首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mycothiol (MSH, AcCys-GlcN-Ins) is the major low molecular weight thiol in actinomycetes and is essential for growth of Mycobacterium tuberculosis. MshB, the GlcNAc-Ins deacetylase, is a key enzyme in MSH biosynthesis. MshB from M. tuberculosis was cloned, expressed, purified, and its properties characterized. Values of k(cat) and K(m) for MshB were determined for the biological substrate, GlcNAc-Ins, and several other good substrates. The substrate specificity of MshB was compared to that of M. tuberculosis mycothiol S-conjugate amidase (Mca), a homologous enzyme having weak GlcNAc-Ins deacetylase activity. Both enzymes are metalloamidases with overlapping amidase activity toward mycothiol S-conjugates (AcCySR-GlcN-Ins). The Ins residue and hydrophobic R groups enhance the activity with both MshB and Mca, but changes in the acyl group attached to GlcN have opposite effects on the two enzymes.  相似文献   

2.
Actinomycetes, such as Mycobacterium species, are Gram-positive bacteria that utilize the small molecule mycothiol (MSH) as their primary reducing agent. Consequently, the enzymes involved in MSH biosynthesis are targets for drug development. The metal-dependent enzyme N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside deacetylase (MshB) catalyzes the hydrolysis of N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside to form 1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside and acetate, the fourth overall step in MSH biosynthesis. Inhibitors of metalloenzymes typically contain a group that binds to the active site metal ion; thus, a comprehensive understanding of the native cofactor(s) of metalloenzymes is critical for the development of biologically effective inhibitors. Herein, we examined the effect of metal ions on the overall activity of MshB and probed the identity of the native cofactor. We found that the activity of MshB follows the trend Fe(2+) > Co(2+) > Zn(2+) > Mn(2+) and Ni(2+). Additionally, our results show that the identity of the cofactor bound to purified MshB is highly dependent on the purification conditions used (aerobic versus anaerobic), as well as the metal ion content of the medium during protein expression. MshB prefers Fe(2+) under anaerobic conditions regardless of the metal ion content of the medium and switches between Fe(2+) and Zn(2+) under aerobic conditions as the metal content of the medium is altered. These results indicate that the cofactor bound to MshB under biological conditions is dependent on environmental conditions, suggesting that MshB may be a cambialistic metallohydrolase that contains a dynamic cofactor. Consequently, biologically effective inhibitors will likely need to dually target Fe(2+)-MshB and Zn(2+)-MshB.  相似文献   

3.
Actinomycetes are a group of gram-positive bacteria that includes pathogenic mycobacterial species, such as Mycobacterium tuberculosis. These organisms do not have glutathione and instead utilize the small molecule mycothiol (MSH) as their primary reducing agent and for the detoxification of xenobiotics. Due to these important functions, enzymes involved in MSH biosynthesis and MSH-dependent detoxification are targets for drug development. The metal-dependent deacetylase N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside deacetylase (MshB) catalyzes the hydrolysis of N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside to form 1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside and acetate in MSH biosynthesis. Herein we examine the chemical mechanism of MshB. We demonstrate that the side chains of Asp-15, Tyr-142, His-144, and Asp-146 are important for catalytic activity. We show that NaF is an uncompetitive inhibitor of MshB, consistent with a metal-water/hydroxide functioning as the reactive nucleophile in the catalytic mechanism. We have previously shown that MshB activity has a bell-shaped dependence on pH with pK(a) values of ~7.3 and 10.5 (Huang, X., Kocabas, E. and Hernick, M. (2011) J. Biol. Chem. 286, 20275-20282). Mutagenesis experiments indicate that the observed pK(a) values reflect ionization of Asp-15 and Tyr-142, respectively. Together, findings from our studies suggest that MshB functions through a general acid-base pair mechanism with the side chain of Asp-15 functioning as the general base catalyst and His-144 serving as the general acid catalyst, whereas the side chain of Tyr-142 probably assists in polarizing substrate/stabilizing the oxyanion intermediate. Additionally, our results indicate that Tyr-142 is a dynamic side chain that plays key roles in catalysis, modulating substrate binding, chemistry, and product release.  相似文献   

4.
The metal‐dependent deacetylase N‐acetyl‐1‐d ‐myo‐inosityl‐2‐amino‐2‐deoxy‐α‐d ‐glucopyranoside deacetylase (MshB) catalyzes the deacetylation of N‐acetyl‐1‐d ‐myo‐inosityl‐2‐amino‐2‐deoxy‐α‐d ‐glucopyranoside (GlcNAc‐Ins), the committed step in mycothiol (MSH) biosynthesis. MSH is the thiol redox buffer used by mycobacteria to protect against oxidative damage and is involved in the detoxification of xenobiotics. As such, MshB is a target for the discovery of new drugs to treat tuberculosis (TB). While MshB substrate specificity and inhibitor activity have been probed extensively using enzyme kinetics, information regarding the molecular basis for the observed differences in substrate specificity and inhibitor activity is lacking. Herein we begin to examine the molecular determinants of MshB substrate specificity using automated docking studies with a set of known MshB substrates. Results from these studies offer insights into molecular recognition by MshB via identification of side chains and dynamic loops that may play roles in ligand binding. Additionally, results from these studies suggest that a hydrophobic cavity adjacent to the active site may be one important determinant of MshB substrate specificity. Importantly, this hydrophobic cavity may be advantageous for the design of MshB inhibitors with high affinity and specificity as potential TB drugs. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 406–417, 2014.  相似文献   

5.
Mycothiol (1-D-myo-inosityl 2-(N-acetyl-L-cysteinyl)amido-2-deoxy-alpha-D-glucopyranoside, MSH or AcCys-GlcN-inositol (Ins)) is the major reducing agent in actinomycetes, including Mycobacterium tuberculosis. The biosynthesis of MSH involves a deacetylase that removes the acetyl group from the precursor GlcNAc-Ins to yield GlcN-Ins. The deacetylase (MshB) corresponds to Rv1170 of M. tuberculosis with a molecular mass of 33,400 Da. MshB is a Zn2+ metalloprotein, and the deacetylase activity is completely dependent on the presence of a divalent metal cation. We have determined the x-ray crystallographic structure of MshB, which reveals a protein that folds in a manner resembling lactate dehydrogenase in the N-terminal domain and a C-terminal domain consisting of two beta-sheets and two alpha-helices. The zinc binding site is in the N-terminal domain occupying a position equivalent to that of the NAD+ co-factor of lactate dehydrogenase. The Zn2+ is 5 coordinate with 3 residues from MshB (His-13, Asp-16, His-147) and two water molecules. One water would be displaced upon binding of substrate (GlcNAc-Ins); the other is proposed as the nucleophilic water assisted by the general base carboxylate of Asp-15. In addition to the Zn2+ providing electrophilic assistance in the hydrolysis, His-144 imidazole could form a hydrogen bond to the oxyanion of the tetrahedral intermediate. The extensive sequence identity of MshB, the deacetylase, with mycothiol S-conjugate amidase, an amide hydrolase that mediates detoxification of mycothiol S-conjugate xenobiotics, has allowed us to construct a faithful model of the catalytic domain of mycothiol S-conjugate amidase based on the structure of MshB.  相似文献   

6.
7.
The first committed step of lipid A biosynthesis is catalyzed by UDP-(3-O-((R)-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase, a metal-dependent deacetylase also known as LpxC. Because lipid A is essential for bacterial viability, the inhibition of LpxC is an appealing therapeutic strategy for the treatment of Gram-negative bacterial infections. Here we report the 1.79 ? resolution X-ray crystal structure of LpxC from Yersinia enterocolitica (YeLpxC) complexed with the potent hydroxamate inhibitor CHIR-090. This enzyme is a nearly identical orthologue of LpxC from Yersinia pestis (99.7% sequence identity), the pathogen that causes bubonic plague. Similar to the inhibition of LpxC from Escherichia coli, CHIR-090 inhibits YeLpxC via a two-step slow, tight-binding mechanism with an apparent K(i) of 0.54 ± 0.14 nM followed by conversion of the E·I to E·I* species with a rate constant of 0.11 ± 0.01 min(-1). The structure of the LpxC complex with CHIR-090 shows that the inhibitor hydroxamate group chelates the active site zinc ion, and the "tail" of the inhibitor binds in the hydrophobic tunnel in the active site. This hydrophobic tunnel is framed by a βαβ subdomain that exhibits significant conformational flexibility as it accommodates inhibitor binding. CHIR-090 displays a 27 mm zone of inhibition against Y. enterocolitica in a Kirby-Bauer antibiotic assay, which is comparable to its reported activity against other Gram-negative species including E. coli and Pseudomonas aeruginosa. This study demonstrates that the inhibition of LpxC should be explored as a potential therapeutic and/or prophylatic response to infection by weaponized Yersinia species.  相似文献   

8.
Here we report a new fluorescence-based assay for measuring MshB (N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside deacetylase) activity. The current assay for measuring MshB activity requires the fluorescent labeling of reaction mixtures and subsequent analysis using high-performance liquid chromatography (HPLC), resulting in a significant amount of processing time per sample. Here we describe a more rapid fluorescnce-based assay for the measurement of MshB activity that does not require HPLC analysis and can be carried out in multiwell plates. This fluorescamine (FSA)-based assay was used to determine the steady-state parameters for the deacetylation of N-acetyl-glucosamine (GlcNAc) by MshB, and the results from these experiments support the hypothesis that the inositol moiety primarily contributes to the affinity of GlcNAc-Ins (N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside) for MshB. The rapid nature of this assay will aid efforts toward a more detailed biochemical characterization of MshB. Furthermore, because this assay relies on the formation of a primary amine, it could be adapted to measure the activity of mycothiol-S-conjugate amidase, a metal-dependent amidase that is a potential drug target involved in the mycothiol detoxification pathway.  相似文献   

9.
Here we report a new fluorescence-based assay for measuring MshB (N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside deacetylase) activity. The current assay for measuring MshB activity requires the fluorescent labeling of reaction mixtures and subsequent analysis using high-performance liquid chromatography (HPLC), resulting in a significant amount of processing time per sample. Here we describe a more rapid fluorescnce-based assay for the measurement of MshB activity that does not require HPLC analysis and can be carried out in multiwell plates. This fluorescamine (FSA)-based assay was used to determine the steady-state parameters for the deacetylation of N-acetyl-glucosamine (GlcNAc) by MshB, and the results from these experiments support the hypothesis that the inositol moiety primarily contributes to the affinity of GlcNAc–Ins (N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside) for MshB. The rapid nature of this assay will aid efforts toward a more detailed biochemical characterization of MshB. Furthermore, because this assay relies on the formation of a primary amine, it could be adapted to measure the activity of mycothiol-S-conjugate amidase, a metal-dependent amidase that is a potential drug target involved in the mycothiol detoxification pathway.  相似文献   

10.
Mycothiol (MSH, 1-D-myo-inosityl 2-(N-acetyl-L-cysteinyl)amido-2-deoxy-alpha-D-glucopyranoside) is the principal low molecular weight thiol in actinomycetes. The enzyme 1-D-myo-inosityl 2-N-acetamido-2-deoxy-alpha-D-glucopyranoside deacetylase (AcGI deacetylase) is involved in the biosynthesis of MSH and forms the free amine 1-D-myo-inosityl 2-amino-2-deoxy-alpha-D-glucopyranoside, which is used in the third of four steps of MSH biosynthesis. Here, we report the synthesis of two isomers of AcGI, which contain either 1-L-myo-inositol or 1-D-myo-inositol. These synthetic products were used to investigate substrate specificity of the Mycobacterium tuberculosis enzyme AcGI deacetylase.  相似文献   

11.
Mycothiol, MSH or 1D-myo-inosityl 2-(N-acetyl-L-cysteinyl)amido-2-deoxy-alpha-D-glucopyranoside, is an unusual conjugate of N-acetylcysteine (AcCys) with 1D-myo-inosityl 2-acetamido-2-deoxy-alpha-D-glucopyranoside (GlcN-Ins), and is the major low-molecular-mass thiol in mycobacteria. Mycothiol has antioxidant activity as well as the ability to detoxify a variety of toxic compounds. Because of these activities, MSH is a candidate for protecting Mycobacterium tuberculosis from inactivation by the host during infections as well as for resisting antituberculosis drugs. In order to define the protective role of MSH for M. tuberculosis, we have constructed an M. tuberculosis mutant in Rv1170, one of the candidate MSH biosynthetic genes. During exponential growth, the Rv1170 mutant bacteria produced approximately 20% of wild-type levels of MSH. Levels of the Rv1170 substrate, GlcNAc-Ins, were elevated, whereas those of the product, GlcN-Ins, were reduced. This establishes that the Rv1170 gene encodes for the major GlcNAc-Ins deacetylase activity (termed MshB) in the MSH biosynthetic pathway of M. tuberculosis. The Rv1170 mutant grew poorly on agar media lacking catalase and oleic acid, and had heightened sensitivities to the toxic oxidant cumene hydroperoxide and to the antibiotic rifampin. In addition, the mutant was more resistant to isoniazid, suggesting a role for MSH in activation of this prodrug. These data indicate that MSH contributes to the protection of M. tuberculosis from oxidants and influences resistance to two first-line antituberculosis drugs.  相似文献   

12.
Martynowski D  Eyobo Y  Li T  Yang K  Liu A  Zhang H 《Biochemistry》2006,45(35):10412-10421
Alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD) is a widespread enzyme found in many bacterial species and all currently sequenced eukaryotic organisms. It occupies a key position at the branching point of two metabolic pathways: the tryptophan to quinolinate pathway and the bacterial 2-nitrobenzoic acid degradation pathway. The activity of ACMSD determines whether the metabolites in both pathways are converted to quinolinic acid for NAD biosynthesis or to acetyl-CoA for the citric acid cycle. Here we report the first high-resolution crystal structure of ACMSD from Pseudomonas fluorescens which validates our previous predictions that this enzyme is a member of the metal-dependent amidohydrolase superfamily of the (beta/alpha)(8) TIM barrel fold. The structure of the enzyme in its native form, determined at 1.65 A resolution, reveals the precise spatial arrangement of the active site metal center and identifies a potential substrate-binding pocket. The identity of the native active site metal was determined to be Zn. Also determined was the structure of the enzyme complexed with cobalt at 2.50 A resolution. The hydrogen bonding network around the metal center suggests that Arg51 and His228 may play important roles in catalysis. The metal center configuration of PfACMSD is very similar to that of Zn-dependent adenosine deaminase and Fe-dependent cytosine deaminase, suggesting that ACMSD may share certain similarities in its catalytic mechanism with these enzymes. These data enable us to propose possible catalytic mechanisms for ACMSD which appear to be unprecedented among all currently characterized decarboxylases.  相似文献   

13.
Mycothiol ([MSH] AcCys-GlcN-Ins, where Ac is acetyl) is the major thiol produced by Mycobacterium smegmatis and other actinomycetes. Mutants deficient in MshA (strain 49) or MshC (transposon mutant Tn1) of MSH biosynthesis produce no MSH. However, when stationary phase cultures of these mutants were incubated in medium containing MSH, they actively transported it to generate cellular levels of MSH comparable to or greater than the normal content of the wild-type strain. When these MSH-loaded mutants were transferred to MSH-free preconditioned medium, the cellular MSH was catabolized to generate GlcN-Ins and AcCys. The latter was rapidly converted to Cys by a high deacetylase activity assayed in extracts. The Cys could be converted to pyruvate by a cysteine desulfhydrase or used to regenerate MSH in cells with active MshC. Using MSH labeled with [U-(14)C]cysteine or with [6-(3)H]GlcN, it was shown that these residues are catabolized to generate radiolabeled products that are ultimately lost from the cell, indicating extensive catabolism via the glycolytic and Krebs cycle pathways. These findings, coupled with the fact the myo-inositol can serve as a sole carbon source for growth of M. smegmatis, indicate that MSH functions not only as a protective cofactor but also as a reservoir of readily available biosynthetic precursors and energy-generating metabolites potentially important under stress conditions. The half-life of MSH was determined in stationary phase cells to be approximately 50 h in strains with active MshC and 16 +/- 3 h in the MshC-deficient mutant, suggesting that MSH biosynthesis may be a suitable target for drugs to treat dormant tuberculosis.  相似文献   

14.
The mevalonate-dependent pathway is used by many organisms to synthesize isopentenyl pyrophosphate, the building block for the biosynthesis of many biologically important compounds, including farnesyl pyrophosphate, dolichol, and many sterols. Mevalonate kinase (MVK) catalyzes a critical phosphoryl transfer step, producing mevalonate 5'-phosphate. The crystal structure of thermostable MVK from Methanococcus jannaschii has been determined at 2.4 A, revealing an overall fold similar to the homoserine kinase from M. jannaschii. In addition, the enzyme shows structural similarity with mevalonate 5-diphosphate decarboxylase and domain IV of elongation factor G. The active site of MVK is in the cleft between its N- and C-terminal domains. Several structural motifs conserved among species, including a phosphate-binding loop, have been found in this cavity. Asp(155), an invariant residue among MVK sequences, is located close to the putative phosphate-binding site and has been assumed to play the catalytic role. Analysis of the MVK model in the context of the other members of the GHMP kinase family offers the opportunity to understand both the mechanism of these enzymes and the structural details that may lead to the design of novel drugs.  相似文献   

15.
The enzymes involved in the biosynthesis of riboflavin represent attractive targets for the development of drugs against bacterial pathogens, because the inhibitors of these enzymes are not likely to interfere with enzymes of the mammalian metabolism. Lumazine synthase catalyzes the penultimate step in the riboflavin biosynthesis pathway. A number of substituted purinetrione compounds represent a new class of highly specific inhibitors of lumazine synthase from Mycobacterium tuberculosis. To develop potent antibiotics for the treatment of tuberculosis, we have determined the structure of lumazine synthase from M. tuberculosis in complex with two purinetrione inhibitors and have studied binding via isothermal titration calorimetry. The structures were determined by molecular replacement using lumazine synthase from Saccharomyces cerevisiae as a search model and refined at 2 and 2.3 A resolution. The R-factors were 14.7 and 17.4%, respectively, and the R(free) values were 19.3 and 26.3%, respectively. The enzyme was found to be a pentamer consisting of five subunits related by 5-fold local symmetry. The comparison of the active site architecture with the active site of previously determined lumazine synthase structures reveals a largely conserved topology with the exception of residues Gln141 and Glu136, which participate in different charge-charge interactions in the core space of the active site. The impact of structural changes in the active site on the altered binding and catalytic properties of the enzyme is discussed. Isothermal titration calorimetry measurements indicate highly specific binding of the purinetrione inhibitors to the M. tuberculosis enzyme with dissociation constants in micromolar range.  相似文献   

16.
Ketopantoate hydroxymethyltransferase (KPHMT) catalyzes the first committed step in the biosynthesis of pantothenate, which is a precursor to coenzyme A and is required for penicillin biosynthesis. The crystal structure of KPHMT from Mycobacterium tuberculosis was determined by the single anomalous substitution (SAS) method at 2.8 A resolution. KPHMT adopts a structure that is a variation on the (beta/alpha) barrel fold, with a metal binding site proximal to the presumed catalytic site. The protein forms a decameric complex, with subunits in opposing pentameric rings held together by a swapping of their C-terminal alpha helices. The structure reveals KPHMT's membership in a small, recently discovered group of (beta/alpha) barrel enzymes that employ domain swapping to form a variety of oligomeric assemblies. The apparent conservation of certain detailed structural characteristics suggests that KPHMT is distantly related by divergent evolution to enzymes in unrelated pathways, including isocitrate lyase and phosphoenolpyruvate mutase.  相似文献   

17.
MshC catalyzes the ATP-dependent condensation of GlcN-Ins and cysteine to form Cys-GlcN-Ins, which is an intermediate in the biosynthetic pathway of mycothiol, i.e., 1-D-myo-inosityl-2-(N-acetyl-L-cysteinyl)amido-2-deoxy-alpha-D-glucopyranoside (MSH or AcCys-GlcN-Ins). MSH is produced by Mycobacterium tuberculosis, members of the Actinomycetes family, to maintain an intracellular reducing environment and protect against oxidative and antibiotic induced stress. The biosynthesis of MSH is essential for cell growth, and therefore, the MSH biosynthetic enzymes present potential targets for inhibitor design. The formation of kinetically competent adenylated intermediates was suggested by the observation of positional isotope exchange (PIX) reaction using [betagamma-(18)O6]-ATP in the presence of cysteine. The PIX rate depends on the presence of cysteine and increases with concentrations of cysteine. The loss of PIX activity upon the addition of small concentrations of pyrophosphatase suggests that the PP(i) is free to dissociate from the active site of cysteine ligase into the bulk solution. The PIX activity is also eliminated at high concentrations of GlcN-Ins, consistent with the mechanism in which GlcN-Ins binds after cysteine-adenylate formation. This PIX analysis confirms that MshC catalyzes the formation of a kinetically competent cysteinyl-adenylate intermediate after the addition of ATP and cysteine.  相似文献   

18.
Bacillus cereus is an opportunistic pathogenic bacterium closely related to Bacillus anthracis, the causative agent of anthrax in mammals. A significant portion of the B. cereus chromosomal genes are common to B. anthracis, including genes which in B. anthracis code for putative virulence and surface proteins. B. cereus thus provides a convenient model organism for studying proteins potentially associated with the pathogenicity of the highly infectious B. anthracis. The zinc-binding protein of B. cereus, BcZBP, is encoded from the bc1534 gene which has three homologues to B. anthracis. The protein exhibits deacetylase activity with the N-acetyl moiety of the N-acetylglucosamine and the diacetylchitobiose and triacetylchitotriose. However, neither the specific substrate of the BcZBP nor the biochemical pathway have been conclusively identified. Here, we present the crystal structure of BcZBP at 1.8 A resolution. The N-terminal part of the 234 amino acid protein adopts a Rossmann fold whereas the C-terminal part consists of two beta-strands and two alpha-helices. In the crystal, the protein forms a compact hexamer, in agreement with solution data. A zinc binding site and a potential active site have been identified in each monomer. These sites have extensive similarities to those found in two known zinc-dependent hydrolases with deacetylase activity, MshB and LpxC, despite a low degree of amino acid sequence identity. The functional implications and a possible catalytic mechanism are discussed.  相似文献   

19.
Hayward D  Wiid I  van Helden P 《IUBMB life》2004,56(3):131-138
Mycothiol (MSH) is the major cellular thiol in Mycobacterium tuberculosis (M.tb). We hypothesize that the mycothiol-dependent detoxification pathway may serve an important role during oxygen stress management in M. tuberculosis, derived from normal aerobic metabolism, the macrophage environment and through the action of anti-tubercular antibiotics, such as Isoniazid (INH). Total mRNA and DNA were isolated from M. bovis BCG at different stages of growth in 7H9 mycobacterial medium. Three genes involved in mycothiol metabolism and encoding the enzymes mycothiol S-conjugate amidase (Mca, Rv1082), NADPH dependent mycothiol reductase (mtr, Rv2855), and N-Acetyl-1-D-myo-Inosityl-2-Amino-2-Deoxy-alpha-D-Glucopyranoside Deacetylase (GlcNAc-Ins deacetylase, Rv1170 or mshB) were investigated for genomic rearrangements and expression. The results show that the genomic domains of the genes remain conserved in evolutionary diverse and unrelated M. tuberculosis isolates. The genes encoding enzymes implicated in mycothiol reduction, mtr (Rv2855) and the mycothiol-dependant detoxification of electrophilic agents, Mca (Rv1082), are shown to be actively transcribed during logarithmic M. bovis BCG growth. The gene encoding GlcNAc-Ins deacetylase (the rate limiting mycothiol biosynthesis step) shows induction in the presence of INH. Antisense oligonucleotides to both GlcNAc-Ins deacetylase (Rv1170) and mtr (Rv2855) mRNA affect mycobacterial growth. In conclusion the results presented here suggest that these enzymes are sensitive to free radical generating antituberculosis drugs and may be useful targets for new drug development.  相似文献   

20.
Unique metal-dependent protein tyrosine phosphatases that belong to the polymerase and histindinol phosphatase (PHP) family are present in Gram-positive bacteria. They are distinct from the Cys-based, low-molecular-weight phosphotyrosine protein phosphatases (LMPTPs). Two representative members of the PHP family tyrosine phosphatases are YwqE from Bacillus subtilis and CpsB from Streptococcus pneumoniae. YwqE is involved in polysaccharide biosynthesis, bacterial DNA metabolism, and DNA damage response in B. subtilis. CpsB regulates capsular polysaccharide biosynthesis via tyrosine dephosphorylation of CpsD, its cognate tyrosine kinase, in S. pneumoniae. To gain insights into the active site and possible conformational changes of the metal-dependent tyrosine phosphatases from Gram-positive bacteria, we have determined the crystal structures of B. subtilis YwqE (in both the apo form and the phosphate-bound form) and S. pneumoniae CpsB (in the sulfate-bound form). Comparisons of the three structures reveal conformational plasticity of two active site loops. Furthermore, in both structures of the phosphate-bound YwqE and the sulfate-bound CpsB, the phosphate (or sulfate) ion is bound to a cluster of three metal ions in the active site, thus providing insight into the pre-catalytic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号