首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism of tissue injury after exposure to air pollution particles is not known. The biological effect has been postulated to be mediated via an oxidative stress catalyzed by metals present in particulate matter (PM). We utilized a transgenic (Tg) mouse model that overexpresses extracellular superoxide dismutase (EC-SOD) to test the hypothesis that lung injury after exposure to PM results from an oxidative stress in the lower respiratory tract. Wild-type (Wt) and Tg mice were intratracheally instilled with either saline or 50 microg of residual oil fly ash (ROFA). Twenty-four hours later, specimens were obtained and included bronchoalveolar lavage (BAL) and lung for both homogenization and light histopathology. After ROFA exposure, EC-SOD Tg mice showed a significant reduction in BAL total cell counts (composed primarily of neutrophils) and BAL total protein compared with Wt. EC-SOD animals also demonstrated diminished concentrations of inflammatory mediators in BAL. There was no statistically significant difference in BAL lipid peroxidation; however, EC-SOD mice had lower concentrations of oxidized glutathione in the BAL. We conclude that enhanced EC-SOD expression decreased both lung inflammation and damage after exposure to ROFA. This supports a participation of oxidative stress in the inflammatory injury after PM exposure rather than reflecting a response to metals alone.  相似文献   

2.
The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) is highly expressed in the extracellular matrix of lung tissue and is believed to protect the lung from oxidative damage that results in diseases such as pulmonary fibrosis. This study tests the hypothesis that proteolytic removal of the heparin-binding domain of EC-SOD results in clearance of the enzyme from the extracellular matrix of pulmonary tissues and leads to a loss of antioxidant protection. Using a polyclonal antibody to mouse EC-SOD, the immunodistribution of EC-SOD in normal and bleomycin-injured lungs was examined. EC-SOD labeling was strong in the matrix of vessels, airways, and alveolar surfaces and septa in control lungs. At 2 d post-treatment, a slight increase in EC-SOD staining was evident. In contrast, lungs examined 4 or 7 d post-treatment, showed an apparent loss of EC-SOD from the matrix and surface of alveolar septa. Notably, at 7 d post-treatment, the truncated form of EC-SOD was found in the bronchoalveolar lavage fluid of bleomycin-treated mice, suggesting that EC-SOD is being removed from the extracellular matrix through proteolysis. However, loss of EC-SOD through proteolysis did not correlate with a decrease in overall pulmonary EC-SOD activity. The negligible effect on EC-SOD activity may reflect the large influx of intensely staining inflammatory cells at day 7. These results indicate that injuries leading to pulmonary fibrosis have a significant effect on EC-SOD distribution due to proteolytic removal of the heparin-binding domain and may be important in enhancing pulmonary injuries by altering the oxidant/antioxidant balance in alveolar interstitial spaces.  相似文献   

3.
Jeon B  Kim BH  Lee YS  Kim S  Yoon JB  Kim TY 《BMB reports》2011,44(1):40-45
Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme that protects cells and tissues from extracellular damage by eliminating superoxide anion radicals produced during metabolism. Two different forms of EC-SOD exist, and their different enzyme activities are a result of different disulfide bond patterns. Although only two folding variants have been discovered so far, five folding variants are theoretically possible. Therefore, we constructed five different mutant EC-SOD expression vectors by substituting cysteine residues with serine residues and evaluated their expression levels and enzyme activities. The mutant EC-SODs were expressed at lower levels than that of wild-type EC-SOD, and all of the mutants exhibited inhibited extracellular secretion, except for C195S ECSOD. Finally, we demonstrated that co-expression of wild-type EC-SOD and any one of the mutant EC-SODs resulted in reduced secretion of wild-type EC-SOD. We speculate that mutant EC-SOD causes malfunctions in systems such as antioxidant systems and sensitizes tissues to ROS-mediated diseases.  相似文献   

4.
Yen CC  Lai YW  Chen HL  Lai CW  Lin CY  Chen W  Kuan YP  Hsu WH  Chen CM 《PloS one》2011,6(10):e26870
An important issue in critical care medicine is the identification of ways to protect the lungs from oxygen toxicity and reduce systemic oxidative stress in conditions requiring mechanical ventilation and high levels of oxygen. One way to prevent oxygen toxicity is to augment antioxidant enzyme activity in the respiratory system. The current study investigated the ability of aerosolized extracellular superoxide dismutase (EC-SOD) to protect the lungs from hyperoxic injury. Recombinant human EC-SOD (rhEC-SOD) was produced from a synthetic cassette constructed in the methylotrophic yeast Pichia pastoris. Female CD-1 mice were exposed in hyperoxia (FiO2>95%) to induce lung injury. The therapeutic effects of EC-SOD and copper-zinc SOD (CuZn-SOD) via an aerosol delivery system for lung injury and systemic oxidative stress at 24, 48, 72 and 96 h of hyperoxia were measured by bronchoalveolar lavage, wet/dry ratio, lung histology, and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lung and liver tissues. After exposure to hyperoxia, the wet/dry weight ratio remained stable before day 2 but increased significantly after day 3. The levels of oxidative biomarker 8-oxo-dG in the lung and liver were significantly decreased on day 2 (P<0.01) but the marker in the liver increased abruptly after day 3 of hyperoxia when the mortality increased. Treatment with aerosolized rhEC-SOD increased the survival rate at day 3 under hyperoxia to 95.8%, which was significantly higher than that of the control group (57.1%), albumin treated group (33.3%), and CuZn-SOD treated group (75%). The protective effects of EC-SOD against hyperoxia were further confirmed by reduced lung edema and systemic oxidative stress. Aerosolized EC-SOD protected mice against oxygen toxicity and reduced mortality in a hyperoxic model. The results encourage the use of an aerosol therapy with EC-SOD in intensive care units to reduce oxidative injury in patients with severe hypoxemic respiratory failure, including acute respiratory distress syndrome (ARDS).  相似文献   

5.
Extracellular superoxide dismutase (EC-SOD) is the major isozyme of SOD in arteries, but is also abundant in lungs. In particular, mouse lungs contain large amounts of EC-SOD compared to lungs in other mammals. This suggests that EC-SOD may have an amplified function in the mouse lung. This study describes the purification and characterization of mouse EC-SOD as well as its localization in mouse lung. Mouse EC-SOD exists primarily as a homotetramer composed of a pair of dimers linked through disulfide bonds present in the heparin-binding domains of each subunit. In addition, mouse EC-SOD can exist in active multimeric forms. We developed and utilized a polyclonal antibody to mouse EC-SOD to immunolocalize EC-SOD in mouse lung. EC-SOD labeling is strongest in the matrix of vessels, airways, and alveolar septa. This localization suggests that EC-SOD may have important functions in pulmonary biology, perhaps in the modulation of nitric oxide-dependent responses.  相似文献   

6.
Pentaerythritol tetranitrate (PETN) treatment reduces progression of atherosclerosis and endothelial dysfunction and decreases oxidation of low-density lipoprotein (LDL) in rabbits. These effects are associated with decreased vascular superoxide production, but the underlying molecular mechanisms remain unknown. Previous studies demonstrated that endogenous nitric oxide could regulate the expression of extracellular superoxide dismutase (ecSOD) in conductance vessels in vivo . We investigated the effect of PETN and overexpression of endothelial nitric oxide synthase (eNOS++) on the expression and activity of ecSOD. C57BL/6 mice were randomized to receive placebo or increasing doses of PETN for 4 weeks and eNOS++ mice with a several fold higher endothelial-specific eNOS expression were generated. The expression of ecSOD was determined in the lung and aortic tissue by real-time PCR and Western blot. The ecSOD activity was measured using inhibition of cytochrome C reduction. There was no effect of PETN treatment or eNOS overexpression on ecSOD mRNA in the lung tissue, whereas ecSOD protein expression increased from 2.5-fold to 3.6-fold ( P < 0.05) by 6 mg PETN/kg body weight (BW)/day and 60 mg PETN/kg BW/day, respectively. A similar increase was found in aortic homogenates. eNOS++ lung cytosols showed an increase of ecSOD protein level of 142 ± 10.5% as compared with transgene-negative littermates ( P < 0.05), which was abolished by Nω-nitro-L-arginine treatment. In each animal group, the increase of ecSOD expression was paralleled by an increase of ecSOD activity. Increased expression and activity of microvascular ecSOD are likely induced by increased bioavailability of vascular nitric oxide. Up-regulation of vascular ecSOD may contribute to the reported antioxidative and anti-atherosclerotic effects of PETN.  相似文献   

7.
8.
9.
Mice lacking the secreted extracellular superoxide dismutase (EC-SOD) or the cytosolic copper- and zinc-containing SOD (CuZn-SOD) show relatively mild phenotypes. To explore the possibility that the isoenzymes have partly overlapping functions, single and double knockout mice were examined. The absence of EC-SOD was found to be without effect on the lifespan of mice, and the reduced lifespan of CuZn-SOD knockouts was not further shortened by EC-SOD deficiency. The urinary excretion of isoprostanes was increased in CuZn-SOD knockout mice, and plasma thiobarbituric acid-reactive substances levels were elevated in EC-SOD knockout mice. These oxidant stress markers showed potentiated increases in the absence of both isoenzymes. Other alterations were mainly found in CuZn-SOD knockout mice, such as halved glutathione peroxidase activity in the tissues examined and increased glutathione and iron in the liver. There were no changes in tissue content of the alternative superoxide scavenger ascorbate, but there was a 25% reduction in ascorbate in blood plasma in mice lacking CuZn-SOD. No increase was found in the urinary excretion of the terminal metabolites of NO, nitrite, and nitrate in any of the genotypes. In conclusion, apart from the increases in the global urinary and plasma oxidant stress markers, our phenotype studies revealed no other evidence that the copper- and zinc-containing SOD isoenzymes have overlapping roles.  相似文献   

10.
Reactive oxygen and nitrogen species such as superoxide and nitric oxide are released into the extracellular spaces by inflammatory and airway epithelial cells. These molecules may exacerbate lung injury after influenza virus pneumonia. We hypothesized that enhanced expression of extracellular superoxide dismutase (EC SOD) in mouse airways would attenuate the pathological effects of influenza pneumonia. We compared the pathogenic effects of a nonlethal primary infection with mouse-adapted Hong Kong influenza A/68 virus in transgenic (TG) EC SOD mice versus non-TG (wild-type) littermates. Compared with wild-type mice, EC SOD TG mice showed less lung injury and inflammation as measured by significant blunting of interferon-gamma induction, reduced cell count and total protein in bronchoalveolar lavage fluid, reduced levels of lung nitrite/nitrate nitrotyrosine, and markedly reduced lung pathology. These results demonstrate that enhancing EC SOD in the conducting and distal airways of the lung minimizes influenza-induced lung injury by both ameliorating inflammation and attenuating oxidative stress.  相似文献   

11.
12.
Extracellular superoxide dismutase (EC-SOD) is a metalloprotein and functions as an antioxidant enzyme. In this study, we used lentiviral vectors to generate transgenic chickens that express the human EC-SOD gene. The recombinant lentiviruses were injected into the subgerminal cavity of freshly laid eggs. Subsequently, the embryos were incubated to hatch using phases II and III of the surrogate shell ex vivo culture system. Of 158 injected embryos, 16 chicks (G0) hatched and were screened for the hEC-SOD by PCR. Only 1 chick was identified as a transgenic bird containing the transgene in its germline. This founder (G0) bird was mated with wild-type hens to produce transgenic progeny, and 2 transgenic chicks (G1) were produced. In the generated transgenic hens (G2), the hEC-SOD protein was expressed in the egg white and showed antioxidant activity. These results highlight the potential of the chicken for production of biologically active proteins in egg white. [BMB Reports 2013; 46(8): 404-409]  相似文献   

13.
Superoxide anions react with nitric oxide to form peroxynitrite and hence reduce the bioavailability of nitric oxide in the arteries. Extracellular superoxide dismutase (EC-SOD) is a major superoxide scavenger in human plasma and vascular tissues. The objective of this study is to assess whether essential hypertension is associated with an alteration in EC-SOD activity. In this report, blood samples were obtained from hypertensive (n=39) and normotensive (n=37) African-Americans. Plasma EC-SOD activity was measured using in-gel activity staining and spectrophotometric assays, EC-SOD protein level was measured using Western blotting, nitrotyrosine was measured using slot blotting, 8-isoprostane was measured with an enzyme immunoassay, and plasma copper and zinc concentrations were measured using an atomic absorption assay. Our data demonstrate that the copper, zinc, and plasma EC-SOD protein concentrations in the hypertensive and normotensive subjects are indistinguishable. Compared to normotensive controls, hypertensive patients have significantly reduced plasma EC-SOD activity. Plasma nitrotyrosine and 8-isoprostane levels are significantly higher in the hypertensive patients than in normotensive controls. Results from this study suggest that a reduction in EC-SOD activity in hypertensive patients is not due to a down-regulation of the SOD3 gene (encoding EC-SOD) or deficiency in mineral cofactors. Furthermore, the reduced EC-SOD activity might be at least partially responsible for the increased oxidative stress, as reflected by increased plasma nitrotyrosine and 8-isoprostane, in hypertensive subjects.  相似文献   

14.
Several synthetic decapeptides containing an HAV tripeptide motif were tested for their ability to modulate the enzymatic activity of rat extracellular SOD, an enzyme which also contains an HAV motif. Out of nine decapeptides that were tested, only a FGF-receptor derived peptide was active as a negative modulator of enzyme activity. These results strenghten the thesis that HAV motifs are not only involved in homophilic interactions and suggest that soluble FGF-receptor molecules might moderate the activity of extracellular SOD.  相似文献   

15.
Hemorrhage results in excessive production of superoxide that is associated with severe lung injury. We examined whether the superoxide dismutase (SOD) mimetic manganese(III) mesotetrakis (di-N-ethylimidazole) porphyrin (AEOL 10150) could attenuate this lung injury and whether extracellular (EC)-SOD-deficient mice would have increased hemorrhage-induced lung injury. Compared with wild-type mice, EC-SOD-deficient mice had increased lung neutrophil accumulation, a 3.9-fold increase in myeloperoxidase activity, a 1.5-fold increase in nuclear factor (NF)-kappaB activation, and a 1.5-fold increase in lipid peroxidation 1 h after hemorrhage. Pretreatment with AEOL 10150 did not attenuate neutrophil accumulation but significantly reduced NF-kappaB activation and lipid peroxidation in both wild-type and EC-SOD-deficient mice. The increase in hemorrhage-induced neutrophil accumulation in the lungs of EC-SOD-deficient mice suggests that EC-SOD might play a role in mediating neutrophil recruitment to the lung.  相似文献   

16.
Asbestosis is a chronic form of interstitial lung disease characterized by inflammation and fibrosis that results from the inhalation of asbestos fibers. Although the pathogenesis of asbestosis is poorly understood, reactive oxygen species may mediate the progression of this disease. The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) can protect the lung against a variety of insults; however, its role in asbestosis is unknown. To determine if EC-SOD plays a direct role in protecting the lung from asbestos-induced injury, intratracheal injections of crocidolite were given to wild-type and ec-sod-null mice. Bronchoalveolar lavage fluid (BALF) from asbestos-treated ec-sod-null mice at 24 h, 14 days, or 28 days posttreatment showed increased inflammation and total BALF protein content compared to that of wild-type mice. In addition, lungs from ec-sod-null mice showed increased hydroxyproline content compared to those of wild-type mice, indicating a greater fibrotic response. Finally, lungs from ec-sod-null mice showed greater oxidative damage, as assessed by nitrotyrosine content compared to those of their wild-type counterparts. These results indicate that depletion of EC-SOD from the lung increases oxidative stress and injury in response to asbestos.  相似文献   

17.
Sensitivity of the assay for Cu,Zn superoxide dismutase 3 (SOD3), the predominant form of SOD in serum, can be increased, and interferences caused by low-molecular-weight substances in the serum can be reduced by conducting the assay at pH 10 with xanthine/xanthine oxidase and acetylated cytochrome c (cyt c) as superoxide generator and detector, respectively. Serum SOD3 activity was assayed under these conditions in an experiment where weanling, male rats were fed diets for 6 weeks containing 3, 5 and 15 mg Zn/kg with dietary Cu set at 0.3, 1.5 and 5 mg Cu/kg at each level of dietary Zn. Serum SOD3 responded to changes in dietary Cu but not to changes in dietary Zn. A second experiment compared serum SOD3 activity to traditional indices of Cu status in weanling, male and female rats after they were fed diets containing, nominally, 0, 1, 1.5, 2, 2.5, 3 and 6 mg Cu/kg for 6 weeks. Serum SOD3 activity was significantly lower (P < .05) in male rats fed diets containing 0 and 1 mg Cu/kg and female rats fed diet containing 0 mg Cu/kg compared with rats fed diet containing 6 mg Cu/kg. These changes were similar to changes in liver Cu concentrations, liver cyt c oxidase (CCO) activity and plasma ceruloplasmin in males and females. Serum SOD3 activity was also strongly, positively correlated with liver Cu concentrations over the entire range of dietary Cu concentrations (R(2) = .942 in males, R(2) = .884 in females, P < .0001). Plots of serum SOD3 activity, liver Cu concentration, liver CCO activity and ceruloplasmin as functions of kidney Cu concentration all had two linear segments that intersected at similar kidney Cu concentrations (18-22 microg/g dry kidney in males, 15-17 microg/g dry kidney in females). These findings indicate that serum SOD3 activity is a sensitive index of Cu status.  相似文献   

18.
The influence of cytokines on extracellular superoxide dismutase (EC-SOD) expression by human dermal fibroblasts was investigated. The expression was markedly stimulated by interferon-gamma (IFN-gamma), was varying between fibroblast lines stimulated or depressed by interleukin-1 alpha (IL-1 alpha), was intermediately depressed by tumor necrosis factor-alpha (TNF-alpha), and markedly depressed by transforming growth factor-beta (TGF-beta). TNF-alpha, however, enhanced the stimulation by a high dose of IFN-gamma, whereas TGF-beta markedly depressed the stimulations given by IFN-gamma and IL-1 alpha. The ratio between the maximal stimulation and depression observed was around 30-fold. The responses were generally slow and developed over periods of several days. There were no effects of IFN-alpha, IL-2, IL-3, IL-4, IL-6, IL-8, granulocyte-macrophage colony-stimulating factor, human growth hormone, Escherichia coli lipopolysaccharide, leukotriene B4, prostaglandin E2, formylmethionylleucylphenylalanine, platelet-activating factor, and indomethacin. The cytokines influencing the EC-SOD expression are also known to influence superoxide production by leukocytes and other cell types, and the EC-SOD response pattern is roughly compatible with the notion that its function is to protect cells against extracellular superoxide radicals. The results show that EC-SOD is a participant in the complex inflammatory response orchestrated by cytokines. The CuZn-SOD activity of the fibroblasts was not influenced by any of the cytokines, whereas the Mn-SOD activity was depressed by TGF-beta. TNF-alpha, IL-1 alpha, and IFN-gamma stimulated the Mn-SOD activity, as previously known, and these responses were reduced by TGF-beta. The different responses of the three SOD isoenzymes illustrate their different physiological roles.  相似文献   

19.
Oxygen free radicals apparently play important roles in diseases of the blood vessel wall and increased secretion of superoxide radicals occurs in many situations. The vascular wall contains large amounts of extracellular superoxide dismutase (EC-SOD). The synthesis of the enzyme by the smooth muscle cells (SMC) is modulated by cytokines, growth factors, and vasoactive factors.Here we studied the effects of oxidants (pyrogallol, xanthine oxidase, Cu and Fe), antioxidants (SOD, catalase, and ascorbate), glutathione modulation (n-acetylcysteine and buthionine sulfoximine) and nitric oxide on EC-SOD expression by human vascular SMCs. Generally, the responses in EC-SOD synthesis were small, and no changes were noted in mRNA levels. High concentrations of some of the agents caused reductions in EC-SOD synthesis, mostly concomitantly with toxic effects on the cells. Cell cultures are normally ascorbate deficient, and addition of ascorbate to approach physiological levels doubled the EC-SOD content. Iron ions up-regulated EC-SOD synthesis but also blocked the secretion of the enzyme. Only down-regulation was found by NO*-releasing compounds.In conclusion, there is limited response to oxidant stress of EC-SOD synthesis by SMCs on a cell-autonomous level. The synthesis appears mainly regulated by factors coordinating concerted tissue responses.  相似文献   

20.
The effects of a 30 mg/day beta-carotene supplement for 60 days on blood cell and serum antioxidant enzymes and selenium concentrations were examined in healthy adults. Serum beta-carotene concentrations increased significantly (P < 0.05) in response to supplementation. Forty percent of subjects exhibited hypercarotenemia of the skin after 30 days. There were no changes in the activity of red blood cell or leukocyte catalase activity, red blood cell copper,zinc-dependent superoxide dismutase activity or serum myeloperoxidase concentration in response to beta-carotene supplementation. Leukocyte superoxide dismutase activity decreased significantly (P < 0.05) at 30 and 60 days compared to baseline. Serum glutathione peroxidase concentration decreased significantly (P < 0.05) between baseline and days 45 and 60 of supplementation. Serum selenium and blood hemoglobin concentrations did not change during the study. Supplemental beta-carotene may alter the antioxidant capacity of plasma and/or blood cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号