首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
2.
The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, also known as the MEK-ERK cascade, has been shown to regulate cartilage differentiation in embryonic limb mesoderm and several chondrogenic cell lines. In the present study, we employed the micromass culture system to define the roles of MEK-ERK signaling in the chondrogenic differentiation of neural crest-derived ectomesenchyme cells of the embryonic chick facial primordia. In cultures of frontonasal mesenchyme isolated from stage 24/25 embryos, treatment with the MEK inhibitor U0126 increased type II collagen and glycosaminoglycan deposition into cartilage matrix, elevated mRNA levels for three chondrogenic marker genes (col2a1, aggrecan, and sox9), and increased expression of a Sox9-responsive collagen II enhancer-luciferase reporter gene. Transfection of frontonasal mesenchyme cells with dominant negative ERK increased collagen II enhancer activation, whereas transfection of constitutively active MEK decreased its activity. Thus, MEK-ERK signaling inhibits chondrogenesis in stage 24/25 frontonasal mesenchyme. Conversely, MEK-ERK signaling enhanced chondrogenic differentiation in mesenchyme of the stage 24/25 mandibular arch. In mandibular mesenchyme cultures, pharmacological MEK inhibition decreased cartilage matrix deposition, cartilage-specific RNA levels, and collagen II enhancer activity. Expression of constitutively active MEK increased collagen II enhancer activation in mandibular mesenchyme, while dominant negative ERK had the opposite effect. Interestingly, MEK-ERK modulation had no significant effects on cultures of maxillary or hyoid process mesenchyme cells. Moreover, we observed a striking shift in the response of frontonasal mesenchyme to MEK-ERK modulation by stage 28/29 of development.  相似文献   

3.
Studies of neural, hepatic, and other cells have demonstrated thatin vitroethanol exposure can influence a variety of membrane-associated signaling mechanisms. These include processes such as receptor-kinase phosphorylation, adenylate cyclase and protein kinase C activation, and prostaglandin production that have been implicated as critical regulators of chondrocyte differentiation during embryonic limb development. The potential for ethanol to affect signaling mechanisms controlling chondrogenesis in the developing limb, together with its known ability to promote congenital skeletal deformitiesin vivo,prompted us to examine whether chronic alcohol exposure could influence cartilage differentiation in cultures of prechondrogenic mesenchyme cells isolated from limb buds of stage 23–25 chick embryos. We have made the novel and surprising finding that ethanol is a potent stimulant ofin vitrochondrogenesis at both pre- and posttranslational levels. In high-density cultures of embryonic limb mesenchyme cells, which spontaneously undergo extensive cartilage differentiation, the presence of ethanol in the culture medium promoted increased Alcian-blue-positive cartilage matrix production, a quantitative rise in35SO4incorporation into matrix glycosaminoglycans (GAG), and the precocious accumulation of mRNAs for cartilage-characteristic type II collagen and aggrecan (cartilage proteoglycan). Stimulation of matrix GAG accumulation was maximal at a concentration of 2% ethanol (v/v), although a significant increase was elicited by as little as 0.5% ethanol (approximately 85 mM). The alcohol appears to directly influence differentiation of the chondrogenic progenitor cells of the limb, since ethanol elevated cartilage formation even in cultures prepared from distal subridge mesenchyme of stage 24/25 chick embryo wing buds, which is free of myogenic precursor cells. When limb mesenchyme cells were cultured at low density, which suppresses spontaneous chondrogenesis, ethanol exposure induced the expression of high levels of type II collagen and aggrecan mRNAs and promoted abundant cartilage matrix formation. These stimulatory effects were not specific to ethanol, since methanol, propanol, and tertiary butanol treatments also enhanced cartilage differentiation in embryonic limb mesenchyme cultures. Further investigations of the stimulatory effects of ethanol onin vitrochondrogenesis may provide insights into the mechanisms regulating chondrocyte differentiation during embryogenesis and the molecular basis of alcohol's teratogenic effects on skeletal morphogenesis.  相似文献   

4.
5.
Immunohistochemical studies of the chick columella have shown that the extracellular matrix of this ossicular cartilage template is composed largely of type II collagen. As development proceeds, synthesis of type X collagen, a hypertrophic cartilage-specific molecule, is initiated by endochondral chondrocytes within the zone of cartilage cell hypertrophy. Subsequently, these cells and their surrounding extracellular matrix are removed, resulting in marrow cavity formation. We have examined which of these processes are programmed within the columella chondrocytes themselves, and which require involvement of exogenous factors. Prehypertrophic columella from 12-day chick embryos were grown either in organ culture on Nuclepore filters or as explants on the chorioallantoic membrane of host embryos. Chondrocytes from the same source were grown in monolayer cell cultures. In both organ culture and cell culture, chondrocytes developed to the stage at which some of them entered the hypertrophic program and initiated the production of type X collagen as determined by immunofluorescence histochemistry with a monoclonal antibody specific for that collagen type. The organ cultures, however, did not progress to the next stage, in which detectable removal of the type X collagen-containing matrix occurs. When identical columella were grown on the chorioallantoic membrane of host chicks, the type X collagen-containing matrix which formed was rapidly removed, resulting in the formation of a marrow cavity. Thus, progression of endochondral chondrocytes to the deposition of type X collagen-containing matrix seems to be programmed within the cells themselves. Subsequent removal of this matrix requires the involvement of exogenous factors.  相似文献   

6.
The effect of developmental stage on chondrogenic capacity in high-density cell cultures of chick embryonic wing bud mesenchyme is examined. Mesenchyme from stage 19 embryos forms aggregates of closely associated cells which do not form cartilage matrix, nor contain significant levels of type II collagen that are detectable by immunofluorescence, unless they are treated with dibutyryl cyclic AMP. Mesenchyme from stage 24 embryonic wing buds in high-density cell cultures will spontaneously form cartilage, as defined by electron microscopy and immunofluorescence with antibody to type II collagen. Cultures prepared from stage 26 wings form numerous aggregates which fail to accumulate an Alcian blue-staining matrix and which resemble mesenchyme cells morphologically. However, because these cells show considerable intracellular immunofluorescence for type II collagen, they are actually unexpressed cartilage cells. Several treatments, including exposure to dibutyryl cyclic AMP, ascorbic acid and an atmosphere of 5% oxygen, or mixture with small numbers of stage 24 wing mesenchyme cells, stimulate expression, as determined by the accumulation of an Alcian blue-staining matrix and an ultrastructurally recognizable cartilage matrix. Since the addition of similar numbers of differentiated cartilage cells does not stimulate expression of stage 26 cells, it is proposed that initial cartilage expression is dependent on a mesenchyme-specific influence which might be removed by cell dissociation. These studies demonstrate that there are at least two distinct transitions in cartilage differentiation: one involves the conversion of mesenchyme to unexpressed chondrocytes and the second involves mesenchyme-dependent expression of chondrogenic differentiation.  相似文献   

7.
Type II collagen is a major component of cartilage extracellular matrix. Differentiation of mesenchyme into cartilage involves the cessation of type I collagen synthesis and the onset of type II collagen synthesis. Solution hybridization of mRNA isolated from chick limb buds with a cDNA probe to type II collagen mRNA showed the presence of small amounts of type II collagen message in mesenchymal chick limbs. We have examined the localization of type II collagen mRNA in mesenchymal chick wing buds by in situ hybridization using single stranded RNA probes. Our results show a small but detectable amount of type II collagen RNA distributed uniformly in early limbs until the first precartilage condensations form at stage 22. This is interesting because it is known that mesenchyme isolated from chick wing buds has the capacity to undergo chondrogenesis in culture, even if taken from nonchondrogenic areas of the limb. At stage 23, type II collagen mRNA is found at significantly increased levels in the cells of the precartilage condensation when compared to the other limb cells. As chondrogenesis proceeds, the amount of type II collagen RNA increases even more in cells of the cartilage elements. The signal in the peripheral tissue is indistinguishable from background. These results show that type II collagen message exists at low levels in cells throughout the mesenchymal chick wing bud, until the formation of the condensation results in an elevation of type II mRNA in the prechondrogenic cells found in the core of the limb.  相似文献   

8.
It is believed that cell-cell interaction between mesenchyme cells is involved in the initiation of chondrogenesis, based largely on the inability of limb mesenchyme cells to differentiate into cartilage unless cultures are inoculated at densities greater than confluency. The present study describes a culture situation in which single limb mesenchyme cells either in or on type I collagen gels are shown to differentiate into cartilage, as defined by the appearance of a pericellular alcian blue staining matrix, intracellular type II collagen (demonstrated by indirect immunofluorescence with monoclonal antibody), and clonable cartilage cells. Because the differentiation of cartilage cells from single mesenchyme cells occurs only when the cells are in a round configuration, it is proposed that cell shape changes are one factor that can mediate effects of cell-cell interaction on differentiation.  相似文献   

9.
Mesenchyme cells derived from embryonic mouse limb buds were cultured at high cell density. During the first 24 h in culture, groups of mesenchyme cells condensed and formed cell contacts and specialized junctions. These condensations were the nodule primordia which gave rise to cartilage nodules. The cell contacts were lost as the mesenchyme cells in the primordia developed into cartilage nodules. The mature nodules contained chondrocytes isolated from one another by an extensive extracellular matrix consisting of cartilage type collagen fibrils and proteoglycan granules. The differentiation of the mesenchyme cells to chondrocytes was also characterized by the loss of a 240,000-MW cell surface glycoprotein and the appearance of an 80,000-MW surface protein. The addition of vitamin A to the medium on Day 1 inhibited chondrogenesis. The cells were closely packed together, and the limited extracellular space contained thick, banded collagen fibrils with no proteoglycan granules. The cells exhibited extensive areas of close membrane contact and specialized junctions. Vitamin A-treated cultures also retained the 240,000-MW surface glycoprotein and retarded the appearance of the 80,000-MW cell surface protein. The results of this study suggest that cell surface features normally present on mesenchyme cells are maintained and exaggerated by vitamin A.  相似文献   

10.
11.
The requirement for homotypic cell interaction was studied by making chimeric micromass cultures containing various proportions of chick and quail limb mesenchyme. Cultures made from limb mesenchyme from embryos of Hamburger and Hamilton stages 23–24 produce large clumps of cartilage cells, identified by the accumulation of an extracellular matrix which stains with alcian blue at pH 1 and by the ability of cells to take up 35SO4 rapidly, as demonstrated autoradiographically. Dissociated mesenchyme from stage 19 embryos did not produce cartilage in micromass cultures, but only precartilage cell aggregates. Micromass cultures prepared from mixtures of mesenchyme cells obtained from stage 19 and stages 23–24 embryos contained decreasing numbers of cartilage nodules as the proportion of stage 19-derived mesenchyme increased. At the same time the number of aggregates was not affected. When the ratio of stage 19- to stage 24-derived cells was 3:1 or greater, no nodules were detected. The actual number of cells from each stage was verified by using mixtures of quail and chick cells, which are microscopically distinguishable. Additional evidence suggests that the stage 19-derived mesenchyme inhibits chondrogenesis by passively preventing stage 24-derived cells from interacting. The results presented are consistent with the suggestions that (1) homotypic cell interaction plays a role in limb chondrogenesis and (2) the capacity to interact in the required manner is acquired after the embryos have reached stage 19. These phenomena might be involved in the normal histogenesis of cartilage tissue.  相似文献   

12.
Endochondral skeletal development involves the condensation of mesenchymal cells, their differentiation into chondrocytes, followed by chondrocyte maturation, hypertrophy, and matrix mineralization, and replacement by osteoblasts. The Wnt family of secreted proteins have been shown to play important roles in vertebrate limb formation. To examine the role(s) of Wnt members and their transmembrane-spanning receptor(s), Frizzled (fz), we retrovirally misexpressed Wnt-5a, Wnt-7a, chicken frizzled-1 (Chfz-1), and frizzled-7 (Chfz-7) in long-term (21 day) high density, micromass cultures of stage 23/24 chick embryonic limb mesenchyme. This culture system recapitulates in vitro the entire differentiation (days 1-10), growth (days 5-12), and maturation and hypertrophy (from day 12 on) program of cartilage development. Wnt-7a misexpression severely inhibited chondrogenesis from day 7 onward. Wnt-5a misexpression resulted in a poor hypertrophic phenotype by day 14. Chfz-7 misexpression caused a slight delay of chondrocyte maturation based on histology, whereas Chfz-1 misexpression did not affect the chondrogenic phenotype. Misexpression of all Wnt members decreased collagen type X expression and alkaline phosphatase activity at day 21. Our findings implicate functional role(s) for Wnt signaling throughout embryonic cartilage development, and show the utility of the long-term in vitro limb mesenchyme culture system for such studies.  相似文献   

13.
14.
SOMITE CHONDROGENESIS : A Structural Analysis   总被引:2,自引:1,他引:1  
Light and electron microscopy are used in this study to compare chondrogenesis in cultured somites with vertebral chondrogenesis These studies have also characterized some of the effects of inducer tissues (notochord and spinal cord), and different nutrient media, on chondrogenesis in cultured somites Somites from stage 17 (54–60 h) chick embryos were cultured, with or without inducer tissues, and were fed nutrient medium containing either horse serum (HS) and embryo extract (EE), or fetal calf serum (FCS) and F12X Amino acid analyses were also utilized to determine the collagen content of vertebral body cartilage in which the fibrils are homogeneously thin (ca. 150 Å) and unbanded. These analyses provide strong evidence that the thin unbanded fibrils in embryonic cartilage matrix are collagen. These thin unbanded collagen fibrils, and prominent 200–800 Å protein polysaccharide granules, constitute the structured matrix components of both developing vertebral cartilage and the cartilage formed in cultured somites Similar matrix components accumulate around the inducer tissues notochord and spinal cord. These matrix components are structurally distinct from those in embryonic fibrous tissue The synthesis of matrix by the inducer tissues is associated with the inductive interaction of these tissues with somitic mesenchyme. Due to the deleterious effects of tissue isolation and culture procedures many cells die in somitic mesenchyme during the first 24 h in culture. In spite of this cell death, chondrogenic areas are recognized after 12 h in induced cultures, and through the first 2 days in all cultures there are larger accumulations of structured matrix than are present in equivalently aged somitic mesenchyme in vivo. Surviving chondrogenic areas develop into nodules of hyaline cartilage in all induced cultures, and in most non-induced cultures fed medium containing FCS and F12X There is more cell death, less matrix accumulation, and less cartilage formed in cultures fed medium containing HS and EE. The inducer tissues, as well as nutrient medium containing FCS and F12X, facilitate cell survival, the synthesis and accumulation of cartilage matrix, and the formation of cartilage nodules in cultured somites.  相似文献   

15.
16.
The aim of this work was to prepare specific antibodies against skin and bone collagen (type I) and cartilage collagen (type II) for the study of differential collagen synthesis during development of the chick embryo by immunofluorescence. Antibodies against native type I collagen from chick cranial bone, and native pepsin-extracted type II collagen from chick sternal cartilage were raised in rabbits, rats, and guinea pigs. The antibodies, purified by cross-absorption on the heterologous collagen type, followed by absorption and elution from the homologous collagen type, were specific according to passive hemagglutination tests and indirect immunofluorescence staining of chick bone and cartilage tissues. Antibodies specific to type I collagen labeled bone trabeculae from tibia and perichondrium from sternal cartilage. Antibodies specific to type II collagen stained chondrocytes of sternal and epiphyseal cartilage, whereas fluorescence with intercellular cartilage collagen was obtained only after treatment with hyaluronidase. Applying type II collagen antibodies to sections of chick embryos, the earliest cartilage collagen found was in the notochord, at stage 15, followed by vertebral collagen secreted by sclerotome cells adjacent to the notochord from stage 25 onwards. Type I collagen was found in the dermatomal myotomal plate and presumptive dermis at stage 17, in limb mesenchyme at stage 24, and in the perichondrium of tibiae at stage 31.  相似文献   

17.
AMDM, a form of osteochondrodysplasia, is due to the loss-of-function mutations in NPR-B gene. This study investigated the functional involvement of CNP-3, chick homolog of human CNP, and its receptor NPR-B in chondrogenesis utilizing the micromass culture of the chick limb mesenchymal cells. Results revealed CNP-3 and NPR-B expression in the chick limb bud making stage-specific peak levels first at Hamburger-Hamilton stage 23-24, and second at stage 30-31, corresponding to pre-chondrogenic mesenchymal condensation and initiation of chondrogenic maturation-hypertrophy in vivo, respectively. CNP-3 and NPR-B expression in vitro increased parallel to collagen type X expression, but not to that of collagen type II. Treatment of cultures with CNP significantly increased N-cadherin, and collagen type X expression, glycosaminoglycan synthesis and chondrogenesis. Collagen type II expression was not significantly affected. Thus, results implicated CNP-3/NPR-B signaling in pre-chondrogenic mesenchymal condensation, glycosaminoglycan synthesis and late differentiation of chondrocytes in the process of endochondral ossification.  相似文献   

18.
To examine the regulation of collagen types IX and X during the hypertrophic phase of endochondral cartilage development, we have employed in situ hybridization and immunofluorescence histochemistry on selected stages of embryonic chick tibiotarsi. The data show that mRNA for type X collagen appears at or about the time that we detect the first appearance of the protein. This result is incompatible with translational regulation, which would require accumulation of the mRNA to occur at an appreciably earlier time. Data on later-stage embryos demonstrate that once hypertrophic chondrocytes initiate synthesis of type X collagen, they sustain high levels of its mRNA during the remainder of the hypertrophic program. This suggests that these cells maintain their integrity until close to the time that they are removed at the advancing marrow cavity. Type X collagen protein in the hypertrophic matrix also extends to the marrow cavity. Type IX collagen is found throughout the hypertrophic matrix, as well as throughout the younger cartilaginous matrices. But the mRNA for this molecule is largely or completely absent from the oldest hypertrophic cells. These data are consistent with a model that we have previously proposed in which newly synthesized type X collagen within the hypertrophic zone can become associated with type II/IX collagen fibrils synthesized and deposited earlier in development (Schmid and Linsenmayer, 1990; Chen et al. 1990).  相似文献   

19.
20.
Tissue engineering of articular cartilage from chondrocytes or stem cells is considered to be a potential aspect in the treatment of cartilage defects. In order to optimize culture conditions the influence of low oxygen tension (5%) - single or in combination with intermittent hydrostatic pressure (HP: 30/2 min on/off loading; 0.2 MPa) - on the biosynthetic activity (sulfate and proline incorporation) of human osteoarthritic chondrocytes cultured on collagen I/III membranes was investigated. Additionally, chondrogenesis from high density or monolayer cultures of bovine adherent bone marrow cells (aBMC) with and without chondrogenic medium supplements (CM) was analyzed by RT-PCR (mRNA expression of aggrecan and collagen type II). We could show that low oxygen tension increases significantly the biosynthesis of collagen I/III membrane-associated chondrocytes and even higher under co-stimulation with HP. While there is no chondrogenesis in monolayer cultures, CM induces expression of cartilage matrix molecules in high density cultures of aBMC which is even increased under the influence of low oxygen tension. Both, low oxygen tension and HP without CM are alone not sufficient stimuli for chondrogenesis. It can be concluded that low oxygen tension and HP might be useful tools in cartilage tissue engineering and that these physico-chemical factors promote but do not induce chondrogenesis under the given conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号