density lipoproteins (HDL), in plasma can be separated in a single run for 20 hours. For the isolation of VLDL-LDL a centrifugation time of only 90 minutes is needed. Separations can be performed on plasma volumes varying from 10 to 400 ml in the Ti-14 rotor used; VLDL can in this way be isolated from 400 ml plasma in 30 minutes. The advantages and disadvantages of zonal ultracentrifugation in comparison with the commonly employed differential ultracentrifugation for separation of lipoproteins are discussed.  相似文献   

5.
A method for the removal of serum chylomicrons before density gradient ultracentrifugation of the other serum lipoproteins using an SW 41 swinging bucket rotor is presented. In a preliminary spin, the chylomicrons with an Sf greater than 400 X 10(-13) s float to the top of the gradient, whereas the other lipoproteins are retained in the infranatant fraction. After removal of the chylomicrons, the other serum lipoproteins are subsequently fractionated by isopycnic density gradient ultracentrifugation. Analysis of the separated lipoprotein fractions suggested that this procedure permits isolation of a chylomicron fraction consisting solely of chylomicrons but that the very low density lipoprotein fraction subsequently isolated also contains chylomicrons or chylomicron remnants with an Sf less than 400 X 10(-13) s, and that there is considerable overlap in flotation rate and particle size of very low density lipoproteins and chylomicrons.  相似文献   

6.
We have examined the capability of a previously developed compartmental model to explain the kinetics of radioiodinated apolipoprotein (apo) B-100 in very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), and low density lipoproteins (LDL) separated by density gradient ultracentrifugation after intravenous injection of radioiodinated VLDL into New Zealand white (NZW) and Watanabe heritable hyperlipidemic (WHHL) rabbits. Our model was developed primarily from kinetics in whole blood plasma of apoB-100 in particles with and without apoE after intravenous injection of large VLDL, total VLDL, IDL, and LDL. When the initial conditions for this model were assumed to be an intravenous injection of radiolabeled VLDL, the plasma VLDL and LDL simulations for NZW rabbits and the VLDL, IDL, and LDL simulations for WHHL rabbits were found to be inconsistent with the observed density gradient data. By adding a new pathway in the VLDL portion of the model for NZW rabbits and a new compartment in VLDL for WHHL rabbits, and by assuming some cross-contamination in the density gradient ultracentrifugal separations, it was possible to bring our model, which was based upon measurements of 125I-labeled apoB-100 in whole plasma, into conformity with the data obtained by density gradient ultracentrifugation. The relatively modest changes required in the model to fit the gradient ultracentrifugation data support the suitability of our approach to the kinetic analysis of the metabolism of apoB-100 in VLDL and its conversion to IDL and LDL based upon measurements of 125I-labeled apoB-100 in whole plasma after injection of radiolabeled VLDL, IDL, and LDL. Furthermore, the differences in kinetics observed by us between data from whole plasma and data from plasma submitted to ultracentrifugal separation from the same or similar animals highlight the fact that small variations that can occur in the separation of lipoprotein classes by buoyant density can lead to confusing results.  相似文献   

7.
Abstract: Although the critical role of apolipoprotein E (apoE) allelic variation in Alzheimer's disease and in the outcome of CNS injury is now recognized, the functions of apoE in the CNS remain obscure, particularly with regard to lipid metabolism. We used density gradient ultracentrifugation to identify apoE-containing lipoproteins in human CSF. CSF apoE lipoproteins, previously identified only in the 1.063–1.21 g/ml density range, were also demonstrated in the 1.006–1.060 g/ml density range. Plasma lipoproteins in this density range include low-density lipoprotein and high-density lipoprotein (HDL) subfraction 1 (HDL1). The novel CSF apoE lipoproteins are designated HDL1. No immunoreactive apolipoprotein A-I (apo A-I) or B could be identified in the CSF HDL1 fractions. Large lipoproteins 18.3 ± 6.6 nm in diameter (mean ± SD) in the HDL1 density range were demonstrated by electron microscopy. Following fast protein liquid chromatography of CSF at physiologic ionic strength, apoE was demonstrated in particles of average size greater than particles containing apoA-I. The largest lipoproteins separated by this technique contained apoE without apoA-I. Thus, the presence of large apoE-containing lipoproteins was confirmed without ultracentrifugation. Interconversion between the more abundant smaller apoE-HDL subfractions 2 and 3 and the novel larger apoE-HDL1 is postulated to mediate a role in cholesterol redistribution in brain.  相似文献   

8.
A micro-enzymatic method was developed to measure total cholesterol (CHOL) and triglyceride (TG) in lipoproteins and their subfractions separated by density gradient ultracentrifugation. This method had a detection limit and sensitivity below 2 mg/dl and accuracy (bias to reference sera) and imprecision (coefficient of variation) of less than 3% between 2 and 30 mg/dl for both CHOL and TG. In addition, the method was in good agreement with standardized Abell-Kendall CHOL (r = 0.98) and enzymatic TG (r = 0.99) methods. Lipoproteins from 200 microliters of plasma or serum were separated by either equilibrium (EQ)- or rate zonal (RZ)-density gradient ultracentrifugation and the resulting fractions were analyzed for CHOL and TG by the micro-enzymatic method. Lipoprotein measurements by these micro-enzymatic/density gradient methods were highly correlated with standardized Lipid Research Clinic (LRC) procedures and preparative ultracentrifugation. The EQ-density gradient procedure also allowed determination of CHOL and TG in LDL and HDL subfractions within any desired density interval. These methods will facilitate the measurements and study of lipoproteins and their subfractions especially in infants, children, the elderly, and small animals. In addition, the micro-enzymatic method may be adapted to other modes of lipoprotein separation such as liquid chromatography, electrophoresis, and precipitation. CHOL or TG determinations could be made on approximately 500 density gradient fractions per hour.  相似文献   

9.
Differential density gradient ultracentrifugation procedures, utilizing a vertical rotor, were developed for the preparative purification of very high density lipoproteins (VHDL, density greater than 1.21 g/ml). The VHDLs of several insect species were purified as follows. An initial density gradient ultracentrifugation step removed lipoproteins of lower density from the VHDL-fraction, which partially separated from the nonlipoproteins present in the infranatant. A complete separation was achieved by a second centrifugation step employing a modified gradient system. The use of a vertical rotor and specially designed discontinuous gradients allows a relatively fast, efficient, and economical isolation of the class of very high density lipoproteins. Similar gradient systems should be useful for the detection and purification of VHDLs from other sources.  相似文献   

10.
Separation of lipoproteins by traditional sequential salt density floatation is a prolonged process ( approximately 72 h) with variable recovery, whereas iodixanol-based, self-generating density gradients provide a rapid ( approximately 4 h) alternative. A novel, three-layered iodixanol gradient was evaluated for its ability to separate lipoprotein fractions in 63 subjects with varying degrees of dyslipidemia. Lipoprotein cholesterol, triglycerides, and apolipoproteins were measured in 21 successive iodixanol density fractions. Iodixanol fractionation was compared with sequential floatation ultracentrifugation. Iodixanol gradient formation showed a coefficient of variation of 0.29% and total lipid recovery from the gradient of 95.4% for cholesterol and 84.7% for triglyceride. Recoveries for VLDL-, LDL-, and HDL-cholesterol, triglycerides, and apolipoproteins were approximately 10% higher with iodixanol compared with sequential floatation. The iodixanol gradient effectively discriminated classic lipoproteins and their subfractions, and there was evidence for improved resolution of lipoproteins with the iodixanol gradient. LDL particles subfractionated by the gradient showed good correlation between density and particle size with small, dense LDL (<25.5 nm) separated in fractions with density >1.028 g/dl. The new iodixanol density gradient enabled rapid separation with improved resolution and recovery of all lipoproteins and their subfractions, providing important information with regard to LDL phenotype from a single centrifugation step with minimal in-vitro modification of lipoproteins.  相似文献   

11.
1. Plasma lipoproteins from six thoroughbred horses were separated by density gradient ultracentrifugation. For each sample, lipoprotein bands were visualized by means of a prestained plasma control and characterized by electrophoretic, chemical and morphological analysis. 2. Very low density lipoproteins (VLDL) were isolated at d less than 1.018 g/ml. 3. Two clearly resolved bands were detected in the low density lipoprotein fraction (LDL). The density limits were evaluated as follows: LDL1(1.028 less than d less than 1.045 g/ml) and LDL2(1.045 less than d less than 1.070 g/ml). Marked differences were observed in the chemical composition and particle size of LDL1 and LDL2 fractions. 4. High density lipoprotein fraction (HDL) was usually isolated as a single band, distributed over the range 1.075 less than d less than 1.180 g/ml. However, chemical composition and particle size revealed heterogeneity in HDL subfractions. 5. The density limit of LDL and HDL bands varied in each animal, indicating differences in equine lipoprotein distribution.  相似文献   

12.
Evaluation of gel chromatography for plasma lipoprotein fractionation   总被引:9,自引:0,他引:9  
The fractionation of lipoproteins of normal and hyperlipidemic subjects on a column of 2% agarose was compared with ultracentrifugation and paper electrophoresis procedures. The following results were obtained. (a) Plasma lipoproteins were eluted successively from the column in the four overlapping peaks of chylomicrons, very low density lipoproteins, low density lipoproteins, and high density lipoproteins. (b) Very low density lipoproteins and high density lipoproteins (d > 1.063, containing nonlipoprotein proteins) showed continuous progressive changes in lipid composition as these fractions emerged, while low density lipoproteins showed a relatively constant lipid composition. (c) A discontinuous transition of lipid composition was observed when consecutive ultracentrifugal fractions were placed on the column. (d) The "trail" of pre-beta lipoprotein seen on paper electrophoresis was shown to consist of particles whose molecular sizes range between chylomicrons and pre-beta lipoproteins. A reverse relationship was observed between electrophoretic mobilities of "trail" components and their particle size. (e) Gel with an agarose content of 2% seemed to fractionate chylomicrons and very low density lipoproteins more effectively than other lipoprotein classes.  相似文献   

13.
1. Plasma lipoproteins from six calves at 8, 43 and 118 days old, six heifers and six cows were separated by density gradient ultracentrifugation. For each sample lipoproteins bands were visualized by prestained control and characterized by electrophoretic, chemical and morphological analysis. 2. Two resolved bands were detected in the low density lipoprotein fraction (LDL). At an early stage of development, LDLI and LDLII were present with almost equal concentration. With ageing, LDLII became the major fraction of LDL lipoproteins. 3. HDL were isolated as a single band distributed over the range 1.064-1.166 mg/ml in young calf and 1.050-1.152 mg/ml in adult. This progressive decrease of density limits with ageing, associated with a decrease of protein content and an increase of phospholipids and cholesteryl esters content, was consistent with higher HDL particle diameters in adult. 4. With ageing, free cholesterol/esterified cholesterol ratio decreased in LDL fractions and increased in HDL fractions.  相似文献   

14.
Human plasma lipoproteins, fractionated by density gradient ultracentrifugation, and very low density lipoproteins, subfractionated by cumulative rate centrifugation, were subjected to agarose isoelectric focusing in small format thin gels prepared in the laboratory for the commercially available PhastSystem (Pharmacia). From preparation of the gels to their staining, the procedure took less than 3 h. The pH gradient was found reproducible and the apparent average pI of individual low density lipoproteins could be measured with a coefficient of variation of less than 5% between and less than 2% within the same run. The method appears especially suitable for the exploration of charge properties of multiple lipoprotein samples, or other large macromolecules as low density lipoproteins and very low density lipoproteins, with considerable economy of time and reagents.  相似文献   

15.
An unusual lipoprotein was detected and purified from the blood of some members of a large colony of baboons, Papio sp. This lipoprotein was found to be similar to human lipoprotein a in all respects and is therefore termed lipoprotein a. Baboon lipoprotein a had a density of 1.052 g/ml and was located between low- and high-density lipoproteins in a density gradient ultracentrifugation. However, despite its greater density, baboon lipoprotein a was larger than low-density lipoprotein, based on gradient gel electrophoresis and gel filtration. The lipoprotein contained a very large apolipoprotein (apolipoprotein-lipoprotein a) which was found to consist of an apolipoprotein B linked to another protein called apolipoprotein a by a disulfide bridge(s). In all these characteristics, baboon lipoprotein a was similar to human lipoprotein a.  相似文献   

16.
The lipoproteins in GR mice bearing the transplanted GRSL ascites tumor were characterized by density gradient ultracentrifugation and SDS-polyacrylamide gel electrophoresis. In control mice the major proportion of the lipoproteins was found in the HDL density range, but on days 4 and 5 following tumor transplantation a gradual shift into the LDL density range was observed. At the same time the apolipoprotein E content increased at the expense of apolipoprotein A-I. VLDL became moderately elevated. On days 6 and 7 all lipoproteins except VLDL reached extremely low values. The C-apolipoproteins showed a remarkable shift in their relative proportions. Plasma lecithin:cholesterol acyltransferase activity showed no significant alteration in the course of tumor growth, but the triacylglycerol lipases in postheparin plasma were strongly decreased. Lipoprotein lipase had already started to decline on day 2 following tumor transplantation. However, when assayed in the presence of heat-inactivated control plasma, a decrease was not observed before day 5. This is suggestive of a depletion of a plasma cofactor preceding the final disappearance of the enzyme itself, and is compatible with the changing apolipoprotein C pattern. Hepatic lipase showed a 50% reduction between days 3 and 4. The lipoprotein alterations in tumor-bearing mice are explained as a direct consequence of the decreased lipase activities.  相似文献   

17.
Determination of the circulating levels of plasma lipoproteins HDL, LDL, and VLDL is critical in the assessment of risk of coronary heart disease. More recently it has become apparent that the LDL subclass pattern is a further important diagnostic parameter. The reference method for separation of plasma lipoproteins is ultracentrifugation. However, current methods often involve prolonged centrifugation steps and use high salt concentrations, which can modify the lipoprotein structure and must be removed before further analysis. To overcome these problems we have now investigated the use of rapid self-generating gradients of iodixanol for separation and analysis of plasma lipoproteins. A protocol is presented in which HDL, LDL, and VLDL, characterized by electron microscopy and agarose gel electophoresis, separate in three bands in a 2.5 h centrifugation step. Recoveries of cholesterol and TG from the gradients were close to 100%. The distribution profiles of cholesterol and TG in the gradient were used to calculate the concentrations of individual lipoprotein classes. The values correlated with those obtained using commercial kits for HDL and LDL cholesterol. The position of the LDL peak in the gradient and its shape varied between plasma samples and was indicative of the density of the predominant LDL class. The novel protocol offers a rapid, reproducible and accurate single-step centrifugation method for the determination of HDL, LDL, and VLDL cholesterol, and TG, and identification of LDL subclass pattern.  相似文献   

18.
1. The lipoproteins of the Ehrlich ascites tumor plasma were separated into 3 distinct fractions, very low density, low density and high density lipoproteins by preparative ultracentrifugation combined with agarose column chromatography. 2. High density lipoproteins contained 74% of the total protein in the lipoproteins. By contrast, most of the lipids were present in the very low density lipoprotein fraction. 3. The fatty acid compositions of the cholesteryl esters were appreciably different in the very low, low and high density lipoproteins, whereas phospholipid and triacylglycerol fatty acid compositions were quite similar in the 3 lipoprotein fractions. 4. Very low and high density apoprotein electrophoretic patterns on sodium dodecyl sulfate-acrylamide gels were similar to those observed in the corresponding lipoprotein fractions obtained from other mammalian species. The low density fraction, however, contained 7 apoprotein bands, and 32% of the low density apoprotein was soluble in tetramethyl urea. 5. The average molecular weights as determined by analytical ultracentrifugation were 2-10(7) (very low density), 6-10(6) (low density) and 4.4-10(5) (high density).  相似文献   

19.
Lipoproteins were isolated from plasma of man, dog, rabbit, rat, and chicken by ultracentrifugation in continuous density gradients using the B14 titanium and B15 titanium zonal rotors. Both the VLDL and the LDL of human plasma were separated easily from the HDL and from the other more plentiful plasma proteins by centrifugation for only 1 or 2 hr in the B14 or B15 rotor, respectively. Satisfactory separation of the HDL from the more dense plasma proteins was not achieved with these rotors. The human LDL achieved isopycnic equilibrium (d 1.04) on prolonged periods (> 24 hr) of centrifugation in a sucrose-KBr density gradient. The pattern of distribution of cholesterol and phospholipid throughout the density gradient coincided with the pattern of distribution of the lipoprotein-protein measured spectrophotometrically or chemically. The concentration of cholesterol and phospholipid in the lipoproteins isolated by zonal ultracentrifugation agreed with analyses reported for lipoproteins isolated by sequential centrifugation in solutions of increasing density. The lipoproteins isolated by zonal ultracentrifugation were characterized further by their electrophoretic behavior. The fractions which were identified as the LDL (d 1.04-1.05) from all species migrated on paper as a beta-globulin; the LDL from plasma of dogs contained an additional component which has been designated as an alpha(2)-globulin. The fractions which were identified as the HDL from all species migrated as an alpha(1)-globulin. Reaction of human LDL with either rabbit antihuman beta-lipoprotein or rabbit antihuman serum resulted in a single immunodiffusion band. The S(f, 1.063) of the human LDL was calculated to be 6.0. When plasma from humans or rabbits was centrifuged in the B15 rotor, the HDL was not visible as a distinct peak and was not separable from the bulk of the more dense plasma proteins; when plasma from dogs or chickens was centrifuged under identical conditions, the HDL was clearly detectable. Even though the mean density of the HDL from dogs or chickens was not different from that of man or rabbits, the visibility of this lipoprotein in dogs and chickens was probably due to its high concentration in the plasma of these species. When plasma from the rat was centrifuged under similar conditions, the HDL was also clearly in evidence. Although rat plasma contained a relatively small concentration of HDL, the lipoprotein had a lower mean density than did the HDL of the other species and was therefore more easily separable from the dense plasma proteins. The procedure of zonal ultracentrifugation for the isolation of lipoproteins by flotation is simultaneously preparative and analytical and should find useful application in the investigation of the soluble lipoproteins from plasma and tissues.  相似文献   

20.
Plasma lipoproteins from 5-week old male chickens were separated over the density range 1.006-1.172 g/ml into 22 subfractions by isopycnic density gradient ultracentrifugation, in order to establish the distribution of these particles and their constituent apolipoproteins as a function of density. Lipoprotein subfractions were characterized by electrophorectic, chemical and morphological analyses, and their protein moieties were defined according to net charge at alkaline pH, molecular weight and isoelectric point. These analyses have permitted us to reevaluate the density limits of the major chicken lipoprotein classes and to determine their main characteristics, which are as follows: (1) very-low-density lipoproteins (VLDL), isolated at d less than 1.016 g/ml, were present at low concentrations (less than 0.1 mg/ml) in fasted birds; their mean diameter determined by gradient gel electrophoresis and by electron microscopy was 20.5 and 31.4 nm respectively; (2) as the the density increased from VLDL to intermediate density lipoproteins (IDL), d 1.016-l.020 g/ml) and low-density lipoproteins (LDL, d 1.020-1.046 g/ml), the lipoprotein particles contained progressively less triacylglycerol and more protein, and their Stokes diameter decreased to 20.0 nm; (3) apolipoprotein B-100 was the major apolipoprotein in lipoproteins of d less than 1.046 g/ml, with an Mr of 350000; small amounts of apolipoprotein B-100 were detectable in HDL subfractions of d less than 1.076 g/ml; urea-soluble apolipoproteins were present in this density range as minor components of Mr 38000-39000, 27000-28000 (corresponding to apolipoprotein A-1) and Mr 11000-12000; (4) high density lipoprotein (HDL, d 1.052-1.130 g/ml) was isolated as a single band, whose protein content increased progressively with increase in density; the chemical composition of HDL resembled that of human HDL2, with apolipoprotein A-1 (M 27000-28000) as the major protein component, and a protein of Mr 11000-12000 as a minor component; (5) heterogeneity was observed in the particle size and apolipoprotein distribution of HDL subfractions: two lipoprotein bands which additional apolipoproteins of Mr 13000 and 15000 were detected. These studies illustrate the inadequacy in the chicken of the density limits applied to fractionate the lipoprotein spectrum, and particularly the inappropriateness of the 1.063 g/ml density limit as the cutoff for LDL and HDL particle populations in the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号