首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
Differentiating 3T3-L1 cells exhibit a dramatic increase in the rate of insulin-stimulated glucose transport during their conversion from proliferating fibroblasts to nonproliferating adipocytes. On day 3 of 3T3-L1 cell differentiation, basal glucose transport and cell surface transferrin binding are markedly diminished. This occurs concomitant with the formation of a distinct insulin-responsive vesicular pool of intracellular glucose transporter 1 (GLUT1) and transferrin receptors as assessed by sucrose velocity gradients. The intracellular distribution of the insulin-responsive aminopeptidase is first readily detectable on day 3, and its gradient profile and response to insulin at this time are identical to that of GLUT1. With further time of differentiation, GLUT4 is expressed and targeted to the same insulin-responsive vesicles as the other three proteins. Our data are consistent with the notion that a distinct insulin-sensitive vesicular cargo compartment forms early during fat call differentiation and its formation precedes GLUT4 expression. The development of this compartment may result from the differentiation-dependent inhibition of constitutive GLUT1 and transferrin receptor trafficking such that there is a large increase in, or the new formation of, a population of postendosomal, insulin-responsive vesicles.  相似文献   

2.
Glucose transporter isoform expression was studied in the skeletal muscle-like cell line, C2C12. Northern and Western blot analysis showed that the insulin-responsive muscle/fat glucose transporter isoform, GLUT 4, was expressed in these cells at very low levels, whereas the erythrocyte isoform, GLUT 1, was expressed at readily detectable levels. Insulin did not stimulate glucose transport in this cultured muscle cell line. The C2C12 cells were then transfected separately with either GLUT 1 or GLUT 4, and stable cell lines expressing high levels of mRNA and protein were isolated. GLUT 1-transfected cells exhibited a 3-fold increase in the amount of the GLUT 1 transporter protein which was accompanied by a 2- to 3-fold increase in the glucose uptake rate. However, despite at least a 10-fold increase in GLUT 4 mRNA and protein detected after GLUT 4 cDNA transfection, the glucose uptake of these cells was unchanged and remained insulin-insensitive. By laser confocal immunofluorescence imaging, it was established that the transfected GLUT 4 protein was localized almost entirely in cytoplasmic compartments. In contrast, the GLUT 1 isoform was detected both at the plasma membrane as well as in intracellular compartments. These results suggest that acute insulin stimulation of glucose transport is not solely dependent on the presence of the insulin receptor and the GLUT 4 protein, and that the presence of some additional protein(s) must be required.  相似文献   

3.
Elevated saturated FFAs including palmitate (C16:0) are a primary trigger for peripheral insulin resistance characterized by impaired glucose uptake/disposal in skeletal muscle, resulting from impaired GLUT4 translocation in response to insulin. We herein demonstrate that palmitate induces down-regulation of sortilin, a sorting receptor implicated in the formation of insulin-responsive GLUT4 vesicles, via mechanisms involving PKCθ and TNF-α-converting enzyme, but not p38, JNK, or mitochondrial reactive oxygen species generation, leading to impaired GLUT4 trafficking in C2C12 myotubes. Intriguingly, unsaturated FFAs such as palmitoleate (C16:1) and oleate (C18:1) had no such detrimental effects, appearing instead to effectively reverse palmitate-induced impairment of insulin-responsive GLUT4 recycling along with restoration of sortilin abundance by preventing aberrant PKCθ activation. On the other hand, shRNA-mediated reduction of sortilin in intact C2C12 myotubes inhibited insulin-induced GLUT4 recycling without dampening Akt phosphorylation. We found that the peroxisome proliferator-activated receptor γ agonist troglitazone prevented the palmitate-induced sortilin reduction and also ameliorated insulin-responsive GLUT4 recycling without altering the palmitate-evoked insults on signaling cascades; neither highly phosphorylated PKCθ states nor impaired insulin-responsive Akt phosphorylation was affected. Taken together, our data provide novel insights into the pathogenesis of PKCθ-dependent insulin resistance with respect to insulin-responsive GLUT4 translocation, which could occur not only through defects of insulin signaling but also via a reduction of sortilin, which directly controls trafficking/sorting of GLUT4 in skeletal muscle cells. In addition, our data suggest the insulin-sensitizing action of peroxisome proliferator-activated receptor γ agonists to be at least partially mediated through the restoration of proper GLUT4 trafficking/sorting events governed by sortilin.  相似文献   

4.
5.
It is well established that insulin stimulation of glucose uptake in skeletal muscle cells is mediated through translocation of GLUT4 from intracellular storage sites to the cell surface. However, the established skeletal muscle cell lines, with the exception of L6 myocytes, reportedly show minimal insulin-dependent glucose uptake and GLUT4 translocation. Using C(2)C(12) myocytes expressing exofacial-Myc-GLUT4-enhanced cyan fluorescent protein, we herein show that differentiated C(2)C(12) myotubes are equipped with basic GLUT4 translocation machinery that can be activated by insulin stimulation ( approximately 3-fold increase as assessed by anti-Myc antibody uptake and immunostaining assay). However, this insulin stimulation of GLUT4 translocation was difficult to demonstrate with a conventional 2-deoxyglucose uptake assay because of markedly elevated basal glucose uptake via other glucose transporter(s). Intriguingly, the basal glucose transport activity in C(2)C(12) myotubes appeared to be acutely suppressed within 5 min by preincubation with a pathophysiologically high level of extracellular glucose (25 mM). In contrast, this activity was augmented by acute glucose deprivation via an unidentified mechanism that is independent of GLUT4 translocation but is dependent on phosphatidylinositol 3-kinase activity. Taken together, these findings indicate that regulation of the facilitative glucose transport system in differentiated C(2)C(12) myotubes can be achieved through surprisingly acute glucose-dependent modulation of the activity of glucose transporter(s), which apparently contributes to obscuring the insulin augmentation of glucose uptake elicited by GLUT4 translocation. We herein also describe several methods of monitoring insulin-dependent glucose uptake in C(2)C(12) myotubes and propose this cell line to be a useful model for analyzing GLUT4 translocation in skeletal muscle.  相似文献   

6.
7.
8.
In fat and muscle, insulin stimulates glucose uptake by rapidly mobilizing the GLUT4 glucose transporter from a specialized intracellular compartment to the plasma membrane. We describe a method to quantify the relative proportion of GLUT4 at the plasma membrane, using flow cytometry to measure a ratio of fluorescence intensities corresponding to the cell surface and total amounts of a tagged GLUT4 reporter in individual living cells. Using this assay, we demonstrate that both 3T3-L1 and CHO cells contain intracellular compartments from which GLUT4 is rapidly mobilized by insulin and that the initial magnitude and kinetics of redistribution to the plasma membrane are similar in these two cell types when they are cultured identically. Targeting of GLUT4 to a highly insulin-responsive compartment in CHO cells is modulated by culture conditions. In particular, we find that amino acids regulate distribution of GLUT4 to this kinetically defined compartment through a rapamycin-sensitive pathway. Amino acids also modulate the magnitude of insulin-stimulated translocation in 3T3-L1 adipocytes. Our results indicate a novel link between glucose and amino acid metabolism.  相似文献   

9.
Insulin regulates blood glucose by promoting uptake by fat and muscle, and inhibiting production by liver. Insulin-stimulated glucose uptake is mediated by GLUT4, which translocates from an intracellular compartment to the plasma membrane. GLUT4 traffic and insulin secretion both rely on calcium-dependent, regulated exocytosis. Deletion of the voltage-gated potassium channel Kv1.3 results in constitutive expression of GLUT4 at the plasma membrane. Inhibition of channel activity stimulated GLUT4 translocation through a calcium dependent mechanism. The synaptotagmins (Syt) are calcium sensors for vesicular traffic, and Syt VII mediates lysosomal and secretory granule exocytosis. We asked if Syt VII regulates insulin secretion by pancreatic beta cells, and GLUT4 translocation in insulin-sensitive tissues mouse model. Syt VII deletion (Syt VII -/-) results in glucose intolerance and a marked decrease in glucose-stimulated insulin secretion in vivo. Pancreatic islet cells isolated from Syt VII -/- cells secreted significantly less insulin than islets of littermate controls. Syt VII deletion disrupted GLUT4 traffic as evidenced by constitutive expression of GLUT4 present at the plasma membrane of fat and skeletal muscle cells and unresponsiveness to insulin. These data document a key role for Syt VII in peripheral glucose homeostasis through its action on both insulin secretion and GLUT4 traffic.  相似文献   

10.
Glucose transporter isoform 4 (GLUT4), is the sole glucose transporter responsible for the effect of insulin on postprandial blood glucose clearance. However, the nature of the insulin sensitivity of GLUT4 remains unknown. In this study, we replaced the first luminal loop of cellugyrin, a 4-transmembrane protein that does not respond to insulin, with that of GLUT4. The chimera protein is targeted to the intracellular insulin-responsive vesicles and is translocated to the plasma membrane upon insulin stimulation. The faithful targeting of the chimera depends on the expression of the sorting receptor sortilin, which interacts with the unique amino acid residues in the first luminal loop of GLUT4. Thus the first luminal loop may confer insulin responsiveness to the GLUT4 molecule.  相似文献   

11.
Ins (endocytosis) and outs (exocytosis) of GLUT4 trafficking   总被引:3,自引:0,他引:3  
Glucose transporter 4 (GLUT4) is the major insulin-regulated glucose transporter expressed mainly in muscle and adipose tissue. GLUT4 is stored in a poorly characterized intracellular vesicular compartment and translocates to the cell surface in response to insulin stimulation resulting in an increased glucose uptake. This process is essential for the maintenance of normal glucose homeostasis and involves a complex interplay of trafficking events and intracellular signaling cascades. Recent studies have identified sortilin as an essential element for the formation of GLUT4 storage vesicles during adipogenesis and Golgi-localized gamma-ear-containing Arf-binding protein (GGA) as a key coat adaptor for the entry of newly synthesized GLUT4 into the specialized compartment. Insulin-stimulated GLUT4 translocation from this compartment to the plasma membrane appears to require the Akt/protein kinase B substrate termed AS160 (Akt substrate of 160kDa). In addition, the VPS9 domain-containing protein Gapex-5 in complex with CIP4 appears to function as a Rab31 guanylnucleotide exchange factor that is necessary for insulin-stimulated GLUT4 translocation. Here, we attempt to summarize recent advances in GLUT4 vesicle biogenesis, intracellular trafficking and membrane fusion.  相似文献   

12.
Following biosynthesis, both GLUT1 and VSV-G proteins appear rapidly (2-3 h) at the plasma membrane, whereas GLUT4 is retained in intracellular membrane compartments and does not display any significant insulin responsiveness until 6-9 h. Surprisingly, the acquisition of insulin responsiveness did not require plasma membrane endocytosis, as expression of a dominant-interfering dynamin mutant (Dyn/K44A) had no effect on the insulin-stimulated GLUT4 translocation. Furthermore, expression of endocytosis-defective GLUT4 mutants or continuous surface labeling with an exofacial specific antibody demonstrated that GLUT4 did not transit the cell surface prior to the acquisition of insulin responsiveness. The expression of a dominant-interfering GGA mutant (VHS-GAT) had no effect on the trafficking of newly synthesized GLUT1 or VSV-G protein to the plasma membrane, but completely blocked the insulin-stimulated translocation of newly synthesized GLUT4. Furthermore, in vitro budding of GLUT4 vesicles but not GLUT1 or the transferrin receptor was inhibited by VHS-GAT. Together, these data demonstrate that following biosynthesis, GLUT4 directly sorts and traffics to the insulin-responsive storage compartment through a specific GGA-sensitive process.  相似文献   

13.
Insulin regulates glucose transport in muscle and adipose tissue by triggering the translocation of a facilitative glucose transporter, GLUT4, from an intracellular compartment to the cell surface. It has previously been suggested that GLUT4 is segregated between endosomes, the trans-Golgi network (TGN), and a postendosomal storage compartment. The aim of the present study was to isolate the GLUT4 storage compartment in order to determine the relationship of this compartment to other organelles, its components, and its presence in different cell types. A crude intracellular membrane fraction was prepared from 3T3-L1 adipocytes and subjected to iodixanol equilibrium sedimentation analysis. Two distinct GLUT4-containing vesicle peaks were resolved by this procedure. The lighter of the two peaks (peak 2) was comprised of two overlapping peaks: peak 2b contained recycling endosomal markers such as the transferrin receptor (TfR), cellubrevin, and Rab4, and peak 2a was enriched in TGN markers (syntaxin 6, the cation-dependent mannose 6-phosphate receptor, sortilin, and sialyltransferase). Peak 1 contained a significant proportion of GLUT4 with a smaller but significant amount of cellubrevin and relatively little TfR. In agreement with these data, internalized transferrin (Tf) accumulated in peak 2 but not peak 1. There was a quantitatively greater loss of GLUT4 from peak 1 than from peak 2 in response to insulin stimulation. These data, combined with the observation that GLUT4 became more sensitive to ablation with Tf-horseradish peroxidase following insulin treatment, suggest that the vesicles enriched in peak 1 are highly insulin responsive. Iodixanol gradient analysis of membranes isolated from other cell types indicated that a substantial proportion of GLUT4 was targeted to peak 1 in skeletal muscle, whereas in CHO cells most of the GLUT4 was targeted to peak 2. These results indicate that in insulin-sensitive cells GLUT4 is targeted to a subpopulation of vesicles that appear, based on their protein composition, to be a derivative of the endosome. We suggest that the biogenesis of this compartment may mediate withdrawal of GLUT4 from the recycling system and provide the basis for the marked insulin responsiveness of GLUT4 that is unique to muscle and adipocytes.  相似文献   

14.
In adipocytes and cardiac or skeletal muscle, glucose transporter isoform 4 (GLUT4) is targeted to insulin-responsive intracellular membrane vesicles (IRVs) that contain several membrane proteins, including insulin-responsive aminopeptidase (IRAP) that completely colocalizes with GLUT4 in basal and insulin-treated cells. Cardiac GLUT4 content is reduced by 65-85% in IRAP knockout mice, suggesting that IRAP may regulate the targeting or degradation of GLUT4. To determine whether GLUT4 is required for maintenance of IRAP content within IRVs, we studied the expression and cellular localization of IRAP and other GLUT4 vesicle-associated proteins, in hearts of mice with cardiac-specific deletion of GLUT4 (G4H-/-). In G4H-/- hearts, IRAP content was reduced by 60%, but the expression of other vesicle-associated proteins, namely cellugyrin, IGF-II/mannose-6-phosphate, and transferrin receptors, secretory carrier-associated membrane proteins and vesicle-associated membrane protein were unchanged. Using sucrose gradient centrifugation and cell surface biotinylation, we found that IRAP content in 50-80S vesicles where GLUT4 vesicles normally sediment was markedly depleted in G4H-/- hearts, and the remaining IRAP was found in the heavy membrane fraction. Although insulin caused a discernible increase in cell surface IRAP content of G4H-/- cardiomyocytes, cell surface IRAP remained 70% lower than insulin-stimulated controls. Immunoabsorption of intracellular vesicles with anticellugyrin antibodies revealed that IRAP content was reduced by 70% in both cellugyrin-positive and cellugyrin-negative vesicles. Endosomal recycling, as measured by transferrin receptor recycling was normal. Thus, GLUT4 and IRAP content of early endosome-derived sorting vesicles and of IRVs are coordinately regulated, and both proteins are required for maintenance of key constituents of these compartments in cardiac muscle cells in vivo.  相似文献   

15.
Insulin causes the exocytic translocation of GLUT4 glucose transporters to stimulate glucose uptake in fat and muscle. Previous results support a model in which TUG traps GLUT4 in intracellular, insulin-responsive vesicles termed GLUT4 storage vesicles (GSVs). Insulin triggers TUG cleavage to release the GSVs; GLUT4 then recycles through endosomes during ongoing insulin exposure. The TUG C terminus binds a GSV anchoring site comprising Golgin-160 and possibly other proteins. Here, we report that the TUG C terminus is acetylated. The TUG C-terminal peptide bound the Golgin-160-associated protein, ACBD3 (acyl-CoA-binding domain-containing 3), and acetylation reduced binding of TUG to ACBD3 but not to Golgin-160. Mutation of the acetylated residues impaired insulin-responsive GLUT4 trafficking in 3T3-L1 adipocytes. ACBD3 overexpression enhanced the translocation of GSV cargos, GLUT4 and insulin-regulated aminopeptidase (IRAP), and ACBD3 was required for intracellular retention of these cargos in unstimulated cells. Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, bound TUG and deacetylated the TUG peptide. SIRT2 overexpression reduced TUG acetylation and redistributed GLUT4 and IRAP to the plasma membrane in 3T3-L1 adipocytes. Mutation of the acetylated residues in TUG abrogated these effects. In mice, SIRT2 deletion increased TUG acetylation and proteolytic processing. During glucose tolerance tests, glucose disposal was enhanced in SIRT2 knock-out mice, compared with wild type controls, without any effect on insulin concentrations. Together, these data support a model in which TUG acetylation modulates its interaction with Golgi matrix proteins and is regulated by SIRT2. Moreover, acetylation of TUG enhances its function to trap GSVs within unstimulated cells and enhances insulin-stimulated glucose uptake.  相似文献   

16.
Intrauterine growth restriction (IUGR) leads to obesity, glucose intolerance, and type 2 diabetes mellitus in the adult. To determine the mechanism(s) behind this "metabolic imprinting" phenomenon, we examined the effect of total calorie restriction during mid- to late gestation modified by postnatal ad libitum access to nutrients (CM/SP) or nutrient restriction (SM/SP) vs. postnatal nutrient restriction alone (SM/CP) on skeletal muscle and white adipose tissue (WAT) insulin-responsive glucose transporter isoform (GLUT4) expression and insulin-responsive translocation. A decline in skeletal muscle GLUT4 expression and protein concentrations was noted only in the SM/SP and SM/CP groups. In contrast, WAT demonstrated no change in GLUT4 expression and protein concentrations in all experimental groups. The altered in utero hormonal/metabolic milieu was associated with a compensatory adaptation that persisted in the adult and consisted of an increase in the skeletal muscle basal plasma membrane-associated GLUT4 concentrations. This perturbation led to no further exogenous insulin-induced GLUT4 translocation, thereby disabling the insulin responsiveness of the skeletal muscle but retaining it in WAT. These changes, which present at birth, collectively maximize basal glucose transport to the compromised skeletal muscle with a relative resistance to exogenous/postprandial insulin. Preservation of insulin responsiveness in WAT may serve as a sink that absorbs postprandial nutrients that can no longer efficiently access skeletal muscle. We speculate that, in utero, GLUT4 aberrations may predict type 2 diabetes mellitus, whereas postnatal nutrient intake may predict obesity, thereby explaining the heterogeneous phenotype of the IUGR adult offspring.  相似文献   

17.
To promote glucose uptake into fat and muscle cells, insulin causes the translocation of GLUT4 glucose transporters from intracellular vesicles to the cell surface. Previous data support a model in which TUG traps GLUT4-containing vesicles and tethers them intracellularly in unstimulated cells and in which insulin mobilizes this pool of vesicles by releasing this tether. Here we show that TUG undergoes site-specific endoproteolytic cleavage, which separates a GLUT4-binding, N-terminal region of TUG from a C-terminal region previously suggested to bind an intracellular anchor. Cleavage is accelerated by insulin stimulation in 3T3-L1 adipocytes and is highly dependent upon adipocyte differentiation. The N-terminal TUG cleavage product has properties of a novel 18-kDa ubiquitin-like modifier, which we call TUGUL. The C-terminal product is observed at the expected size of 42 kDa and also as a 54-kDa form that is released from membranes into the cytosol. In transfected cells, intact TUG links GLUT4 to PIST and also binds Golgin-160 through its C-terminal region. PIST is an effector of TC10α, a GTPase previously shown to transmit an insulin signal required for GLUT4 translocation, and we show using RNAi that TC10α is required for TUG proteolytic processing. Finally, we demonstrate that a cleavage-resistant form of TUG does not support highly insulin-responsive GLUT4 translocation or glucose uptake in 3T3-L1 adipocytes. Together with previous results, these data support a model whereby insulin stimulates TUG cleavage to liberate GLUT4 storage vesicles from the Golgi matrix, which promotes GLUT4 translocation to the cell surface and enhances glucose uptake.  相似文献   

18.
Insulin stimulates glucose transport by translocation of the membrane glucose transporter GLUT4 from intracellular vesicles to the plasma membrane. GLUT4 is highly expressed in adipose tissue and skeletal muscle. We have constructed a cDNA containing the human GLUT4 inserted by a 12 amino acid protein C epitope in the first extracellular (exofacial) domain of the human GLUT4 (GLUT4-PC). Stable expression of GLUT4-PC in L6 myoblasts (L6-GLUT4-PC) was confirmed in immunofluorescence using monoclonal antibodies against protein C. The protein C staining yielded labeling in perinuclear vesicles strongly co-localizing with GLUT4 detected with antibodies directed against the endofacial part of GLUT4. The L6-GLUT4-PC cells were further characterized in a direct cell-based enzyme-linked immunosorbent assay by the use of beta-galactosidase. Cell surface binding of monoclonal protein C antibodies was detected with beta-galactosidase-conjugated secondary antibodies and chlorophenolred-beta-D-galactopyranoside (CPRG) as substrate in 2% paraformaldehyde fixed cells. In this assay, stimulation with insulin created a rapidly detectable recruitment of GLUT4-PC to the cell surface. This cell-based enzyme-linked immunosorbent GLUT4 assay was shown to be comparable with that of previously reported radioactive assays.  相似文献   

19.
Insulin stimulation of glucose uptake is achieved by redistribution of insulin-responsive glucose transporters, GLUT4, from intracellular storage compartment(s) to the plasma membrane in adipocytes and muscle cells. Although GLUT4 translocation has been investigated using various approaches, GLUT4 trafficking properties within the cell are largely unknown. Our novel method allows direct analysis of intracellular GLUT4 dynamics at the single molecule level by using Quantum dot technology, quantitatively establishing the behavioral nature of GLUT4. Our data demonstrate the predominant mechanism for intracellular GLUT4 sequestration in the basal state to be “static retention” in fully differentiated 3T3L1 adipocytes. We also directly defined three distinct insulin-stimulated GLUT4 trafficking processes: 1) release from the putative GLUT4 anchoring system in storage compartment(s), 2) the speed at which transport GLUT4-containing vesicles move, and 3) the tethering/docking steps at the plasma membrane. Intriguingly, insulin-induced GLUT4 liberation from its static state appeared to be abolished by either pretreatment with an inhibitor of phosphatidylinositol 3-kinase or overexpression of a dominant-interfering AS160 mutant (AS160/T642A). In addition, our novel approach revealed the possibility that, in certain insulin-resistant states, derangements in GLUT4 behavior can impair insulin-responsive GLUT4 translocation.  相似文献   

20.
Facilitative glucose transporter isoforms, GLUT1 and GLUT4, have different intracellular distributions despite their very similar structure. In insulin-responsive tissues such as adipose tissues and muscle, GLUT4 protein resides mainly in the intracellular region in a basal condition and is translocated to the plasma membrane upon stimulation of insulin. In contrast, GLUT1 protein was distributed about equally between plasma membranes and low density microsomal membranes in 3T3-L1 adipocytes. Furthermore, GLUT1 and GLUT4 were reported to be differentially targeted to the plasma membrane and intracellular region, respectively, when expressed in Chinese hamster ovary cells and HepG2 cells. To elucidate the differential intracellular targeting mechanisms, several chimeric glucose transporters in which portions of GLUT4 are replaced with corresponding portions of GLUT1 have been stably expressed in Chinese hamster ovary cells. Immunofluorescence and immunoelectron microscopy as well as measurement of glucose transport activity revealed that two domains of GLUT4, which are not the NH2- or COOH-terminal domain, determine its targeting to the intracellular vesicles. The first domain contains the consensus sequence of the leucine zipper structure, suggesting that a dimer-forming structure of the glucose transporter might be required for its proper targeting. The other domain contains 28 amino acids, nine of which are different between GLUT1 and GLUT4. Immunoelectron microscopy revealed that the chimeric transporters containing both of these two domains of GLUT1, only the first domain of GLUT1, and none of the domains, exhibited a different cellular distribution with approximately 65, 30, and 15% of the transporters apparently on the plasma membrane, respectively. The addition of insulin did not alter the apparent cellular distributions of these chimeric transporters. These domains would be specifically recognized by intracellular targeting mechanisms in Chinese hamster ovary cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号