首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Myelin proteolipid protein (PLP) is known to contain long-chain, covalently bound fatty acids. Previous studies, including our own, have suggested the occurrence of an oxyester type of linkage between fatty acids and PLP. However, we found that protein-SH groups are required in the acylation reaction, suggesting the possible presence of thioesters. In the present study, we have examined the nature of the acyl-PLP linkages by determining whether free thiol groups are generated on removal of fatty acids. Incubation of reduced and carboxyamidomethylated proteolipid apoprotein (RCM-APL) with 0.2 M hydroxylamine and [14C]iodoacetamide at pH 7.5 and 37 degrees C resulted in the release of fatty acids and the concomitant labeling of newly formed thiol groups. Incubation with Tris or methylamine at pH 7.5 failed to remove fatty acids and generate free -SH groups. The possibility that on treatment buried thiol groups became exposed was essentially excluded because (1) similar results were obtained in 2-chloroethanol, a solvent in which acylated and deacylated PLP have the same conformation, and (2) small PLP peptides were labeled only in the presence of hydroxylamine. On incubation with [14C]methylamine at pH 9.0, RCM-APL was not labeled, thus excluding the occurrence of intramolecular thiol esters. On the other hand, fatty acids were released as radioactive N-methyl fatty acylamide, indicating the presence of intermolecular thioesters between fatty acids and protein. These results demonstrate that a large proportion of fatty acids covalently bound to PLP are liked to -SH groups.  相似文献   

2.
Myelin basic protein (MBP) dissociated from brain myelin membranes when they were incubated (37 degrees C; pH 7.4) at physiological ionic strength. Zinc ions inhibited, and calcium promoted, this process. Protease activity in the membrane preparations cleaved the dissociated MBP into both small (less than 4 kilodaltons) and large (greater than 8 kilodaltons) fragments. The latter were detected, together with intact MBP, by gel electrophoresis of incubation media. Zinc ions appeared to act in two distinct processes. In the presence or absence of added CaCl2, zinc ions in the range 0.1-1 mM inhibited MBP-membrane dissociation. This process was relatively insensitive to heat and Zn2+ could be substituted by either copper (II) or cobalt (II) ions. A second effect was evident only in the presence of added calcium ions, when lower concentrations of Zn2+ (less than 0.1 mM) inhibited MBP-membrane dissociation and the accumulation of intact MBP in incubation media. This process was heat sensitive and only copper (II), but not cobalt (II), ions could replace Zn2+. To determine whether endogenous zinc in myelin membranes is bound to MBP, preparations were solubilised in buffers containing Triton X-100/2 mM CaCl2 and subjected to gel filtration. Endogenous zinc, as indicated by a dithizone-binding method, eluted with fractions containing both MBP and proteolipid protein (PLP). Thus, one means whereby zinc stabilises association of MBP with brain myelin membranes may be by promoting its binding to PLP.  相似文献   

3.
Myelin proteolipid protein (PLP) is an acylated protein which contains approximately 2 mol of ester-bound fatty acids. In this study, the amount and composition of fatty acids covalently bound to human myelin PLP were determined during development and in peroxisomal disorders. Palmitic, oleic, and stearic acids accounted for most of the PLP acyl chains. However, in contrast to PLP in other species, human PLP contains relatively more very long chain fatty acids (VLCFA). The fatty acid composition remained essentially unchanged between 1 day and 74 years of age. The total amount of fatty acid bound to PLP was not altered in any of the pathological cases examined. However, in the peroxisomal disorder adrenoleukodystrophy, the proportions of saturated and, to a lesser extent, monounsaturated VLCFA bound to PLP were increased at the expense of oleic acid. Smaller, but significant, changes were observed in adrenomyeloneuropathy. The reduction in the levels of oleic acid was also observed in two other peroxisomal disorders, the cerebrohepatorenal (Zellweger) syndrome and neonatal adrenoleukodystrophy, as well as in the lysosomal disorder Krabbe globoid cell leukodystrophy. However, in these disorders, the decrease in oleic acid occurred at the expense of stearic acid, and not VLCFA. The results indicate that, although a characteristic PLP fatty acid pattern is normally maintained, changes in the acyl chain pool can ultimately be reflected in the fatty acid composition of the protein. The altered PLP-acyl chain pattern in peroxisomal disorders may contribute to the pathophysiology of these devastating disorders.  相似文献   

4.
Myelin proteolipid protein is known to contain covalently bound fatty acid. To determine the contribution of the fatty acid to the multiple bands observed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the electrophoretic parameters of the proteolipid protein were compared with those of the deacylated form. The relative mobility and proportion of each band, as well as the retardation coefficient and free electrophoretic mobility, were not altered by removal of the fatty acid moiety. Furthermore, the acylated and deacylated forms bound the same amounts of sodium dodecyl sulfate. These data demonstrate that the presence of covalently bound fatty acids does not account for the electrophoretic heterogeneity of the proteolipid.  相似文献   

5.
The acylation of rat brain proteolipid protein (PLP) with tritiated palmitic, oleic, and myristic acids was studied in vivo and in vitro and compared with the acylation of lipids. Twenty-four hours after intracranial injection of [3H]myristic acid, only 16% of the PLP-bound label appeared as myristic acid, with 66% as palmitic, 9% as stearic, and 6% as oleic acid, whereas greater than 63% of the label in total or myelin phospholipid was in the form of myristic acid. In contrast, after labelling with [3H]palmitic or oleic acids, 75% and 86%, respectively, of the radioactivity in PLP remained in the original form. When brain tissue slices were incubated for short periods of time, the incorporation of palmitic and oleic acids into PLP exceeded that of myristic acid by a factor of 8. In both systems and with all precursors studied, the label associated with PLP was shown to be in ester linkage. The results suggest a preferential acylation of PLP with palmitic and oleic acids as compared with myristic acid. This is consistent with the fatty acid composition of the isolated PLP.  相似文献   

6.
Myelin Proteolipid Protein Gene Expression in Jimpy and Jimpymsd Mice   总被引:2,自引:1,他引:1  
Proteolipid protein (PLP) gene expression was studied in the dysmyelinating mouse mutant jimpy(msd) (jpmsd; myelin synthesis deficient) and compared with that in wild-type mice and the allelic mutant, jimpy (jp). Southern analyses of genomic DNA from jpmsd mice revealed no major rearrangements of the PLP gene relative to the wild-type mouse PLP gene. PLP-specific mRNA levels were significantly reduced in these mutant mice, although both the 3.2- and 2.4-kilobase PLP-specific mRNAs were seen. Also, no size differences in either PLP or DM20 mRNAs were found by S1 nuclease assays of brain RNA from either jpmsd or wild-type mice. Both PLP and DM20 protein were detectable at low levels in jpmsd brain homogenates, and these proteins comigrated with PLP and DM20 protein from normal mice. Western analyses showed an altered PLP:DM20 ratio in jpmsd mice relative to wild-type mice; DM20 levels exceeded PLP levels. It is surprising that a similar pattern of expression was seen in normal mice at less than 10 days of age: DM20 protein expression preceding PLP expression. Thus, jpmsd mice are capable of synthesizing normal PLP and DM20 protein; however, the PLP gene defect has affected the normal developmental pattern of expression for these two proteins.  相似文献   

7.
The protein and glycoprotein compositions of CNS myelin from the living coelacanth (Latimeria chalumnae) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An unglycosylated component of 25 kilodaltons showed substantially stronger immunoblot reactivity with antibodies against mammalian proteolipid protein (PLP) than lungfish glycosylated PLP. DM-20 (intermediate protein) was not detectable in either fish. The presence of unglycosylated PLP in CNS myelin of the actinistian coelacanth contradicts an association with cartilaginous fishes but supports tetrapod affinities closer than those of lungfish.  相似文献   

8.
Immunochemical analysis of the myelin proteolipid protein (PLP) has identified the carboxyl terminal amino acid phenylalanine 276 as the only PLP epitope conserved between the PLP components of rat and lungfish, species representing the phylogenetically most widely separated groups that synthesise typical CNS myelin. Immunoblotting using a rabbit antiserum raised against the carboxyl terminal sequence of rat PLP (residues 257-276) identified this epitope on the PLP components of both tetrapod (rat, chicken, lizard, and frog) and lobe-finned fish (coelacanth and lungfish) CNS myelin, including the DM-20 isoform of PLP, which is restricted to rat, chicken, and lizard CNS myelin. The conservation of the carboxyl terminus of PLP during evolution suggests this structure may play an important role in maintaining the organisation and function of PLP in the myelin membrane.  相似文献   

9.
As a basis for attempts to define the structures of the proteins within myelin, methods have been developed for their extraction and isolation in solutions of non-denaturing detergents. With use of solutions of deoxycholate or Triton X-100, up to 90% of the protein has been extracted from bovine CNS myelin, along with most of the phospholipid. The proteolipid protein has been purified in deoxycholate solutions by chromatography on a blue dye-ligand column, which retained all of the basic protein and 2',3'-cyclic nucleotide-3'-phosphodiesterase, and then on Sephacryl S300, which separated proteolipid protein from phospholipid and high-molecular-weight proteins. The proteolipid protein was isolated from Triton X-100 extracts of myelin by adsorption onto phosphocellulose resin, with subsequent elution by 0.5 M sodium chloride. Gel permeation chromatography was used as the final purification step. Sedimentation equilibrium experiments gave a monomer molecular weight of 134,000 +/- 8000 in deoxycholate and 145,000 +/- 17,000 in Triton X-100 solutions. On the basis of an apparent subunit molecular weight of 23,500 it was deduced that the native protein is probably hexameric. Above 0.2 gL-1 in Triton X-100 solutions and 0.5 gL-1 in deoxycholate solutions the protein aggregated. In deoxycholate solutions the protein adopts the highly helical conformation expected for an intrinsic membrane protein.  相似文献   

10.
The hydrophobic myelin proteolipid protein (PLP) contains covalently bound long-chain fatty acids which are attached to intracellular cysteine residues via thioester linkages. To gain insight into the role of acylation in the structure and function of myelin PLP, the amount and pattern of acyl groups attached to the protein during vertebrate evolution was determined. PLP isolated from brain myelin of amphibians, reptiles, birds and several mammals was subjected to alkaline methanolysis and the released methyl esters were analyzed by gas-liquid chromatography. In all species studied, PLP contained approximately the same amount of covalently bound fatty acids (3% w/w), and palmitic, palmitoleic, oleic and stearic acids were always the major acyl groups. Although the relative proportions of these fatty acids changed during evolution, the changes did not necessarily follow the variations in the acyl chain composition of the myelin free fatty acid pool, suggesting fatty acid specificity. The phylogenetic conservation of acylation suggests that this post-translational modification is critical for PLP function.  相似文献   

11.
The immediate acyl chain donor for fatty acid esterification of proteolipid protein (PLP) was identified in an in vitro system. Rat brain total membranes, after removal of crude nuclear and mitochondrial fractions, were incubated with radioactive acyl donors, extracted with chloroform/methanol, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the presence of [3H]palmitic acid, CoA, ATP, and Mg2+, acylation of endogenous PLP occurred at a linear rate for at least 2 h. The radioactivity was associated with the protein via an ester linkage, mainly as palmitic acid. Omission of ATP, CoA, Mg2+, or all three reduced fatty acid incorporation into PLP to 44, 27, 8, and 4%, respectively, of the values in the complete system. Incubation of the membrane fraction with [3H]palmitoyl-CoA in the absence of CoA and ATP led to highly labeled PLP. These data demonstrate that activation of free fatty acid is required for acylation. Phospholipids and glycolipids were not able to acylate the PLP directly. Finally, when isolated myelin was incubated with [3H]palmitoyl-CoA in the absence of cofactors, only PLP was labeled, thus confirming the identity of palmitoyl-CoA as the direct acyl chain donor and suggesting that the acylating activity and the PLP pool available for acylation are both in the myelin.  相似文献   

12.
Expression of myelin proteins was studied in the brains of 21-day-old normal mice and three dysmyelinating mutants-jimpy, quaking, and shiverer. Total brain polyribosomes and poly(A)+ mRNA were translated in two cell-free systems and the levels of synthesis of the myelin basic proteins (MBPs) and proteolipid protein (PLP) were determined. Synthesis of the MBPs in quaking homozygotes was at or above normal levels but PLP synthesis was significantly reduced to approximately 15% of control values, indicating independent effects on the expression of these proteins in this mutant. Immunoblot analysis of 21-day-old quaking brain homogenates showed a reduction in the steady-state levels of MBPs and PLP, suggesting a failure of newly synthesized MBPs to be incorporated into a stable membrane structure such as myelin. In the shiverer mutant very little synthesis of MBPs was observed, whereas greater synthesis of PLP occurred (approximately 50% of control). Almost no MBP, and low levels of PLP, were detected in the immunoblots, suggesting the possibility of a partial failure of PLP to be assembled into myelin in shiverer. In the jimpy mutant, low levels of MBP synthesis were observed in vitro (approximately 26% of controls) and very little synthesis of PLP was evident. The immunoblots of 21-day jimpy brain homogenates revealed no appreciable steady-state levels of PLP or MBP, again indicating that most newly synthesized MBPs were not incorporated into a stable membrane structure in this mutant. In sum, the data show that in the three cases examined, the mutation appears to affect the expression of the MBPs and PLP independently. Furthermore, regardless of their absolute levels of synthesis these proteins may or may not be assembled into myelin.  相似文献   

13.
We have previously shown that, in the myelin-deficient jimpy mutant mouse, 74 nucleotides are absent from the mRNA for proteolipid protein (PLP) as a result of aberrant RNA processing. To define the exact site of the jimpy mutation, we have analyzed the PLP gene obtained from a jimpy mouse genomic library. We find that the nucleotide sequence that is absent from jimpy PLP mRNA is fully preserved in the jimpy PLP gene. The missing segment corresponds to a separate exon, equivalent to exon 5 of the human PLP gene. The nucleotide sequence at the 3' end of intron 4 in the jimpy PLP gene contains a single point mutation. A base change A----G in the 3' acceptor splice site has altered a position that is 100% conserved in all published splice acceptor sequences. We conclude that the primary genetic defect of the jimpy mouse is a single base change in the PLP gene disabling an invariant recognition sequence of RNA splicing.  相似文献   

14.
The question of developmental relationships amongst myelin-related membranes in subfractions of myelinating mouse brain (15 days) was investigated by a time-staggered double isotope protocol using [3H]leucine and [14C]leucine. Preliminary results are interpreted and discussed in the context of a mathematical conceptualization of pulse-labeling kinetic analyses of myelin proteins in subcellular membrane compartments. Differences in ratio of the two leucine labels among proteins of myelin-containing subfractions are interpreted as confirming metabolic differences relating to various stages of development rather than precursor-product relationships. The incorporation into myelin of 14K, 17K, and 18.5K basic proteins (MBPs) occurs with relatively short delay times, following their synthesis (less than 5 min), and seems to occur simultaneously into all compartments. The 21.5K MBP and the proteolipid protein, on the other hand, require 10-14 min and 14-20 min, respectively. A scheme is presented to illustrate the probable assignment of subfractions to various myelin "compartments" during myelination, and to serve as a working hypothesis for studies on precursor-product relationships.  相似文献   

15.
Several genetic disorders that occur in animals and in humans result in an inability to synthesize normal myelin. Some of these disorders are inherited in an X-linked manner. The localization of the myelin proteolipid protein (PLP) gene to the X chromosome has directed the study of X-linked myelination disorders toward PLP. The myelin-deficient rat is one such X-linked dysmyelinating mutant. From a cDNA library constructed from myelin-deficient rat brain mRNA, we have isolated and sequenced cDNAs corresponding to PLP and its alternatively spliced isoform, DM-20. An A to C transition was detected in these cDNAs, which results in a threonine to proline change at amino acid 74 in both PLP and DM-20. No other substitutions were seen in the cDNA sequences. Polymerase chain reaction amplification and sequencing of the corresponding genomic regions were used to confirm the single base change. This substitution occurs in a highly hydrophobic portion of the protein that is thought to be an alpha-helical transmembrane segment. The presence of a helix-breaking amino acid such as proline in this segment is likely to influence the ability of the protein to interact with the membrane.  相似文献   

16.
Electron microscopic immunocytochemical studies were carried out to localize myelin basic protein and myelin proteolipid protein during the active period of myelination in the developing rat brain using antisera to purified rat brain myelin proteolipid protein and large basic protein. The anti-large basic protein serum was shown by the immunoblot technique to cross-react with all five forms of basic protein present in the myelin of 8-day-old rat brain. Basic protein was localized diffusely in oligodendrocytes and their processes at very early stages in myelination. The immunostaining for basic protein was not specifically associated with any subcellular structures or organelles. The ultrastructural localization of basic protein suggests that it may be involved in fusion of the cytoplasmic faces of the oligodendrocyte processes during compaction of myelin. Immunoreactivity in the oligodendrocyte and myelin due to proteolipid protein appeared at a later stage of myelination than did that due to basic protein. Staining for proteolipid protein in the oligodendrocyte was restricted to the membranes of the rough endoplasmic reticulum, the Golgi apparatus, and apparent Golgi vesicles. The early, uncompacted periaxonal wrappings of oligodendrocyte processes were well stained with antiserum to large basic protein whereas staining for proteolipid protein was visible only after the compaction of myelin sheaths had begun. Our evidence indicates that basic protein and proteolipid protein are processed differently by the oligodendrocytes with regard to their subcellular localization and their time of appearance in the developing myelin sheath.  相似文献   

17.
Myelin basic protein (MBP) is a major structural component of myelin. It is expressed exclusively in myelinating glia (oligodendrocytes in the CNS and Schwann cells in the PNS) and is localized to the cytoplasmic surface of the plasma membrane and myelin membrane produced by these cells. The work described here concerns the mechanism of plasma membrane localization of MBP in myelinating glial cells and whether it involves differentiated functions specific to these cells or general functions of plasma membrane assembly common to all cells. To this end, the subcellular localization of endogenous MBP in mouse oligodendrocytes was compared with that of transiently expressed MBP in monkey fibroblasts (Cos-1 cells) transfected with an MBP expression vector containing cDNA for rat 14K MBP. The steady-state levels of MBP-specific RNA and of MBP polypeptide expressed in the transfected fibroblasts were comparable to the levels expressed in oligodendrocytes in primary culture. MBP localization was analyzed in whole cells by immunofluorescence and in specific intracellular compartments by subcellular fractionation. The results show that MBP expressed in wild-type oligodendrocytes is localized to the plasma membrane. In contrast, MBP expressed in transfected fibroblasts appears dispersed in the cytoplasm and is distributed uniformly among the various subcellular fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The present study was designed to determine whether the palmitoylation of the hydrophobic myelin proteolipid protein (PLP) is dependent on cellular energy. To this end, brain slices from 20- and 60-day-old rats were incubated with [3H]palmitate for 1 h in the presence or absence of various metabolic poisons. In adult rats, the inhibition of mitochondrial ATP production with KCN (5 mM), oligomycin (10 microM), or rotenone (10 microM) reduced the incorporation of [3H]palmitate into fatty acyl-CoA and glycerolipids by 50-60%, whereas the labeling of PLP was unaltered. Incubation in the presence of rotenone (10 microM) plus NaF (5 mM) abolished the synthesis of acyl-CoA and lipid palmitoylation, but the incorporation of [3H]palmitate into PLP was still not different from that in controls. In rapidly myelinating animals, the inhibition of both mitochondrial electron transport and glycolysis obliterated the palmitoylation of lipids but reduced that of PLP by only 40%. PLP acylation was reduced to a similar extent when slices were incubated for up to 3 h, indicating that exogenously added palmitate is incorporated into PLP by ATP-dependent and ATP-independent mechanisms. Determination of the number of PLP molecules modified by each of these reactions during development suggests that the ATP-dependent process is important during the formation and/or compaction of the myelin sheath, whereas the ATP-independent mechanism is likely to play a role in myelin maintenance, perhaps by participating in the periodic repair of thioester linkages between the fatty acids and the protein.  相似文献   

19.
Abstract: Paralytic tremor ( pt ) is a sex-linked mutation in rabbit that affects myelination of the CNS. Myelin in the pt brains represents ∼30% of the normal levels. Previously we showed that the pt mutation affects primarily proteolipid protein ( Plp ) gene expression. In the present study we investigated the relative effect of the pt mutation on two distinctive Plp gene products, PLP- and DM-20-specific messenger RNAs. Our results showed that both PLP and DM-20 are affected and that the ratio DM-20/PLP was higher in pt rabbits than in age-matched controls. We sequenced normal rabbit PLP cDNA and characterized pt mutation at the DNA level. Rabbit PLP sequence, deduced from cDNA, differs from the human protein only at Thr198. Sequence analysis of the mutant cDNA revealed a transversion T → A in exon 2 of the Plp gene. This point mutation, which is placed at the end of the first potential transmembrane domain, results in a substitution of His36 by a glutamine. This transversion abolishes a restriction site that enabled us to screen a large number of animals and observe a perfect correlation between the pt allele and the abnormal phenotype.  相似文献   

20.
This report describes the preparation and characterization of a panel of monoclonal antibodies (mAbs) against the myelin proteolipid protein (PLP). A Lewis rat was immunized with bovine proteolipid apoprotein and 27 mAbs were selected based on their reactivity against bovine PLP on enzyme-linked immunosorbent assays. Eleven mAbs recognized the PLP carboxyl-terminal sequence when tested against a panel of synthetic peptides in a solid-phase assay. A carboxyl-terminal pentapeptide (residues 272-276) was sufficient for antibody binding and the terminal phenylalanine residue was found particularly important. Deletion, modification, or replacement of this residue markedly reduced or obliterated antigen-antibody interaction. Nine mAbs reacted with a second antigenic determinant, residues 209-217, but these could be identified only by competitive immunoassays. This peptide was a more effective inhibitor than the longer peptides 202-217 and 205-221, suggesting that flanking residues may interfere with peptide-antibody interaction. Seven antibodies did not react with any of the synthetic peptides tested and their determinants remain unidentified. Immunoblot analysis showed that the mAbs reacted with both the PLP and the DM-20 isoforms. Twenty-three of the mAbs were of the immunoglobulin G2a or b isotype; the remaining antibodies were immunoglobulin M and all of these were specific for residues 209-217. Cultured murine oligodendrocytes were stained by most of the mAbs tested, but the most intense reactivity was observed with the carboxyl-terminus-specific mAbs. The immunocytochemical analyses demonstrate that the mAbs react with the native PLP in situ and show their potential usefulness for studies of the cell biology of myelin and oligodendrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号