首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of central vagal stimulation induced by 2h cold exposure or intracisternal injection of thyrotropin-releasing hormone (TRH) analog, RX-77368, on gastro-duodenal enteric cholinergic neuronal activity was assessed in conscious rats with Fos and peripheral choline acetyltransferase (pChAT) immunoreactivity (IR). pChAT-IR was detected in 68%, 70% and 73% of corpus, antrum and duodenum submucosal neurons, respectively, and in 65% of gastric and 46% of duodenal myenteric neurons. Cold and RX-77368 induced Fos-IR in over 90% of gastric submucosal and myenteric neurons, while in duodenum only 25-27% of submucosal and 50-51% myenteric duodenal neurons were Fos positive. In the stomach, cold induced Fos-IR in 93% of submucosal and 97% of myenteric pChAT-IR neurons, while in the duodenum only 7% submucosal and 5% myenteric pChAT-IR neurons were Fos positive. In the duodenum, cold induced Fos in 91% of submucosal and 99% of myenteric VIP-IR neurons. RX-77368 induces similar percentages of Fos/pChAT-IR and Fos/VIP-IR neurons. These results indicate that increased central vagal outflow activates cholinergic neurons in the stomach while in the duodenum, VIP neurons are preferentially stimulated.  相似文献   

2.
We examined c-fos expression in specific brain nuclei in response to gastric distension and investigated whether 5-HT released from enterochromaffin (EC) cells was involved in this response. The role of 5-HT3 receptors in this mechanism was also addressed. Release of 5-HT was examined in an ex vivo-perfused stomach model, whereas c-fos expression in brain nuclei induced by gastric distension was examined in a freely moving conscious rat model. Physiological levels of gastric distension stimulated the vascular release of 5-HT more than luminal release of 5-HT, and induced c-fos expression in the nucleus of the solitary tract (NTS), area postrema (AP), paraventricular nucleus (PVN), and supraoptic nucleus (SON). The c-fos expression in all these brain nuclei was blocked by truncal vagotomy as well as by perivagal capsaicin treatment, suggesting that vagal afferent pathways may mediate this response. Intravenous injection of 5-HT3 receptor antagonist granisetron blocked c-fos expression in all brain nuclei examined, although intracerebroventricular injection of granisetron had no effect, suggesting that 5-HT released from the stomach may activate 5-HT3 receptors located in the peripheral vagal afferent nerve terminals and then induce brain c-fos expression. c-fos Positive cells in the NTS were labeled with retrograde tracer fluorogold injected in the PVN, suggesting that neurons in the NTS activated by gastric distension project axons to the PVN. The present results suggest that gastric distension stimulates 5-HT release from the EC cells and the released 5-HT may activate 5-HT3 receptors located on the vagal afferent nerve terminals in the gastric wall leading to neuron activation in the NTS and AP and subsequent activation of neurons in the PVN and SON.  相似文献   

3.
Miampamba M  Million M  Taché Y 《Peptides》2011,32(5):1078-1082
We previously showed that medullary thyrotropin-releasing hormone (TRH) or the stable TRH agonist, RX-77368 administered intracisternally induces vagal-dependent activation of gastric myenteric neurons and prevents post surgery-induced delayed gastric emptying in rats. We investigated whether abdominal surgery alters intracisternal (ic) RX-77368 (50 ng)-induced gastric myenteric neuron activation. Under 10 min enflurane anesthesia, rats underwent an ic injection of saline or RX-77368 followed by a laparotomy and a 1-min cecal palpation, or no surgery and were euthanized 90 min later. Longitudinal muscle/myenteric plexus whole-mount preparations of gastric corpus and antrum were processed for immunohistochemical detection of Fos alone or double labeled with protein gene-product 9.5 (PGP 9.5) and vesicular acetylcholine transporter (VAChT). In the non surgery groups, ic RX-77368 induced a 17 fold increase in Fos-expression in both gastric antrum and corpus myenteric neurons compared to saline injected rats. PGP 9.5 ascertained the neuronal identity of myenteric cells expressing Fos. In the abdominal surgery groups, ic RX-77368 induced a significant increase in Fos-expression in both the corpus and antrum myenteric ganglia compared with ic saline injected rats which has no Fos in the gastric myenteric ganglia. However, the response was reduced by 73-78% compared with that induced by ic RX 77368 without surgery. Abundant VAChT positive nerve fibers were present around Fos positive neurons. These results indicate a bidirectional interaction between central vagal stimulation of gastric myenteric neurons and abdominal surgery. The modulation of gastric vagus-myenteric neuron activity could play an important role in the recovery phase of postoperative gastric ileus.  相似文献   

4.
Fos expression was used to assess whether the proinflammatory cytokine interleukin-1beta (IL-1beta) activated specific, chemically coded neuronal populations in isolated preparations of guinea pig ileum and colon. Whether the effects of IL-1beta were mediated through a prostaglandin pathway and whether IL-1beta induced the expression of cyclooxygenase (COX)-2 was also examined. Single- and double-labeling immunohistochemistry was used after treatment of isolated tissues with IL-1beta (0.1-10 ng/ml). IL-1beta induced Fos expression in enteric neurons and also in enteric glia in the ileum and colon. For enteric neurons, activation was concentration-dependent and sensitive to indomethacin, in both the myenteric and submucosal plexuses in both regions of the gut. The maximum proportion of activated neurons differed between the ileal (approximately 15%) and colonic (approximately 42%) myenteric and ileal (approximately 60%) and colonic (approximately 75%) submucosal plexuses. The majority of neurons activated in the myenteric plexus of the ileum expressed nitric oxide synthase (NOS) or enkephalin immunoreactivity. In the colon, activated myenteric neurons expressed NOS. In the submucosal plexus of both regions of the gut, the majority of activated neurons were vasoactive intestinal polypeptide (VIP) immunoreactive. After treatment with IL-1beta, COX-2 immunoreactivity was detected in the wall of the gut in both neurons and nonneuronal cells. In conclusion, we have found that the proinflammatory cytokine IL-1beta specifically activates certain neurochemically defined neural pathways and that these changes may lead to disturbances in motility observed in the inflamed bowel.  相似文献   

5.
Hypo- or hyperthyroidism is associated with autonomic disorders. We studied Fos expression in the medullary dorsal motor nucleus of the vagus (DMV), nucleus tractus solitarii (NTS), and area postrema (AP) in four groups of rats with different thyroid states induced by a combination of drinking water and daily intraperitoneal injection for 1-4 wk: 1) tap water and vehicle; 2) 0.1% propylthiouracil (PTU) and vehicle; 3) PTU and thyroxine (T4; 2 microg/100 g); and 4) tap water and T4 (10 microg/100 g). The numbers of Fos immunoreactive (IR) positive neurons in the DMV, NTS, and AP were low in euthyroid rats but significantly higher in the 4-wk duration in hypothyroid rats, which were prevented by simultaneous T4 replacement. Hyperthyroidism had no effect on Fos expression in these areas. There were significant negative correlations between T4 levels and the numbers of Fos-IR-positive neurons in the DMV (r = -0.6388, P < 0.008), NTS (r = -0.6741, P < 0.003), and AP (r = -0.5622, P < 0.004). Double staining showed that Fos immunoreactivity in the DMV of hypothyroid rats was mostly localized in choline acetyltransferase-containing neurons. Thyroid hormone receptors alpha1 and beta2 were localized in the observed nuclei. These results indicate that thyroid hormone influences the DMV/NTS/AP neuronal activity, which may contribute to the vagal-related visceral disorders observed in hypothyroidism.  相似文献   

6.
Ji SM  Wang ZM  Li XP  He RR 《生理学报》2004,56(3):328-334
本研究利用Fos蛋白和一氧化氮合酶(nNOS)双重免疫组化方法,观察侧腑脑室注射肾上腺髓质素(adrenomedullin,ADM)对大鼠心血管相关核中c-fos表达及一氧化氮神经元的影响,以探讨ADM在中枢的作用部位并研究其在中枢的作用是否有NO神经元参与。侧脑室注射ADM(1nmol/kg,3nmol/kg)诱发脑干的孤束核、最后区、蓝斑核、臂旁核和外侧巨细胞旁核,下丘脑的室旁核、视上核才腹内侧核以及前脑的中央杏仁核和外侧缰核等多个部位的心血管中枢出现大量Fos样免疫反应神经元。侧脑室注射ADM(3nmol/kg),引起脑干的孤束核、外侧巨细胞旁核,下丘脑的室旁核、视上核内的Fos-nNOS双标神经元增加;ADM(1nmol/kg)亦可引起室旁核、视上核内的Fos-nNOS双标神经元增加,而对孤束核、外侧巨细胞旁核内的Fos-nNOS双标神经元无影响。降钙素基因相关肽(calcitonin gene—related peptide,CGRP)受体拈抗剂CGRP8-37(30nmol/kg)可明显减弱此效应。以上结果表明,ADM可兴奋脑内多个心血管相关核闭的神经元并激活室旁核、视上核、孤束核及外侧巨细胞核内一氧化氮神经元,此效应可能部分山CGRP受体介导。  相似文献   

7.
Capsaicin treatment destroys vagal afferent C fibers and markedly attenuates reduction of food intake and induction of hindbrain Fos expression by CCK. However, both anatomical and electrophysiological data indicate that some gastric vagal afferents are not destroyed by capsaicin. Because CCK enhances behavioral and electrophysiological responses to gastric distension in rats and people, we hypothesized that CCK might enhance the vagal afferent response to gastric distension via an action on capsaicin-insensitive vagal afferents. To test this hypothesis, we quantified expression of Fos-like immunoreactivity (Fos) in the dorsal vagal complex (DVC) of capsaicin-treated (Cap) and control rats (Veh), following gastric balloon distension alone and in combination with CCK injection. In Veh rats, intraperitoneal CCK significantly increased DVC Fos, especially in nucleus of the solitary tract (NTS), whereas in Cap rats, CCK did not significantly increase DVC Fos. In contrast to CCK, gastric distension did significantly increase Fos expression in the NTS of both Veh and Cap rats, although distension-induced Fos was attenuated in Cap rats. When CCK was administered during gastric distension, it significantly enhanced NTS Fos expression in response to distension in Cap rats. Furthermore, CCK's enhancement of distension-induced Fos in Cap rats was reversed by the selective CCK-A receptor antagonist lorglumide. We conclude that CCK directly activates capsaicin-sensitive C-type vagal afferents. However, in capsaicin-resistant A-type afferents, CCK's principal action may be facilitation of responses to gastric distension.  相似文献   

8.
9.
Cholecystokinin (CCK), a hormone secreted from endocrine cells of the small intestine, participates in the control of motility and secretion in the gastrointestinal tract, and in the control of food intake. At least some of the effects of CCK on intestinal function appear to be mediated via activation of intrinsic neurons in the myenteric plexus. However, the distribution of CCK-responsive enteric neurons within the rat small intestine is not known. Neither has the role of CCK-A receptors in the activation of rat myenteric neurons been investigated. Therefore, to determine the distribution of CCK-responsive neurons in the small intestinal myenteric plexus we utilized immunohistochemical detection of Fos, the protein product of the immediate early gene c-fos, to identify neurons that were activated by exogenous CCK. We also monitored Fos expression in the dorsal hindbrain, and examined CCK-induced Fos expression in the presence or absence of a receptor antagonist for the type-A CCK receptor. We found that CCK significantly increased Fos expression in the hindbrain and in myenteric neurons of the duodenum and jejunum, but not the ileum. Neuronal Fos responsiveness in both brain and myenteric neurons was mediated by CCK-A receptors, as CCK-induced Fos expression was eliminated in rats pretreated with a CCK-A receptor antagonist. We conclude that CCK activates small intestinal myenteric neurons, via CCK-A receptors. Activation of these intrinsic intestinal neurons may participate in reflexes and behaviors that are mediated by CCK.  相似文献   

10.
辣椒素引起脑干内心血管活动相关核团中c-fos的表达   总被引:1,自引:0,他引:1  
Xue BJ  Zhang XX  Shi GM  He RR 《生理学报》2000,52(2):159-162
在16只切断两侧缓冲神经的大鼠,观察颈总动脉注射辣椒素对脑干内心血管活动相关核团c-fos原癌基因表达的影响。在剂对照组大鼠脑干,仅见少数Fos蛋白样免疫反应(FLI)神经元。与对照组相比,颈总动脉注射辣椒素(10μmol,0.1ml)时,脑干内巨细胞旁外侧核(PGL)、蓝斑(LC)、最后区(AP)和孤束核(NTS)等部位的FLI神经元显著增加,而中脑中央灰质(PAG)和中缝核群(RN)的FLI神  相似文献   

11.
Activation of gastric myenteric cells by intracisternal injection of the stable thyrotropin-releasing hormone (TRH) analog RX-77368, at a dose inducing near maximal vagal cholinergic stimulation of gastric functions, was investigated in conscious rats. Fos immunoreactivity was assessed in gastric longitudinal muscle-myenteric plexus whole mount preparations 90 min after intracisternal injection. Fos-immunoreactive cells were rare in controls (~1 cell/ganglion), whereas intracisternal RX-77368 (50 ng) increased the number to 24.8 +/- 1.8 and 26.8 +/- 2.2 cells/ganglion in the corpus and antrum, respectively. Hexamethonium (20 mg/kg sc) prevented Fos expression by 90%, whereas atropine (2 mg/kg sc) had no effect. The neuronal marker protein gene product 9.5 and the glial markers S-100 and glial fibrillary acidic proteins showed that RX-77368 induced Fos in both myenteric neurons and glia. Vesicular ACh transporter and calretinin were detected around the activated myenteric neurons. These results indicated that central vagal efferent stimulation by intracisternal RX-77368 activates gastric myenteric neurons as well as glial cells mainly through nicotinic ACh receptors in conscious rats.  相似文献   

12.
Portal hypertension due to either prehepatic portal hypertension or cirrhosis is associated with cardiovascular derangement. We aimed to delineate regulatory mechanisms in the brain stem cardiovascular nuclei in rat models of prehepatic portal hypertension and cirrhosis. Neuronal activation in the nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM) were assessed by immunohistochemical staining for the immediate-early gene product Fos. In the same sections, catecholaminergic neurons were counted by tyrosine hydroxylase (TH) staining. Ninety minutes after hypotensive hemorrhage (or no volume challenge), the animals were killed for Fos and TH medullary staining. These protocols were repeated after capsaicin administration. The NTS of unchallenged sham-operated rats had scant Fos-positive cells (3.6 +/- 0.4 cells/section), whereas hemorrhage significantly increased Fos staining (91.8 +/- 14). In contrast, the unchallenged portal hypertensive and cirrhotic groups showed increased Fos staining (14.3 +/- 5.8 and 32.8 +/- 2.8, respectively), which hemorrhage did not alter significantly. The numbers of TH-positive cells were similar in the three unchallenged groups; double labeling revealed that approximately 50% of TH-positive cells were activated by hemorrhage in the sham and cirrhotic rats but not the portal hypertensive rats. Similar patterns of Fos and TH staining were observed in the VLM. Capsaicin treatment not only significantly reduced the Fos-positive neuron numbers in portal hypertensive and cirrhotic rats but also attenuated hemorrhage-induced Fos and double-positive cells in both NTS and VLM. These results suggest that disordered trafficking in capsaicin-sensitive nerves and central dysregulation contribute to blunted cardiovascular responsiveness in cirrhosis and prehepatic portal hypertension.  相似文献   

13.
Abstract: Since evidence is now available to support a nonendocrine autonomic function for thyrotropin-releasing hormone (TRH), quantitative measurements of TRH were made in nuclei of the vagal complex and other areas of the caudal medulla oblongata of the rat. Regions containing the dorsal motor nucleus of the vagus (DMN), nucleus tractus solitarius (NTS), hypoglossal nucleus, dorsal column nuclei, descending nucleus V (DNV), nucleus ambiguus (NA), raphe nuclei (MR) dorsomedial and ventromedial reticular formation, and inferior olivary nuclei were isolated from 300-μm-thick frozen sections of medulla by the micropunch technique. Each region was pooled bilaterally, homogenized in 0.1 M HCl, and vacuum-dried. Extracts were assayed for TRH by specific radioimmunoassay (RIA). TRH levels varied 100-fold among medulla nuclei. Highest content (ng/mg protein ± SEM) was found in DMN (14 ± 1.38) and NTS (4.7 ± 0.68), whereas lowest levels occurred in the DNV and MR (0.13, 0.06). Nearly 65% of the total medullary TRH was localized in nuclei associated with vagal complex (DMN, NTS, NA). Characterization of tissue immunoreactivity (TRHi) in these regions suggests the presence of TRH, since (1) medullary tissue extracts competed with 125I-TRH for antibody binding sites with the same affinity as authentic TRH; (2) TRHi in tissue extracts co-migrated with synthetic TRH when subjected to reverse-phase high performance liquid chromatography and Sephadex G-10 chromatography; and (3) rat serum TRH peptidases degraded TRHi and authentic TRH at similar rates. Another group of rats was subjected to unilateral (right side) vagotomy. At 33 weeks post-vagotomy, the vagal preganglionic cell population in the ipsilateral DMN was depleted 50–75%, while the contralateral side was unaffected. Interestingly, the content of TRH in the ipsilateral (right) DMN remained unchanged, whereas TRH in the contralateral DMN increased by 50%. In contrast, TRH was significantly elevated in the NA on the ipsilateral side of the lesion. TRH in both ipsi- and contralateral NTS was unchanged when compared with sham-operated controls. These results indicate that (1) TRH is present in several specific loci of the medulla; (2) very high levels are found in the vagal complex; and (3) vagotomy may alter TRH in the contralateral DMN and ipsilateral NA.  相似文献   

14.
We previously demonstrated that morphine withdrawal induced hyperactivity of the hypothalamus-pituitary-adrenocortical axis by activation of noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN), as evaluated by Fos expression and corticosterone release. The present study was designed to investigate the role of protein kinase C (PKC) in this process by estimating changes in PKCalpha and PKCgamma immunoreactivity, and whether pharmacological inhibition of PKC would attenuate morphine withdrawal-induced c-Fos expression and changes in tyrosine hydroxylase (TH) immunoreactivity levels in the PVN and nucleus tractus solitarius/ ventrolateral medulla (NTS/VLM). Dependence on morphine was induced in rats by 7 day s.c. implantation of morphine pellets. Morphine withdrawal was induced on day 8 by an injection of naloxone. The protein levels of PKCalpha and gamma were significantly down-regulated in the PVN and NTS/VLM from the morphine-withdrawn rats. Morphine withdrawal induced c-Fos expression in the PVN and NTS/VLM, indicating an activation of neurons in those nuclei. TH immunoreactivity was increased in the NTS/VLM after induction of morphine withdrawal, whereas there was a decrease in TH levels in the PVN. Infusion of calphostin C, a selective protein kinase C inhibitor, produced a reduction in the morphine withdrawal-induced c-Fos expression. Additionally, the changes in TH levels in the PVN and NTS/VLM were significantly modified by calphostin C. The present results suggest that activated PKC in the PVN and catecholaminergic brainstem cell groups may be critical for the activation of the hypothalamic-pituitary adrenocortical axis in response to morphine withdrawal.  相似文献   

15.
Enterostatin selectively inhibits the intake of dietary fat after both peripheral and central administration. We have investigated the role of the hepatic vagus nerve in modulating the peripheral response to enterostatin in Sprague-Dawley rats adapted to a high fat (HF) diet. Intraperitoneal (ip) enterostatin reduced intake of HF diet after overnight starvation. This response was abolished by selective vagal hepatic branch transection. Immunohistochemical techniques were used to identify the location of Fos protein in brain nuclei after ip enterostatin. Fos protein was evident in the nucleus tractus solitarius (NTS), parabrachial, paraventricular and supraoptic nuclei. The pattern of expression of Fos-like immunoreactivity differed from that induced by the lipoprivic agent β-mercaptoacetate. Transection of the hepatic vagus blocked the central Fos responses to ip enterostatin. We conclude that afferent hepatic vagal nerve activity is required for the feeding response to peripheral enterostatin.  相似文献   

16.
Caudal hindbrain "sensing" of glucoprivation activates central neural mechanisms that enhance systemic glucose availability, but the critical molecular variable(s) linked to detection of local metabolic insufficiency remains unclear. Central neurons and glia are metabolically coupled via intercellular trafficking of the glycolytic product lactate as a substrate for neuronal oxidative respiration. Using complementary in vivo models for experimental manipulation of lactate availability within the caudal hindbrain, we investigated the hypothesis that lactate insufficiency may be monitored by local metabolically "sensitive" neurons as an indicator of central nervous system energy imbalance. The data show that caudal fourth ventricular (CV4) administration of the monocarboxylate transporter inhibitor alpha-cyano-4-hydroxycinnamate (4CIN) resulted in dose-dependent increases in blood glucose in euglycemic animals, whereas the degree and duration of hypoglycemia elicited by insulin administration were exacerbated by exogenous L-lactate delivery to the CV4. Immunocytochemical processing of the hindbrain for the inducible c-fos gene product Fos revealed that 4CIN enhanced Fos immunoreactivity in the dorsal vagal complex (DVC), e.g., the nucleus of the solitary tract and dorsal vagal motor nucleus, and adjacent area postrema, sites where cells characterized by unique sensitivity to diminished glucose and/or glycolytic intermediate/end product levels reside, and in the medial vestibular nucleus (MV), and that CV4 L-lactate infusion increased Fos labeling within the DVC and MV after insulin-induced hypoglycemia. Together, these results support the view that lactate is a critical monitored metabolic variable in caudal hindbrain detection of energy imbalance resulting from glucoprivation and that diminished uptake and/or oxidative catabolism of this fuel activates neural mechanisms that increase systemic glucose availability.  相似文献   

17.
肾缺血引起大鼠儿茶酚胺神经元Fos表达   总被引:2,自引:1,他引:1  
Ding YF 《生理学报》2001,53(6):445-450
实验应用Fos蛋白和酪氨酸羟化酶(tyrosine hydroxylase,TH)的双重免疫组化方法,观察肾脏动脉阻断(renal artery occlusion,RAO)是否激活脑干中核团的儿荷酚胺能神经元。所得结果如下:(1)脑干中Fos样蛋白的基础性表达低;RAO可诱发孤束核(nucleus tractus solitarius,NTS)、最后区(area postrema,AP)、巨细胞旁外侧核(paragi-gantocellularis lateralis,PGL)和蓝斑(locus coeruleus,LC)核团中许多神经元显示Fos样免疫反应(Fos-like immunoreactivi-ty,FLI)。(2)NTS、AP、PGL和LC核团中含有较多的儿茶酚胺能神经元;RAO能激活其中的部分儿荷酚胺能神经元。(3)腺苷受体阻断剂8-苯茶碱可明显减弱RAO所致的上述效应。以上结果表明,肾脏短暂缺血能激活脑干内的一些神经核团以及其中的部分儿荷酚胺能神经元。此效应可能是肾缺血时腺苷释放作用于肾内腺苷受体后引起肾传入神经活动增加的结果。  相似文献   

18.
Immunohistochemical detection of c-Fos expression was used to identify gastric myenteric plexus neurons that receive excitatory input from vagal efferent neurons activated by electrical stimulation of the cervical vagi in anesthetized rats. Vagal stimulation-induced Fos expression increased with higher pulse frequency, so that with 16 Hz (rectangular pulses of 1 mA/0.5 ms for 30 min) approximately 30% and with 48 Hz 90% of all neurons near the lesser curvature were Fos positive. In sham-stimulated rats there was no Fos expression. The percentage of Fos-activated neurons was only slightly smaller (85% with 48 Hz) near the greater curvature. Prior atropine administration (1 mg/kg ip) had little effect on vagal stimulation-induced Fos expression, and in unilaterally stimulated rats there was no Fos expression on the contralateral (noninnervated) side of the stomach, ruling out mediation by gastric motility or secretory responses. However, polysynaptic recruitment of third- and higher-order neurons cannot be ruled out completely. These results support the idea that, at least in the stomach, functional excitatory innervation of myenteric plexus neurons by the efferent vagus is profuse and widespread, refuting the notion of only a few vagal "command neurons."  相似文献   

19.
Recurrent hypoglycemia blunts the brain's ability to sense and respond to subsequent hypoglycemic episodes. Glucose-sensing neurons in the ventromedial hypothalamus nucleus (VMN) are well situated to play a role in hypoglycemia detection. VMN glucose-inhibited (GI) neurons, which decrease their firing rate as extracellular glucose increases, are extremely sensitive to decreased extracellular glucose. We hypothesize that recurrent hypoglycemia decreases the glucose sensitivity of VMN GI neurons. To test our hypothesis, 14- to 21-day-old Sprague-Dawley rats were subcutaneously injected with regular human insulin (4 U/kg) or saline (control) for three consecutive days. Blood glucose levels 1 h after insulin injection on day 3 were significantly lower than on day 1, reflecting an impaired ability to counteract hypoglycemia. On day 4, the glucose sensitivity of VMN GI neurons was measured using conventional whole cell current-clamp recording. After recurrent insulin-induced hypoglycemia, VMN GI neurons only responded to a glucose decrease from 2.5 to 0.1, but not 0.5, mM. Additionally, lactate supplementation also decreased glucose sensitivity of VMN GI neurons. Thus our findings suggest that decreases in glucose sensitivity of VMN GI neurons may contribute to the impairments in central glucose-sensing mechanisms after recurrent hypoglycemia.  相似文献   

20.
Antecedent insulin-induced hypoglycemia (IIH) reduces adrenomedullary responses (AMR) to subsequent bouts of hypoglycemia. The ventromedial hypothalamus [VMH: arcuate (ARC) + ventromedial nuclei] contains glucosensing neurons, which are thought to be mediators of these AMR. Since type 1 diabetes mellitus often begins in childhood, we used juvenile (4- to 5-wk-old) rats to demonstrate that a single bout of IIH (5 U/kg sc) reduced plasma glucose by 24% and peak epinephrine by 59% 1 day later. This dampened AMR was associated with 46% higher mRNA for VMH glucokinase, a key mediator of neuronal glucosensing. Compared with neurons from saline-injected rats, ventromedial nucleus glucose-excited neurons from insulin-injected rats demonstrated a leftward shift in their glucose responsiveness (EC50 = 0.45 and 0.10 mmol/l for saline and insulin, respectively, P = 0.05) and a 31% higher maximal activation by glucose (P = 0.05), although this maximum occurred at a higher glucose concentration (saline, 0.7 vs. insulin, 1.5 mmol/l). Although EC50 values did not differ, ARC glucose-excited neurons had 19% higher maximal activation, which occurred at a lower glucose concentration in insulin- than saline-injected rats (saline, 2.5 vs. insulin, 1.5 mmol/l). In addition, ARC glucose-inhibited neurons from insulin-injected rats were maximally inhibited at a fivefold lower glucose concentration (saline, 2.5 vs. insulin, 0.5 mmol/l), although this inhibition declined at >0.5 mmol/l glucose. These data suggest that the increased VMH glucokinase after IIH may contribute to the increased responsiveness of VMH glucosensing neurons to glucose and the associated blunting of the AMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号