首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Hybrid proteins consisting of the mature form of cytochrome P450scc (mP) and adrenodoxin (Ad), attached to either the NH2- or COOH-terminus (Ad-mP and mP-Ad, respectively), were expressed in E. coli. Spectral and catalytic properties of P450scc were studied using the membrane fraction of E. coli cells. It has been shown that the Ad amino acid sequence attached to the termini of the P450scc-domain neither affects the insertion of a hybrid protein into the cytoplasmic membrane nor influences its heme binding ability. The results suggest that Ad attached to the NH2-terminus does not markedly affect the folding of the P450scc-domain, but cholesterol hydroxylase/lyase activity of the Ad-mP hybrid was found to be much lower than that of the native P450scc enzyme. The modification of the COOH-terminus does not alter the specific P450scc activity, but results in a dramatic increase in the amount of hybrid protein with incorrectly folded P450scc domain.  相似文献   

5.
Three distinct species of IGFBP in porcine serum were identified by NH2-terminal amino acid sequence analysis. The IGFBPs identified include pIGFBP-2 (34 kDa), three isoforms of pIGFBP-3 (43, 40 and 30 kDa) and two isoforms of pIGFBP-4 (30 and 26 kDa). The three isoforms of pIGFBP-3 were found to have a common NH2-terminal amino acid sequence, as were the two isoforms of pIGFBP-4. These results indicate that porcine serum contains a truncated form of IGFBP-3 and two forms of pIGFBP-4, similar to those previously isolated from human and rat serum. Furthermore, the presence of a truncated form(s) of the GH-dependent IGFBP-3 in porcine serum suggests that elucidating its origin and function may be important in understanding how IGFBPs affect the somatogenic actions of GH.  相似文献   

6.
To elucidate the role of Arg472 and C-terminal sequence of the mature form of cytochrome P450scc, a mitochondrial cytochrome P450, in the present work we have performed sequential removal of the C-terminal amino acid residues of the hemeprotein and evaluated their functional role in folding and catalysis. The removal of 2, 4, 7, or 9 amino acid residues (cytochrome P450scc mutants Delta2, Delta4, Delta7, and Delta9) does not significantly affect the physicochemical properties of the truncated forms of cytochrome P450scc, but results in significant increase in the expression level of the hemeprotein in Escherichia coli (Delta4 cytochrome P450scc mutant). However, removal of 10 C-terminal amino acid residues (Delta10 cytochrome P450scc) of mature form of cytochrome P450scc (replacement of codon for Arg472 for stop-codon) is followed by loss of the ability for correct folding in E. coli. Based on these data, it is concluded that the C-terminal amino acid residues of cytochrome P450scc (DeltaArg472-Ala481) play an important role in correct recombinant protein folding and heme binding by cytochrome P450scc during its expression in E. coli, while folding of mitochondrial cytochrome P450scc during its heterologous expression in bacterial cells is more similar to the folding of prokaryotic soluble cytochrome P450's than to microsomal cytochrome P450's.  相似文献   

7.
The synapsins are a family of neuron-specific phosphoproteins that selectively bind to small synaptic vesicles in the presynaptic nerve terminal. Using the cDNA encoding rat synapsin IIb, we employed an Escherichia coli expression system to synthesize a variety of fusion proteins containing a truncated protein A linked to different portions of the NH2-terminal region of synapsin II. The recombinant proteins were purified by IgG-Sepharose chromatography and tested in vitro for their ability to bind to purified synaptic vesicles. These experiments identified a region between amino acids 43 and 121 of the amino-terminal portion of synapsin II which binds to synaptic vesicles. Mild trypsinization of synaptic vesicles reduces binding of recombinant proteins to synaptic vesicles, suggesting that the interaction between synapsin II and the vesicles is in part mediated by a synaptic vesicle protein. The 42 NH2-terminal amino acids of synapsin II are not necessary for binding to synaptic vesicles, although this domain contains the phosphorylation site for cAMP-dependent protein kinase.  相似文献   

8.
The interaction between cytochrome P-450scc and adrenodoxin has been studied using cleavable cross-linking reagents and limited trypsinolysis. The data obtained indicate that the site responsible for adrenodoxin binding is located on the NH2-terminal fragment F1 of cytochrome P-450scc.  相似文献   

9.
10.
The endoplasmic reticulum is a major site of localization for eukaryotic cytochrome P-450 mixed-function oxidase complexes. Previous studies have shown that the microsomal forms of P-450 insert into the membrane via their hydrophobic amino terminus through the signal recognition particle-dependent pathway. We have examined the insertion of bovine 17 alpha-hydroxylase (P45017 alpha) into the endoplasmic reticulum of COS 1 cells to evaluate the functional role of its hydrophobic amino-terminal sequence and membrane insertion. An NH2-terminal truncated protein, P450 delta 2-17, which lacked amino acids 2-17 was expressed in COS 1 cells, subcellular fractions were isolated, and P450 delta 2-17 was localized by immunoblot analysis. Compared to the full-length P45017 alpha, the NH2-terminal truncation resulted in a 2.5-fold decrease in P45017 alpha protein recovered with the microsomal fraction, 50% of which was an integral membrane protein as defined by resistance to Na2CO3 extraction. Despite correct membrane localization, P450 delta 2-17 was not a functional enzyme in COS 1 cells. A CO difference spectrum of microsomes containing P450 delta 2-17 did not give a typical 450 nm absorbance. We conclude that the hydrophobic amino terminus is required for the expression of a functionally competent P45017 alpha in COS 1 cells and suggest that the insertion of the amino terminus into the membrane is necessary for the folding of this protein into its correct structural form.  相似文献   

11.
12.
The conserved central and COOH-terminal regions of troponin T (TnT) interact with troponin C, troponin I, and tropomyosin to regulate striated muscle contraction. Phylogenic data show that the NH2-terminal region has evolved as an addition to the conserved core structure of TnT. This NH2-terminal region does not bind other thin filament proteins, and its sequence is hypervariable between fiber type and developmental isoforms. Previous studies have demonstrated that NH2-terminal modifications alter the COOH-terminal conformation of TnT and thin filament Ca2+-activation, yet the functional core structure of TnT and the mechanism of NH2-terminal modulation are not well understood. To define the TnT core structure and investigate the regulatory role of the NH2-terminal variable region, we investigated two classes of model TnT molecules: (1) NH2-terminal truncated cardiac TnT and (2) chimera proteins consisting of an acidic or basic skeletal muscle TnT NH2-terminus spliced to the cardiac TnT core. Deletion of the TnT hypervariable NH2-terminus preserved binding to troponin I and tropomyosin and sustained cardiac muscle contraction in the heart of transgenic mice. Further deletion of the conserved central region diminished binding to tropomyosin. The reintroduction of differently charged NH2-terminal domains in the chimeric molecules produced long-range conformational changes in the central and COOH-terminal regions to alter troponin I and tropomyosin binding. Similar NH2-terminal charge effects are demonstrated in naturally occurring cardiac TnT isoforms, indicating a physiological significance. These results suggest that the hypervariable NH2-terminal region modulates the conformation and function of the TnT core structure to fine-tune muscle contractility.  相似文献   

13.
The lymphocyte-specific phosphoprotein LSP1 associates with the cytoplasmic face of the plasma membrane and with the cytoskeleton. Mouse LSP1 protein contains 330 amino acids and contains an NH2-terminal acidic domain of approximately 177 amino acids. The COOH-terminal half of the LSP1 protein is rich in basic residues. In this paper we show that LSP1 protein which is immunoprecipitated with anti-LSP1 antibodies from NP-40-soluble lysates of the mouse B-lymphoma cell line BAL17 is associated with actin. In vitro binding experiments using recombinant LSP1 (rLSP1) protein and rabbit skeletal muscle actin show that LSP1 binds along the sides of F-actin but does not bind to G-actin. rLSP1 does not alter the initial polymerization kinetics of actin. The highly conserved COOH-terminal basic domains of mouse and human LSP1 share a significant homology with the 20-kD COOH-terminal F-actin binding fragment of caldesmon. A truncated rLSP1 protein containing the entire COOH-terminal basic domain from residue 179 to 330, but not the NH2-terminal acidic domain binds to F-actin at least as well as rLSP1. When LSP1/CAT fusion proteins are expressed in a LSP1-negative T-lymphoma cell line, only fusion proteins containing the basic COOH-terminal domain associate with the NP-40-insoluble cytoskeleton. These data show that LSP1 binds F-actin through its COOH-terminal basic domain and strongly suggest that LSP1 interacts with the cytoskeleton by direct binding to F-actin. We propose that LSP1 plays a role in mediating cytoskeleton driven responses in lymphocytes such as receptor capping, cell motility, or cell-cell interactions.  相似文献   

14.
L Ye  M Sugiura 《Nucleic acids research》1992,20(23):6275-6279
Five ribonucleoproteins (or RNA-binding proteins) from tobacco chloroplasts have been identified to date; each of these contains an acidic N-terminal domain (24-64 amino acids) and two conserved RNA-binding domains (82-83 amino acids). All five ribonucleoproteins can bind to ssDNA and dsDNA but show high specificity for poly(G) and poly(U). Here we present the nucleic acid binding activity of each domain using a series of deletion mutant proteins made in vitro from the chloroplast 29 kDa ribonucleoproteins. The acidic domain does not have a positive effect on binding activities and proteins lacking this domain show higher affinities for nucleic acids than the wild-type proteins. Mutant proteins containing single RNA-binding domains can bind to poly(G) and poly(U), though with lower affinities than proteins containing two RNA-binding domains. The spacer region (11-37 amino acids) between the two RNA-binding domains does not interact with poly(G) or poly(U) by itself, but is required for the additive activity of the two RNA-binding domains. Proteins consisting of two RNA-binding domains but lacking the spacer have the same activity as those containing only one RNA-binding domain. Possible roles for each domain in chloroplast ribonucleoproteins are discussed.  相似文献   

15.
16.
Catalytic activities of cytochrome P450 2B4 lacking NH2-terminal amino acids 2-27 (wt Delta2B4) and that of truncated 2B4 containing a Pro to Ser mutation at position 221 were examined in a system supported by cumene hydroperoxide. Demethylation activities of either truncated 2B4 with N-methylaniline, N,N-dimethylaniline, and d-benzphetamine were lower than those of liver microsomal 2B4, whereas the rate of 1-phenylethanol oxidation to acetophenone catalyzed by liver microsomal and truncated 2B4 enzymes was nearly the same. The Km and Vmax values for cumene hydroperoxide in the demethylation of N-methylaniline by wt Delta2B4 were 20% and 28%, respectively, of those obtained for 2B4. The reaction with wt Delta2B4 displayed a lesser dependence on phospholipid than did that with 2B4, and a complex relationship between activity and substrate concentration. The results suggest that the NH2-terminal region contributes to interaction of oxidant, substrate, and phospholipid in cumene hydroperoxide-supported reactions catalyzed by cytochrome P450 2B4.  相似文献   

17.
Previous studies have indicated that at least part of the selection of proteins for degradation takes place at a binding site on ubiquitin-protein ligase, to which the protein substrate is bound prior to ligation to ubiquitin. It was also shown that proteins with free NH2-terminal alpha-NH2 groups bind better to this site than proteins with blocked NH2 termini (Hershko, A., Heller, H., Eytan, E., and Reiss, Y. (1986) J. Biol. Chem. 261, 11992-11999). In the present study, we used simple derivatives of amino acids, such as methyl esters, hydroxamates, or dipeptides, to examine the question of whether the protein binding site of the ligase is able to distinguish between different NH2-terminal residues of proteins. Based on specific patterns of inhibition of the binding to ligase by these derivatives, three types of protein substrates could be distinguished. Type I substrates are proteins that have a basic NH2-terminal residue (such as ribonuclease and lysozyme); these are specifically inhibited by derivatives of the 3 basic amino acids (His, Arg, and Lys) with respect to degradation, ligation to ubiquitin, and binding to ligase. Type II substrates (such as beta-lactoglobulin or pepsinogen, that have a Leu residue at the NH2 terminus) are not affected by the above compounds, but are specifically inhibited by derivatives of bulky hydrophobic amino acids (Leu, Trp, Phe, and Tyr). In these cases, the amino acid derivatives apparently act as specific inhibitors of the binding of the NH2-terminal residue of proteins, as indicated by the following observations: (a) derivatives in which the alpha-NH2 group is blocked were inactive and (b) in dipeptides, the inhibitory amino acid residue had to be at the NH2-terminal position. An additional class (Type III) of substrates comprises proteins that have neither basic nor bulky hydrophobic NH2-terminal amino acid residues; the binding of these proteins is not inhibited by homologous amino acid derivatives that have NH2-terminal residues similar to that of the protein. It is concluded that Type I and Type II proteins bind to distinct and separate subsites of the ligase, specific for basic or bulky hydrophobic NH2-terminal residues, respectively. On the other hand, Type III proteins apparently predominantly interact with the ligase at regions of the protein molecule other than the NH2-terminal residue.  相似文献   

18.
19.
cDNA clones encoding human hexokinase have been isolated from an adult kidney library. Analysis of this 917 amino acid protein (Mr = 102,519) indicates that the sequences of the NH2- and COOH-terminal halves, corresponding to the regulatory and catalytic domains, respectively, are homologous; and that eukaryotic hexokinases evolved by duplication of a gene encoding a protein of 450 amino acids. The COOH-terminal half of the protein created by this gene duplication retained the glucose binding site and glucose phosphorylating activity while the substrate binding sites of the NH2-terminal half evolved into a new allosteric effector site.  相似文献   

20.
Characterization of mammalian heterogeneous nuclear ribonucleoprotein complex protein A1 is reported after large-scale overproduction of the protein in Escherichia coli and purification to homogeneity. A1 is a single-stranded nucleic acid binding protein of 320 amino acids and 34,214 Da. The protein has two domains. The NH2-terminal domain is globular, whereas the COOH-terminal domain of about 120 amino acids has low probability of alpha-helix structure and is glycinerich. Nucleic acid binding properties of recombinant A1 were compared with those of recombinant and natural proteins corresponding to the NH2-terminal domain. A1 bound to single-stranded DNA-cellulose with higher affinity than the NH2-terminal domain peptides. Protein-induced fluorescence enhancement was used to measure equilibrium binding properties of the proteins. A1 binding to poly (ethenoadenylate) was cooperative with the intrinsic association constant of 1.5 X 10(5) M-1 at 0.4 M NaCl and a cooperativity parameter of 30. The NH2-terminal domain peptides bound noncooperatively and with a much lower association constant. With these peptides and with intact A1, binding was fully reversed by increasing [NaCl]; yet. A1 binding was much less salt-sensitive than binding by the NH2-terminal domain peptides. A synthetic polypeptide analog of the COOH-terminal domain was prepared and was found to bind tightly to poly-(ethenoadenylate). The results are consistent with the idea that the COOH-terminal domain contributes to A1 binding through both cooperative protein-protein interaction and direct interaction with the nucleic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号