首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucus hypersecretion is a prominent manifestation in patients with chronic inflammatory airway diseases and contributes to their morbidity and mortality by plugging airways and causing recurrent infections. Human neutrophil elastase (HNE) exists in high concentrations (1-20 microM) in airway secretions of these patients and induces overproduction of MUC5AC mucin, a major component of airway mucus. Previous studies showed that HNE induces MUC5AC mucin production involving reactive oxygen species (ROS) generation and TGF-alpha-dependent epidermal growth factor receptor (EGFR) activation in human airway epithelial cells. However, the molecular mechanisms involved in these responses are not defined. TNF-alpha-converting enzyme (TACE) cleaves pro-TGF-alpha into soluble TGF-alpha and can be activated by ROS. We hypothesize that HNE activates TACE via ROS generation, resulting in cleavage of pro-TGF-alpha, EGFR activation, and MUC5AC mucin expression in airway epithelial cells. Here we show that in human airway epithelial cells HNE increases TGF-alpha release, EGFR phosphorylation, and MUC5AC mucin expression, effects that were attenuated by TACE inhibitor TAPI-1 and by specific knockdown of TACE expression with small interfering RNA, implicating TACE in HNE-induced responses. These responses to HNE were also reduced by pretreatment with ROS scavengers, implicating ROS. Furthermore, we show that HNE causes protein kinase C (PKC) activation and translocation from cytosol to plasma membrane; blockade of this effect by PKC inhibitors reduced HNE-induced ROS generation and other responses, implicating PKC. We conclude that HNE induces MUC5AC mucin expression via a cascade involving PKC-ROS-TACE in human airway epithelial cells.  相似文献   

2.
Eosinophil recruitment and mucus hypersecretion are characteristic of asthmatic airway inflammation, but eosinophils have not been shown to induce mucin production. Because an epidermal growth factor receptor (EGFR) cascade induces MUC5AC mucin in airways, and because EGFR is up-regulated in asthmatic airways, we examined the effect of eosinophils on MUC5AC mucin production in NCI-H292 cells (a human airway epithelial cell line that produces mucins). Eosinophils were isolated from the peripheral blood of allergic patients, and their effects on MUC5AC mucin gene and protein synthesis were assessed using in situ hybridization and ELISAs. When IL-3 plus GM-CSF or IL-3 plus IL-5 were added to eosinophils cultured with NCI-H292 cells, MUC5AC mucin production increased; eosinophils or cytokines alone had no effect. Eosinophil supernatant obtained by culturing eosinophils with IL-3 plus GM-CSF or IL-3 plus IL-5 also increased MUC5AC synthesis in NCI-H292 cells, an effect that was prevented by selective EGFR inhibitors (AG1478, BIBX1522). Supernatant of activated eosinophils induced EGFR phosphorylation in NCI-H292 cells. Supernatant of activated eosinophils contained increased concentrations of TGF-alpha protein (an EGFR ligand) and induced up-regulation of TGF-alpha expression and release in NCI-H292 cells. A blocking Ab to TGF-alpha reduced activated eosinophil-induced MUC5AC synthesis in NCI-H292 cells. These results show that activated eosinophils induce mucin synthesis in human airway epithelial cells via EGFR activation, and they implicate TGF-alpha produced by eosinophils and epithelial cells in the EGFR activation that results in mucin production in human airway epithelium.  相似文献   

3.
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death in the U.S. Because cigarette smoking is so importantly implicated in the pathogenesis of COPD and because mucus hypersecretion plays such an important role in COPD, understanding of the mechanisms of smoking-induced mucus hypersecretion could lead to new therapies for COPD. Cigarette smoke causes mucin overproduction via EGF receptor (EGFR) in airway epithelial cells, but the cellular mechanism remains unknown. Airway epithelial cells contain EGFR proligands on their surfaces, which can be cleaved by metalloprotease and subsequently bind to EGFR resulting in mucin production. We hypothesize that TNF-alpha-converting enzyme (TACE) is activated by cigarette smoke, resulting in increased shedding of EGFR proligand, leading to EGFR phosphorylation and mucin induction in human airway epithelial (NCI-H292) cells. Here we show that cigarette smoke increases MUC5AC production in NCI-H292 cells, an effect that is prevented by an EGFR-neutralizing antibody and by specific knockdown of transforming growth factor-alpha (TGF-alpha) using small interfering RNA (siRNA) for TGF-alpha, implicating TGF-alpha-dependent EGFR activation in the responses. Cigarette smoke increases TGF-alpha shedding, EGFR phosphorylation, and mucin production, which are prevented by metalloprotease inhibitors (GM-6001 and TNF-alpha protease inhibitor-1) and by specific knockdown of TACE with TACE siRNA, implicating TACE in smoking-induced responses. Furthermore, pretreatment with antioxidants prevents smoking-induced TGF-alpha shedding and mucin production, suggesting that reactive oxygen species is involved in TACE activation. These results implicate TACE in smoking-induced mucin overproduction via the TACE-proligand-EGFR signal pathway in NCI-H292 cells.  相似文献   

4.
Oxidative stress has been implicated in the pathogenesis of inflammatory diseases of airways. Here we show that oxidative stress causes ligand-independent activation of epidermal growth factor receptors (EGFR) and subsequent activation of mitogen-activated protein kinase kinase (MEK)-p44/42 mitogen-activated protein kinase (p44/42mapk), resulting in mucin synthesis in NCI-H292 cells. Exogenous hydrogen peroxide and neutrophils activated by IL-8, FMLP, or TNF-alpha increased EGFR tyrosine phosphorylation and subsequent activation of p44/42mapk and up-regulated the expression of MUC5AC at both mRNA and protein levels in NCI-H292 cells. These effects were blocked by selective EGFR tyrosine kinase inhibitors (AG1478, BIBX1522) and by a selective MEK inhibitor (PD98059), whereas a selective platelet-derived growth factor receptor tyrosine kinase inhibitor (AG1295), a selective p38 MAPK inhibitor (SB203580), and a negative compound of tyrosine kinase inhibitors (A1) were without effect. Neutrophil supernatant-induced EGFR tyrosine phosphorylation, activation of p44/42mapk, and MUC5AC synthesis were inhibited by antioxidants (N-acetyl-cysteine, DMSO, dimethyl thiourea, or superoxide dismutase); neutralizing Abs to EGFR ligands (EGF and TGF-alpha) were without effect, and no TGF-alpha protein was found in the neutrophil supernatant. In contrast, the EGFR ligand, TGF-alpha, increased EGFR tyrosine phosphorylation, activation of p44/42mapk, and subsequent MUC5AC synthesis, but these effects were not inhibited by antioxidants. These results implicate oxidative stress in stimulating mucin synthesis in airways and provide new therapeutic approaches in airway hypersecretory diseases.  相似文献   

5.
In previous work, we showed that epidermal growth factor receptor (EGFR) activation causes mucin expression in airway epithelium in vivo and in human NCI-H292 airway epithelial cells and normal human bronchial epithelial (NHBE) cells in vitro. Here we show that the cell surface adhesion molecule, E-cadherin, promotes EGFR-mediated mucin production in NCI-H292 cells in a cell density- and cell cycle-dependent fashion. The addition of the EGFR ligand, transforming growth factor (TGF)-alpha, increased MUC5AC protein expression markedly in dense, but not in sparse, cultures. MUC5AC-positive cells in dense cultures contained 2 N DNA content and did not incorporate bromodeoxyuridine, suggesting that they develop via cell differentiation and that a surface molecule involved in cell-cell contact is important for EGFR-mediated mucin production. In support of this hypothesis, in dense cultures of NCI-H292 cells and in NHBE cells at air-liquid interface, blockade of E-cadherin-mediated cell-cell contacts decreased EGFR-dependent mucin production. E-cadherin blockade also increased EGFR-dependent cell proliferation and TGF-alpha-induced EGFR tyrosine phosphorylation in dense cultures of NCI-H292 cells, suggesting that E-cadherin promotes EGFR-dependent mucin production and inhibits EGFR-dependent cell proliferation via modulation of EGFR phosphotyrosine levels. Furthermore, in dense cultures, E-cadherin blockade decreased the rate of EGFR tyrosine dephosphorylation, implicating an E-cadherin-dependent protein tyrosine phosphatase in EGFR dephosphorylation. Thus E-cadherin promotes EGFR-mediated cell differentiation and MUC5AC production, and our results suggest that this occurs via a pathway involving protein tyrosine phosphatase-dependent EGFR dephosphorylation.  相似文献   

6.
Mucin production by epithelial cells is modulated by many soluble factors, including epidermal growth factor (EGF). E-Cadherin promotes EGF receptor (EGFR)-mediated MUC5AC mucin production in airway epithelial cells in dense cultures, suggesting the involvement of E-cadherin in activating EGFRs and mucin production. However, the role of E-cadherin in modulating mucin production is not completely understood. We examined its role in MUC5AC production in a human lung epithelial cell line, NCI-H292. Treatment of low density NCI-H292 cells with an anti-E-cadherin monoclonal antibody (SHE78-7) inhibited cell-cell contact in the dispersed colonies, but promoted MUC5AC production. Furthermore, treatment of the NCI-H292 cells with anti-E-cadherin antibody stimulated phosphorylation of extracellular signal-regulated kinase (ERK). The enhanced production of MUC5AC was inhibited with an EGFR inhibitor and with a MEK inhibitor, but not with a Src family kinase inhibitor. These results suggest that inhibition of E-cadherin activates EGFRs independently of Src and promotes MUC5AC production through the ERK signaling pathway in sparsely cultured NCI-H292 cells.  相似文献   

7.
Mucin production by epithelial cells is modulated by many soluble factors, including epidermal growth factor (EGF). E-Cadherin promotes EGF receptor (EGFR)-mediated MUC5AC mucin production in airway epithelial cells in dense cultures, suggesting the involvement of E-cadherin in activating EGFRs and mucin production. However, the role of E-cadherin in modulating mucin production is not completely understood. We examined its role in MUC5AC production in a human lung epithelial cell line, NCI-H292. Treatment of low density NCI-H292 cells with an anti-E-cadherin monoclonal antibody (SHE78-7) inhibited cell-cell contact in the dispersed colonies, but promoted MUC5AC production. Furthermore, treatment of the NCI-H292 cells with anti-E-cadherin antibody stimulated phosphorylation of extracellular signal-regulated kinase (ERK). The enhanced production of MUC5AC was inhibited with an EGFR inhibitor and with a MEK inhibitor, but not with a Src family kinase inhibitor. These results suggest that inhibition of E-cadherin activates EGFRs independently of Src and promotes MUC5AC production through the ERK signaling pathway in sparsely cultured NCI-H292 cells.  相似文献   

8.
Mucus hypersecretion from hyperplastic airway goblet cells is a hallmark of chronic obstructive pulmonary disease (COPD). Although cigarette smoking is thought to be involved in mucus hypersecretion in COPD, the mechanism by which cigarette smoke induces mucus overproduction is unknown. Here we show that activation of epidermal growth factor receptors (EGFR) is responsible for mucin production after inhalation of cigarette smoke in airways in vitro and in vivo. In the airway epithelial cell line NCI-H292, exposure to cigarette smoke upregulated the EGFR mRNA expression and induced activation of EGFR-specific tyrosine phosphorylation, resulting in upregulation of MUC5AC mRNA and protein production, effects that were inhibited completely by selective EGFR tyrosine kinase inhibitors (BIBX1522, AG-1478) and that were decreased by antioxidants. In vivo, cigarette smoke inhalation increased MUC5AC mRNA and goblet cell production in rat airways, effects that were prevented by pretreatment with BIBX1522. These effects may explain the goblet cell hyperplasia that occurs in COPD and may provide a novel strategy for therapy in airway hypersecretory diseases.  相似文献   

9.
Chronic obstructive pulmonary disease (COPD) is an inflammatory process characterized by airway mucus hypersecretion. Previous studies have reported that lipopolysaccharides (LPS) stimulate mucin 5AC (MUC5AC) production via epidermal growth factor receptor (EGFR) in human airway cells. Moreover, this production was shown to depend on the expression and activity of matrix metalloproteinase 9 (MMP-9), which is increased in COPD patients’ serum. In the present study we investigated the signaling pathway mediating LPS-stimulated secretion and activation of MMP-9, and the regulatory effects of this pathway on the production of MUC5AC in the human airway cells NCI-H292. Using specific inhibitors, we found that LPS-stimulated cells secreted and activated MMP-9 via EGFR. Our results also indicate that signaling events downstream of EGFR involved PI3K-dependent activation of Rac1, which mediated the NADPH-generated reactive oxygen species responsible for MMP-9 secretion and activation. Finally, we observed that EGFR/PI3K/Rac1/NADPH/ROS/MMP-9 regulate MUC5AC production in LPS-challenged NCI-H292 cells.  相似文献   

10.
Mucous hypersecretion is an important feature of obstructive airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. Multiple stimuli induce mucin production via activation of an epidermal growth factor receptor (EGFR) cascade, but the mechanisms that exaggerate mucin production in obstructive airway diseases remain unknown. In this study, we show that binding of CCL20, a G protein-coupled receptor (GPCR) ligand that is upregulated in the airways of subjects with obstructive airway diseases, to its unique GPCR CCR6 induces MUC5AC mucin production in human airway epithelial (NCI-H292) cells via metalloprotease TNF-α-converting enzyme (TACE)-dependent EGFR activation. We also show that EGFR activation by its potent ligand TGF-α induces reactivation of EGFR via binding of endogenously produced CCL20 to its receptor CCR6 in NCI-H292 cells but not in normal human bronchial epithelial (NHBE) cells, exaggerating mucin production in the NCI-H292 cells. In NCI-H292 cells, TGF-α stimulation induced two phases of EGFR phosphorylation (EGFR-P). The second EGFR-P was TACE-dependent and was responsible for most of the total mucin induced by TGF-α. Binding of endogenously produced CCL20 to CCR6 increased the second EGFR-P and subsequent mucin production induced by TGF-α. In NHBE cells, TGF-α-induced EGFR activation did not lead to significant CCL20 production or to EGFR rephosphorylation, and less mucin was produced. We conclude that NCI-H292 cells but not NHBE cells produce CCL20 in response to EGFR activation, which leads to a second phase of EGFR-P and subsequent exaggerated mucin production. These findings have potentially important therapeutic implications in obstructive airway diseases.  相似文献   

11.
Hyperproduction of goblet cells and mucin in the airway epithelium is an important feature of airway inflammatory diseases. We investigated the involvement of Notch signaling in MUC5AC expression in NCI-H292 cells, a human lung carcinoma cell line. Epidermal growth factor (EGF) stimulated generation of the Notch intracellular domain (NICD) in a RBP-Jκ-dependent manner. Treatment with γ-secretase inhibitors L-685,458 or DAPT or introduction of small interfering RNA directed against Notch1 reduced EGF-induced MUC5AC expression. The inhibitory effect of L-685,458 on EGF-induced MUC5AC mRNA and protein expression was also observed in primary human bronchial epithelial cells. Blockage of Notch signaling with L-685,458 or Notch siRNA resulted in a decrease in EGF-induced phosphorylation of ERK. These results suggested that ERK activation is necessary for the regulation of EGF receptor (EGFR)-mediated MUC5AC expression by Notch signaling. Conversely, forced expression of NICD induced both EGFR and ERK phosphorylation with MUC5AC expression even in the absence of EGF. Treatment of the NICD-expressing cells with EGF further augmented ERK phosphorylation in an additive manner. The ERK phosphorylation induced by exogenous NICD was inhibited by treatment with an Ab that antagonizes EGFR activity as well as by inhibitors of EGFR and ERK, implying that Notch signaling induces MUC5AC expression by activating the EGFR pathway. Collectively, these results suggest that MUC5AC expression is regulated by a bidirectional circuit between Notch and EGFR signaling pathways.  相似文献   

12.
目的:以人中性粒细胞弹性蛋白酶(HNE)为诱导因素,研究建立黏蛋白(MUC)5AC和5B高表达的细胞模型,同时对黏蛋白高表达机制进行初步研究。方法:培养人肺腺癌细胞A549,以HNE为刺激因素,EGFR中和抗体、表皮细胞生长因子受体(EGFR)磷酸化阻断剂AG1478为干预因素,分组培养。采用四甲基偶氮唑盐光吸收法(MTT法)检测HNE对细胞活性的影响;逆转录-聚合酶链反应(RT-PCR)检测MUC5AC mRNA、MUC5B mRNA的变化;酶联免疫吸附测定法(ELISA)定量分析MUC5AC和MUC5B蛋白含量的差异;细胞免疫化学以及激光共聚焦技术进一步直观观察MUC5AC、MUC5B、p-EGFR蛋白表达的变化。结果:HNE对A549细胞活力的影响呈剂量依赖性;HNE刺激组的MUC5AC、MUC5B基因转录和蛋白表达水平均明显高于对照组,差异有统计学意义(均P<0.01);HNE刺激组p-EGFR蛋白表达显著增多,EGFR中和抗体、AG1478能显著降低HNE诱导的MUC5AC高表达,但对MUC5B高表达无干预作用。结论:人肺腺癌细胞A549同时表达MUC5AC和MUC5B,HNE能有效刺激A549细胞高表达MUC5AC和MUC5B,黏蛋白高表达细胞模型的建立为研究气道粘液高分泌疾病提供了实验基础。HNE通过激活EGFR信号转导通路诱导MUC5AC的高表达,但MUC5B高表达机制与之不同,有待进一步研究。  相似文献   

13.
14.
The main etiologic factor for chronic bronchitis is cigarette smoke. Exposure to cigarette smoke is reported to induce goblet cell hyperplasia and mucus production. Mucin synthesis in airways has been reported to be regulated by the EGFR system. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the ligand-activated nuclear receptor superfamily. PPAR-gamma is implicated in anti-inflammatory responses, but mechanisms underlying these varied roles remain ill-defined. Recently, reports have shown that upregulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) might be one of the mechanisms through which PPAR-gamma agonists exert their anti-inflammatory actions. However, no data are available on the role of PPAR-gamma in smoke-induced mucin production. In this study, we investigated the effect of PPAR-gamma agonist (rosiglitazone) on smoke-induced mucin production in NCI-H292 cells. Exposure to cigarette smoke causes a significant decrease in PTEN expression and increases dose-dependent EGFR-specific tyrosine phosphorylation, resulting in MUC5AC mucin production in NCI-H292 cells. PPAR-gamma agonists or specific inhibitors of phosphoinositide 3-kinase exert inhibition of cigarette smoke-induced mucin production, with the upregulation of PTEN signaling and downregulation of Akt expression. This study demonstrates that PPAR-gamma agonist functions as a regulator of epithelial cell inflammation that may result in reduction of mucin-producing cells in airway epithelium.  相似文献   

15.
Mucus hypersecretion is an important manifestation in patients with chronic inflammatory airway diseases. Excessive production of mucin leads to airway mucus obstruction and contributes to morbidity and mortality in these diseases. The molecular mechanisms underlying mucin overproduction, however, still remain largely unknown. Here, we report that the bacterium Pseudomonas aeruginosa (P. aeruginosa), an important human respiratory pathogen, induced MUC5AC mucin expression via an epithelial cell signaling cascade in human airway epithelial cells. The flagellin purified from P. aeruginosa up-regulated MUC5AC expression by activating its receptor Toll-like receptor 5 (TLR5) in 16HBE cells. This effect was inhibited by NADPH oxidase inhibitor (DPI), small interfering RNA of dual oxidase 2 (Duox2) and reactive oxygen species (ROS) scavengers (nPG and DMSO). Flagellin induced TGF-α release, and stimulated phosphorylated epidermal growth factor receptor (EGFR) and MUC5AC overproduction. These effects were prevented by EGFR and TGF-α neutralizing antibodies, metalloprotease inhibitors (GM6001 and TNF-α protease inhibitor-1) and specific knockdown of TNF-α-converting enzyme (TACE) with TACE siRNA. These findings may bring new insights into the molecular pathogenesis of P. aeruginosa infections and lead to novel therapeutic intervention for mucin overproduction in patients with P. aeruginosa infections.  相似文献   

16.
Allergic bronchopulmonary mycosis, characterized by excessive mucus secretion, airflow limitation, bronchiectasis, and peripheral blood eosinophilia, is predominantly caused by a fungal pathogen, Aspergillus fumigatus. Using DNA microarray analysis of NCI-H292 cells, a human bronchial epithelial cell line, stimulated with fungal extracts from A. fumigatus, Alternaria alternata, or Penicillium notatum, we identified a mucin-related MUC5AC as one of the genes, the expression of which was selectively induced by A. fumigatus. Quantitative RT-PCR, ELISA, and histochemical analyses confirmed an induction of mucin and MUC5AC expression by A. fumigatus extracts or the culture supernatant of live microorganisms in NCI-H292 cells and primary cultures of airway epithelial cells. The expression of MUC5AC induced by A. fumigatus extracts diminished in the presence of neutralizing Abs or of inhibitors of the epidermal growth factor receptor or its ligand, TGF-α. We also found that A. fumigatus extracts activated the TNF-α-converting enzyme (TACE), critical for the cleavage of membrane-bound pro-TGF-α, and its inhibition with low-molecular weight inhibitors or small interfering RNA suppressed the expression of MUC5AC. The protease activity of A. fumigatus extracts was greater than that of other fungal extracts, and treatment with a serine protease inhibitor, but not with a cysteine protease inhibitor, eliminated its ability to activate TACE or induce the expression of MUC5AC mRNA in NCI-H292. In conclusion, the prominent serine protease activity of A. fumigatus, which caused the overproduction of mucus by the bronchial epithelium via the activation of the TACE/TGF-α/epidermal growth factor receptor pathway, may be a pathogenetic mechanism of allergic bronchopulmonary mycosis.  相似文献   

17.
18.
《Phytomedicine》2014,21(4):529-533
We investigated whether aqueous extract of the root of Platycodon grandiflorum A. de Candolle (APG), platycodinD3 and deapi-platycodin significantly affect the production and secretion of airway mucin using in vivo and in vitro experimental models. Effect of APG was checked on hypersecretion of pulmonary mucin in sulfur dioxide-induced bronchitis in rats. Confluent NCI-H292 cells were pretreated with platycodinD3 or deapi-platycodin for 30 min and then stimulated with PMA (phorbol 12-myristate 13-acetate) for 24 h. The MUC5AC mucin production and secretion were measured by ELISA. The results were as follows: (1) APG stimulated the secretion of airway mucin in sulfur dioxide-induced bronchitis rat model; (2) platycodinD3 and deapi-platycodin inhibited the production of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively; (3) however, platycodinD3 and deapi-platycodin did not inhibit but stimulated the secretion of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively. This result suggests that aqueous extract of P. grandiflorum A. de Candolle and the two natural products derived from it, platycodinD3 and deapi-platycodin, can regulate the production and secretion of airway mucin and, at least in part, explains the traditional use of aqueous extract of P. grandiflorum A. de Candolle as expectorants in diverse inflammatory pulmonary diseases.  相似文献   

19.
Mucus overproduction is an important feature of bronchial asthma. MUC5AC mucin is a major component of mucus and is overproduced in patients with asthma. Although regulation of MUC5AC production has been well investigated, its regulation through the signals from extracellular matrix (ECM) is less clear. In this study, we investigated whether the signals from ECM regulate MUC5AC production in the human lung epithelial cell line NCI-H292. We found that MUC5AC production is downregulated in NCI-H292 cells cultured on type-IV collagen, a major component of ECM, but shows no obvious changes when cultured on type-I collagen or fibronectin. In contrast, MUC5AC production was upregulated on laminin and on reconstituted basement membrane (Matrigel), a complex of ECM components. Antibody-mediated inhibition of integrin β1-subunit, a major receptor involved in the adherence of cells to type-IV collagen, upregulated the MUC5AC production in NCI-H292 cells, and also in the cells cultured on type-IV collagen. Although the major signaling pathway from integrins is via Src kinase activation, treatment of cells with PP2, a Src kinase inhibitor, did not recover the downregulation of MUC5AC on type-IV collagen. In contrast, on Matrigel, the inhibition of integrin β1-subunit did not abolish the upregulation of MUC5AC production, but PP2 reduced the upregulation. These results suggest that ECM and an integrin/Src pathway play an important role in the regulation of MUC5AC production in the cell line NCI-H292. The production of MUC5AC is downregulated on type-IV collagen through a Src-independent pathway. In contrast, MUC5AC is upregulated on Matrigel through a Src-dependent pathway in NCI-H292 cells.  相似文献   

20.
Mucus hypersecretion is a clinically important manifestation of chronic inflammatory airway diseases, such as asthma and Chronic obstructive pulmonary disease (COPD). Mucin production in airway epithelia is increased under conditions of oxidative stress. Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 suppression is related to the development of airway inflammation and increased ROS levels. In this study, we investigated the role of SHP-1 in mucin secretion triggered by oxidative stress. Human lung mucoepidermoid H292 carcinoma cells were transfected with specific siRNA to eliminate SHP-1 gene expression. Cultured cells were treated with hydrogen peroxide (H2O2), and Mucin 5AC(MUC5AC) gene expression and mucin production were determined. Activation of p38 mitogen activated protein kinase (MAPK) in association with MUC5AC production was evaluated. N-acetylcysteine (NAC) was employed to determine whether antioxidants could block MUC5AC production. To establish the precise role of p38, mucin expression was observed after pre-treatment of SHP-1-depleted H292 cells with the p38 chemical blocker. We investigated the in vivo effects of oxidative stress on airway mucus production in SHP-1-deficient heterozygous (mev/+) mice. MUC5AC expression was enhanced in SHP-1 knockdown H292 cells exposed to H2O2, compared to that in control cells. The ratio between phosphorylated and total p38 was significantly increased in SHP-1-deficient cells under oxidative stress. Pre-treatment with NAC suppressed both MUC5AC production and p38 activation. Blockage of p38 MAPK led to suppression of MUC5AC mRNA expression. Notably, mucin production was enhanced in the airway epithelia of mev/+ mice exposed to oxidative stress. Our results clearly indicate that SHP-1 plays an important role in airway mucin production through regulating oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号