首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recently identified adipocytokine adiponectin has been shown to improve insulin action and decrease triglyceride content in skeletal muscle (by stimulating lipid oxidation) in mice. In the present study, we tested the hypothesis that high serum concentrations of adiponectin are associated with lower intramyocellular (IMCL) fat content by promoting lipid oxidation in humans. IMCL-content in predominantly non-oxidative tibialis anterior muscle and oxidative soleus was determined by proton magnetic resonance spectroscopy in a cross- sectional study involving 63 healthy volunteers. In a second set of experiments, changes in IMCL in both muscles were measured after a three days dietary lipid challenge (n = 18) and after intravenous lipid challenge (n = 12) with suppressed lipid oxidation under hyperinsulinemia. Adiponectin serum concentrations were found to be negatively correlated with IMCL in the oxidative soleus muscle (IMCL [sol]) (r = - 0.46, p < 0.001) independent of measures of obesity, but not with IMCL in the non-oxidative tibialis anterior muscle (IMCL [tib]) (p = 0.40). Adiponectin serum concentrations were negatively correlated with the observed increase in IMCL load after dietary lipid challenge in the tibialis (r = 0.53, p = 0.03) but not in the soleus muscle. During suppression of lipid oxidation by hyperinsulinemia, no effect of adiponectin on IMCL was observed in either soleus or tibialis muscle. Overall, the presented findings are consistent with the hypothesis that adiponectin promotes lipid oxidation in humans resulting in lower intracellular lipid content in human muscle. These results are consistent with animal data, where adiponectin could be shown to enhance lipid oxidation and reduce muscle triglycerides.  相似文献   

2.
Insulin resistance has been associated with the accumulation of fat within skeletal muscle fibers as intramyocellular lipid (IMCL). Here, we have examined in a cross-sectional study the interrelationships among IMCL, insulin sensitivity, and adiposity in European Americans (EAs) and African Americans (AAs). In 43 EA and 43 AA subjects, we measured soleus IMCL content with proton-magnetic resonance spectroscopy, insulin sensitivity with hyperinsulinemic-euglycemic clamp, and body composition with dual-energy X-ray absorptiometry. The AA and EA subgroups had similar IMCL content, insulin sensitivity, and percent fat, but only in EA was IMCL correlated with insulin sensitivity (r = -0.47, P < 0.01), BMI (r = 0.56, P < 0.01), percent fat (r = 0.35, P < 0.05), trunk fat (r = 0.47, P < 0.01), leg fat (r = 0.40, P < 0.05), and waist and hip circumferences (r = 0.54 and 0.55, respectively, P < 0.01). In a multiple regression model including IMCL, race, and a race by IMCL interaction, the interaction was found to be a significant predictor (t = 1.69, DF = 1, P = 0.0422). IMCL is related to insulin sensitivity and adiposity in EA but not in AA, suggesting that IMCL may not function as a pathophysiological factor in individuals of African descent. These results highlight ethnic differences in the determinants of insulin sensitivity and in the pathogenesis of the metabolic syndrome trait cluster.  相似文献   

3.
Older, obese, and sedentary individuals are at high risk of developing diabetes and cardiovascular disease. Exercise training improves metabolic anomalies associated with such diseases, but the effects of caloric restriction in addition to exercise in such a high-risk group are not known. Changes in body composition and metabolism during a lifestyle intervention were investigated in 23 older, obese men and women (aged 66 +/- 1 yr, body mass index 33.2 +/- 1.4 kg/m(2)) with impaired glucose tolerance. All volunteers undertook 12 wk of aerobic exercise training [5 days/wk for 60 min at 75% maximal oxygen consumption (Vo(2max))] with either normal caloric intake (eucaloric group, 1,901 +/- 277 kcal/day, n = 12) or a reduced-calorie diet (hypocaloric group, 1,307 +/- 70 kcal/day, n = 11), as dictated by nutritional counseling. Body composition (decreased fat mass; maintained fat-free mass), aerobic fitness (Vo(2max)), leptinemia, insulin sensitivity, and intramyocellular lipid accumulation (IMCL) in skeletal muscle improved in both groups (P < 0.05). Improvements in body composition, leptin, and basal fat oxidation were greater in the hypocaloric group. Following the intervention, there was a correlation between the increase in basal fat oxidation and the decrease in IMCL (r = -0.53, P = 0.04). In addition, basal fat oxidation was associated with circulating leptin after (r = 0.65, P = 0.0007) but not before the intervention (r = 0.05, P = 0.84). In conclusion, these data show that exercise training improves resting substrate oxidation and creates a metabolic milieu that appears to promote lipid utilization in skeletal muscle, thus facilitating a reversal of insulin resistance. We also demonstrate that leptin sensitivity is improved but that such a trend may rely on reducing caloric intake in addition to exercise training.  相似文献   

4.
High visceral adiposity and intramyocellular lipid levels (IMCL) are both associated with the development of type 2 diabetes. The relationship between visceral adiposity and IMCL levels was explored in diet- and glucocorticoid-induced models of insulin resistance. In the diet-induced model, lean and fa/fa Zucker rats were fed either normal or high-fat (HF) chow over 4 wk. Fat distribution, IMCL content in the tibialis anterior (TA) muscle (IMCL(TA)), and whole body insulin resistance were measured before and after the 4-wk period. The HF diet-induced increase in IMCL(TA) was strongly correlated with visceral fat accumulation and greater glucose intolerance in both groups. The increase in IMCL(TA) to visceral fat accumulation was threefold greater for fa/fa rats. In the glucocorticoid-induced model, insulin sensitivity was impaired with dexamethasone. In vivo adiposity and IMCL(TA) content measurements were combined with ex vivo analysis of plasma and muscle tissue. Dexamethasone treatment had minimal effects on visceral fat accumulation while increasing IMCL(TA) levels approximately 30% (P < 0.05) compared with controls. Dexamethasone increased plasma glucose by twofold and increased the saturated fatty acid content of plasma lipids [fatty acid (CH2)n/omegaCH3 ratio +15%, P < 0.05]. The lipid composition of the TA muscle was unchanged by dexamethasone treatment, indicating that the relative increase in IMCL(TA) observed in vivo resulted from a decrease in lipid oxidation. Visceral adiposity may influence IMCL accumulation in the context of dietary manipulations; however, a "causal" relationship still remains to be determined. Dexamethasone-induced insulin resistance likely operates under a different mechanism, i.e., independently of visceral adiposity.  相似文献   

5.
We previously reported an "athlete's paradox" in which endurance-trained athletes, who possess a high oxidative capacity and enhanced insulin sensitivity, also have higher intramyocellular lipid (IMCL) content. The purpose of this study was to determine whether moderate exercise training would increase IMCL, oxidative capacity of muscle, and insulin sensitivity in previously sedentary overweight to obese, insulin-resistant, older subjects. Twenty-five older (66.4 +/- 0.8 yr) obese (BMI = 30.3 +/- 0.7 kg/m2) men (n = 9) and women (n = 16) completed a 16-wk moderate but progressive exercise training program. Body weight and fat mass modestly but significantly (P < 0.01) decreased. Insulin sensitivity, measured using the euglycemic hyperinsulinemic clamp, was increased (21%, P = 0.02), with modest improvements (7%, P = 0.04) in aerobic fitness (Vo2peak). Histochemical analyses of IMCL (Oil Red O staining), oxidative capacity [succinate dehydrogenase activity (SDH)], glycogen content, capillary density, and fiber type were performed on skeletal muscle biopsies. Exercise training increased IMCL by 21%. In contrast, diacylglycerol and ceramide, measured by mass spectroscopy, were decreased (n = 13; -29% and -24%, respectively, P < 0.05) with exercise training. SDH (19%), glycogen content (15%), capillary density (7%), and the percentage of type I slow oxidative fibers (from 50.8 to 55.7%), all P < or = 0.05, were increased after exercise. In summary, these results extend the athlete's paradox by demonstrating that chronic exercise in overweight to obese older adults improves insulin sensitivity in conjunction with favorable alterations in lipid partitioning and an enhanced oxidative capacity within muscle. Therefore, several key deleterious effects of aging and/or obesity on the metabolic profile of skeletal muscle can be reversed with only moderate increases in physical activity.  相似文献   

6.
Impaired mitochondrial function and structure and intramyocellular lipid (IMCL) accumulation have been associated with obesity and Type 2 diabetes. We examined whether endurance exercise training and sex influenced IMCL and mitochondrial morphology using electron microscopy, whole-body substrate use, and mitochondrial enzyme activity. Untrained men (n = 5) and women (n = 7) were tested before and after 7 wk of endurance exercise training. Testing included 90 min of cycle ergometry at 60% Vo(2 peak) with preexercise muscle biopsies analyzed for IMCL and mitochondrial size/area using electron microscopy and short-chain beta-hydroxyacyl-CoA dehydrogenase (SCHAD) and citrate synthase (CS) enzyme activity. Training increased the mean lipid area density (P = 0.090), the number of IMCL droplets (P = 0.055), the number of IMCL droplets in contact with mitochondria (P = 0.010), the total mitochondrial area (P < 0.001), and the size of individual mitochondrial fragments (P = 0.006). Women had higher mean lipid area density (P = 0.030) and number of IMCL droplets (P = 0.002) before and after training, but higher individual IMCL area only before training (P = 0.013), compared with men. Women oxidized more fat (P = 0.027) and less carbohydrate (P = 0.032) throughout the study. Training increased Vo(2 peak) (P < 0.001), %fat oxidation (P = 0.018), SCHAD activity (P = 0.003), and CS activity (P = 0.042). In summary, endurance exercise training increased IMCL area density due to an increase in the number of lipid droplets, whereas the increase in total mitochondrial area was due to an increase in the size of individual mitochondrial fragments. In addition, women have higher IMCL content compared with men due mainly to a greater number of individual droplets. Finally, endurance exercise training increased the proportion of IMCL in physical contact with mitochondria.  相似文献   

7.
The human immunodeficiency virus (HIV)-lipodystrophy syndrome is associated with fat redistribution and metabolic abnormalities, including insulin resistance. Increased intramyocellular lipid (IMCL) concentrations are thought to contribute to insulin resistance, being linked to metabolic and body composition variables. We examined 46 women: HIV infected with fat redistribution (n = 25), and age- and body mass index-matched HIV-negative controls (n = 21). IMCL was measured by 1H-magnetic resonance spectroscopy, and body composition was assessed with computed tomography, dual-energy X-ray absorptiometry (DEXA), and magnetic resonance imaging. Plasma lipid profile and markers of glucose homeostasis were obtained. IMCL was significantly increased in tibialis anterior [135.0 +/- 11.5 vs. 85.1 +/- 13.2 institutional units (IU); P = 0.007] and soleus [643.7 +/- 61.0 vs. 443.6 +/- 47.2 IU, P = 0.017] of HIV-infected subjects compared with controls. Among HIV-infected subjects, calf subcutaneous fat area (17.8 +/- 2.3 vs. 35.0 +/- 2.5 cm2, P < 0.0001) and extremity fat by DEXA (11.8 +/- 1.1 vs. 15.6 +/- 1.2 kg, P = 0.024) were reduced, whereas visceral abdominal fat (125.2 +/- 11.3 vs. 74.4 +/- 12.3 cm2, P = 0.004), triglycerides (131.1 +/- 11.0 vs. 66.3 +/- 12.3 mg/dl, P = 0.0003), and fasting insulin (10.8 +/- 0.9 vs. 7.0 +/- 0.9 microIU/ml, P = 0.004) were increased compared with control subjects. Triglycerides (r = 0.39, P = 0.05) and extremity fat as percentage of whole body fat by DEXA (r = -0.51, P = 0.01) correlated significantly with IMCL in the HIV but not the control group. Extremity fat (beta = -633.53, P = 0.03) remained significantly associated with IMCL among HIV-infected patients, controlling for visceral abdominal fat, abdominal subcutaneous fat, and antiretroviral medications in a regression model. These data demonstrate increased IMCL in HIV-infected women with a mixed lipodystrophy pattern, being most significantly associated with reduced extremity fat. Further studies are necessary to determine the relationship between extremity fat loss and increased IMCL in HIV-infected women.  相似文献   

8.
Women use more fat during endurance exercise as evidenced by a lower respiratory exchange ratio (RER). The contribution of intramyocellular lipid (IMCL) to lipid oxidation during endurance exercise is controversial, and studies investigating sex differences in IMCL utilization have found conflicting results. We determined the effect of sex on net IMCL use during an endurance exercise bout using an ultrastructural evaluation. Men (n = 17) and women (n = 19) completed 90-min cycling at 63% Vo(2peak). Biopsies were taken before and after exercise and fixed for electron microscopy to determine IMCL size, # IMCL/area, IMCL area density, and the % IMCL touching mitochondria. Women had a lower RER and carbohydrate oxidation rate and a higher lipid oxidation rate during exercise (P < 0.05), compared with men. Women had a higher # IMCL/area and IMCL area density (P < 0.05), compared with men. Women, but not men, had a higher % IMCL touching mitochondria postexercise (P = 0.03). Exercise decreased IMCL area density (P = 0.01), due to a decrease in the # IMCL/area (P = 0.02). There was no sex difference in IMCL size or net use. In conclusion, women have higher IMCL area density compared with men, due to an increased # IMCL and not an increased IMCL size, as well as an increased % IMCL touching mitochondria postexercise. Endurance exercise resulted in a net decrease in IMCL density due to decreased number of IMCL, not decreased IMCL size, in both sexes.  相似文献   

9.
Intramyocellular lipid (IMCL) has been associated with insulin resistance. However, an association between IMCL and insulin resistance might be modulated by oxidative capacity in skeletal muscle. We examined the hypothesis that 12 wk of exercise training would increase both IMCL and the oxidative capacity of skeletal muscle in older (67.3 +/- 0.7 yr), previously sedentary subjects (n = 13; 5 men and 8 women). Maximal aerobic capacity (Vo(2 max)) increased from 1.65 +/- 0.20 to 1.85 +/- 0.14 l/min (P < 0.05), and systemic fat oxidation induced by 1 h of cycle exercise at 45% of Vo(2 max) increased (P < 0.05) from 15.03 +/- 40 to 19.29 +/- 0.80 (micromol.min(-1).kg fat-free mass(-1)). IMCL, determined by quantitative histological staining in vastus lateralis biopsies, increased (P < 0.05) from 22.9 +/- 1.9 to 25.9 +/- 2.6 arbitrary units (AU). The oxidative capacity of muscle, determined by succinate dehydrogenase staining intensity, significantly increased (P < 0.05) from 75.2 +/- 5.2 to 83.9 +/- 3.6 AU. The percentage of type I fibers significantly increased (P < 0.05) from 35.4 +/- 2.1 to 40.1 +/- 2.3%. In conclusion, exercise training increases IMCL in older persons in parallel with an enhanced capacity for fat oxidation.  相似文献   

10.
Recent studies have indicated that the mass/content of intramyocellular lipid (IMCL), intrahepatic triglyceride (IHTG), visceral fat (VF), and even deep abdominal subcutaneous fat (SF) may all be correlated with insulin resistance. Since simultaneous measurements of these parameters have not been reported, the relative strength of their associations with insulin action is not known. Therefore, the goals of this study were 1) to simultaneously measure IMCL, IHTG, VF, and abdominal SF in the same nondiabetic individuals using noninvasive (1)H-magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) and 2) to examine how these fat stores are correlated with systemic insulin sensitivity as measured by whole body glucose disposal (R(d)) during euglycemic-hyperinsulinemic clamp studies. Positive correlations were observed among IMCL, IHTG, and VF. There were significant inverse correlations between whole body R(d) and both IMCL and VF. Notably, there was a particularly tight inverse correlation between IHTG and whole body R(d) (r = -0.86, P < 0.001), consistent with an association between liver fat and peripheral insulin sensitivity. This novel finding suggests that hepatic triglyceride accumulation has important systemic consequences that may adversely affect insulin sensitivity in other tissues.  相似文献   

11.
Post-meal energy expenditure (TEM) was compared for 14 healthy obese (body fat = 45.3%, body mass index, BMI = 35.9 kg m-2) and 9 healthy nonobese (body fat = 20.7%, BMI = 17.8 kg m-2) adolescent girls. The test meal for both groups was a standard 3348.8-kJ, 0.473-1 chocolate milkshake of 15% protein (casein), 40% fat (polyunsaturated/saturated ratio = 0.05; 75 mg cholesterol) and 45% carbohydrate (lactose and sucrose). Glucose, insulin and resting energy expenditure (RMR) were measured at rest prior to meal consumption and 20, 40, 60, 90, and 120 min after the meal. Cumulative net TEM was calculated as the integrated area under the TEM curve with RMR as baseline. Reliability was assessed by retesting 4 subjects, and a placebo effect was tested by administering a flavored energy-free drink. Results indicated high reliability and no placebo effect. The meal resulted in a greater rise in insulin and glucose for the obese compared to the nonobese subjects (P < or = 0.05), and a significant TEM for both groups (P < or = 0.05). The cumulative TEM (W kg-1) was 61.9% greater for the nonobese (P < 0.01) when expressed relative to body mass, and 33.2% greater for the nonobese (P < or = 0.01) when expressed relative to the fat-free body mass. Expressed relative to the meal, the TEM was 25.5% less for the obese (P < 0.01). The data support an energy conservation hypothesis for obese female adolescents.  相似文献   

12.
The prevalence of insulin resistance and type 2 diabetes (T2D) in obese youth is rapidly increasing, especially in Hispanics and African Americans compared to Caucasians. Insulin resistance is known to be associated with increases in intramyocellular (IMCL) and hepatic fat content. We determined if there are ethnic differences in IMCL and hepatic fat content in a multiethnic cohort of 55 obese adolescents. We used (1)H magnetic resonance spectroscopy (MRS) to quantify IMCL levels in the soleus muscle, oral glucose tolerance testing to estimate insulin sensitivity, magnetic resonance imaging (MRI) to measure abdominal fat distribution. Liver fat content was measured by fast-MRI. Despite similar age and % total body fat among the groups, IMCL was significantly higher in the Hispanics (1.71% [1.43%, 2.0%]) than in the African-Americans (1.04% [0.75%, 1.34%], p = 0.013) and the Caucasians (1.2% [0.94%, 1.5%], p = 0.04). Liver fat content was undetectable in the African Americans whereas it was two fold higher than normal in both Caucasians and Hispanics. Visceral fat was significantly lower in African Americans (41.5 cm(2) [34.6, 49.6]) and was similar in Caucasians (65.2 cm(2) [55.9, 76.0]) and Hispanics (70.5 cm(2) [59.9, 83.1]). In a multiple regression analysis, we found that ethnicity independent of age, gender and % body fat accounts for 10% of the difference in IMCL. Our study indicates that obese Hispanic adolescents have a greater IMCL lipid content than both Caucasians and African Americans, of comparable weight, age and gender. Excessive accumulation of fat in the liver was found in both Caucasian and Hispanic groups as opposed to virtually undetectable levels in the African Americans. Thus, irrespective of obesity, there seem to be some clear ethnic differences in the amount of lipid accumulated in skeletal muscle, liver and abdominal cavity.  相似文献   

13.
Adiponectin, an adipokine secreted by adipocytes, exerts beneficial effects on glucose and lipid metabolism and has been found to improve insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. Adiponectin is found in several isoforms and the high-molecular weight (HMW) form has been linked most strongly to the insulin-sensitizing effects. Fat content in skeletal muscle (intramyocellular lipids, IMCL) and liver (intrahepatic lipids, IHL) can be quantified noninvasively using proton magnetic resonance spectroscopy ((1)H-MRS). The purpose of our study was to assess the relationship between HMW adiponectin and measures of glucose homeostasis, IMCL and IHL, and to determine predictors of adiponectin levels. We studied 66 premenopausal women (mean BMI 31.0 ± 6.6 kg/m(2)) who underwent (1)H-MRS of calf muscles and liver for IMCL and IHL, computed tomography (CT) of the abdomen for abdominal fat depots, dual-energy X-ray absorptiometry (DXA) for fat and lean mass assessments, HMW and total adiponectin, fasting lipid profile and an oral glucose tolerance test (homeostasis model assessment of insulin resistance (HOMA(IR)), glucose and insulin area under the curve). There were strong inverse associations between HMW adiponectin and measures of insulin resistance, IMCL and IHL, independent of visceral adipose tissue (VAT) and total body fat. IHL was the strongest predictor of adiponectin and adiponectin was a predictor of HOMA(IR). Our study showed that in premenopausal obese women HMW adiponectin is inversely associated with IMCL and IHL content. This suggests that adiponectin exerts positive effects on insulin sensitivity in obesity by decreasing intracellular triglyceride content in skeletal muscle and liver; it is also possible that our results reflect effects of insulin on adiponectin.  相似文献   

14.
The prevalence of type 2 diabetes is greater among African Americans (AA) vs. European Americans (EA), independent of obesity and lifestyle. We tested the hypothesis that intramyocellular lipid (IMCL) or extramycellular lipid (EMCL) would be associated with insulin sensitivity among healthy young women, and that the associations would differ with ethnic background. We also explored the hypothesis that adipokines and estradiol would be associated with muscle lipid content. Participants were 57 healthy, normoglycemic, women and girls mean age 26 (±10) years; mean BMI 27.3 (±4.8) kg/m2; 32 AA, 25 EA. Soleus IMCL and EMCL were assessed with 1H magnetic resonance spectroscopy (MRS); insulin sensitivity with an insulin‐modified frequently sampled intravenous glucose tolerance test and minimal modeling; body composition with dual‐energy X‐ray absorptiometry; and intra‐abdominal adipose tissue (IAAT) with computed tomography. Adiponectin, leptin, and estradiol were assessed in fasting sera. Analyses indicated that EMCL, but not IMCL, was greater in AA vs. EA (2.55 ± 0.16 vs. 1.98 ± 0.18 arbitrary units, respectively, P < 0.05; adjusted for total body fat). IMCL was associated with insulin sensitivity in EA (r = ?0.54, P < 0.05, adjusted for total fat, IAAT, and age), but not AA (r = 0.16, P = 0.424). IMCL was inversely associated with adiponectin (r = ?0.31, P < 0.05, adjusted for ethnicity, age, total fat, and IAAT). In conclusion, IMCL was a significant determinant of insulin sensitivity among healthy, young, EA but not AA women. Further research is needed to determine whether the component lipids of IMCL (e.g., diacylglycerol (DAG) or ceramide) are associated with insulin sensitivity in an ethnicity specific manner.  相似文献   

15.
Cross contamination of intramyocellular lipid (IMCL) signals through loss of bulk magnetic susceptibility (BMS) differences was detected in human muscles using proton magnetic resonance spectroscopic imaging ((1)H-MRSI) at 4 T by varying nominal voxel sizes on healthy subjects. In soleus muscle the IMCL content estimated in 1.00-ml-sized voxels was 15% and 30% higher than that in 0.25-ml voxels for nonobese (P < 0.05) and obese (P < 0.01) subjects, respectively, whereas no effect was observed on IMCL estimation in tibialis posterior (TP) and tibialis anterior (TA) regions for different voxel sizes. The unbiased 0.25-ml voxel size (1)H-MRSI method was applied to measure IMCL content in nonobese sedentary (NOB-Sed), moderately trained (Ath), sedentary obese (OB), and Type 2 diabetic mellitus (DM) subjects. IMCL content in soleus was greatest in OB, with decreasing content in DM, Ath, and NOB-Sed, respectively (12.6 +/- 1.6, 9.7 +/- 1.8, 7.4 +/- 1.0, 4.9 +/- 0.5 mmol/kg wet wt; P < 0.05 by ANOVA; P < 0.05 OB vs. NOB-Sed or Ath). In TA, IMCL was equivalently elevated in DM and OB, which was higher than in Ath or NOB-Sed, respectively (4.2 +/- 0.4 and 4.2 +/- 0.7 vs. 2.7 +/- 0.5 and 1.5 +/- 0.3 mmol/kg wet wt; ANOVA, P < 0.05; P < 0.05 DM or OB vs. NOB-Sed). We conclude that IMCL content is overestimated when voxel size exceeds 0.25 ml despite measurement by optimized high-resolution (1)H-MRSI at high field. When IMCL is measured unbiased by concomitant obesity, we find that it is strongly influenced by muscle type, training status, and the presence of obesity and Type 2 diabetes.  相似文献   

16.
Insulin resistance is a key pathogenic factor of type 2 diabetes (T2DM); in contrast, in type 1 diabetes (T1DM) it is considered a secondary alteration. Increased intramyocellular lipid (IMCL) content accumulation and reduced plasma adiponectin were suggested to be pathogenic events of insulin resistance in T2DM. This study was designed to assess whether IMCL content and plasma adiponectin were also associated with the severity of insulin resistance in T1DM. We studied 18 patients with T1DM, 7 older and overweight/obese patients with T2DM, and 15 nondiabetic, insulin-resistant offspring of T2DM parents (OFF) and 15 healthy individuals (NOR) as appropriate control groups matched for anthropometric features with T1DM patients by means of the euglycemic hyperinsulinemic clamp combined with the infusion of [6,6-2H2]glucose and 1H magnetic resonance spectroscopy of the calf muscles. T1DM and T2DM patients showed reduced insulin-stimulated glucose metabolic clearance rate (MCR: 5.1 +/- 0.6 and 3.2 +/- 0.8 ml x kg(-1) min(-1)) similar to OFF (5.3 +/- 0.4 ml x kg(-1) x min(-1)) compared with NOR (8.5 +/- 0.5 ml x kg(-1) min(-1), P < 0.001). Soleus IMCL content was increased in T1DM (112 +/- 15 AU), T2DM (108 +/- 10 AU) and OFF (82 +/- 13 AU) compared with NOR (52 +/- 7 AU, P < 0.05) and the result was inversely proportional to the MCR (R2 = 0.27, P < 0.001); an association between IMCL content and Hb A1c was found only in T1DM (R2 = 0.57, P < 0.001). Fasting plasma adiponectin was reduced in T2DM (7 +/- 1 microg/ml, P = 0.01) and OFF (11 +/- 1 microg/ml, P = 0.03) but not in T1DM (25 +/- 6 microg/ml), whose plasma level was increased with respect to both OFF (P = 0.03) and NOR (16 +/- 2 microg/ml, P = 0.05). In conclusion, in T1DM, T2DM, and OFF, IMCL content was associated with insulin resistance, demonstrating that IMCL accretion is a marker of insulin resistance common to both primary genetically determined and secondary metabolic (chronic hyperglycemia) alterations. The increased adiponectin levels in insulin-resistant patients with T1DM, in contrast to the reduced levels found in patients with T2DM and in OFF, demonstrated that the relationship of adiponectin to insulin resistance in humans is still unclear.  相似文献   

17.
Lack of physical activity has been related to an increased risk of developing insulin resistance. This study aimed to assess the impact of chronic muscle deconditioning on whole body insulin sensitivity, muscle oxidative capacity, and intramyocellular lipid (IMCL) content in subjects with paraplegia. Nine subjects with paraplegia and nine able-bodied, lean controls were recruited. An oral glucose tolerance test was performed to assess whole body insulin sensitivity. IMCL content was determined both in vivo and in vitro using (1)H-magnetic resonance spectroscopy and fluorescence microscopy, respectively. Muscle biopsy samples were stained for succinate dehydrogenase (SDH) activity to measure muscle fiber oxidative capacity. Subcellular distributions of IMCL and SDH activity were determined by defining subsarcolemmal and intermyofibrillar areas on histological samples. SDH activity was 57 ± 14% lower in muscle fibers derived from subjects with paraplegia when compared with controls (P < 0.05), but IMCL content and whole body insulin sensitivity did not differ between groups. In muscle fibers taken from controls, both SDH activity and IMCL content were higher in the subsarcolemmal region than in the intermyofibrillar area. This typical subcellular SDH and IMCL distribution pattern was lost in muscle fibers collected from subjects with paraplegia and had changed toward a more uniform distribution. In conclusion, the lower metabolic demand in deconditioned muscle of subjects with paraplegia results in a significant decline in muscle fiber oxidative capacity and is accompanied by changes in the subcellular distribution patterns of SDH activity and IMCL. However, loss of muscle activity due to paraplegia is not associated with substantial lipid accumulation in skeletal muscle tissue.  相似文献   

18.
Objective: To test in humans the hypothesis that part of the association of adiponectin with insulin sensitivity is independent of lipid availability. Research Methods and Procedures: We studied relationships among plasma adiponectin, insulin sensitivity (by hyperinsulinemic‐euglycemic clamp), total adiposity (by DXA), visceral adiposity (VAT; by magnetic resonance imaging), and indices of lipid available to muscle, including circulating and intramyocellular lipid (IMCL; by 1H‐magnetic resonance spectroscopy). Our cohort included normal weight to obese men (n = 36). Results: Plasma adiponectin was directly associated with insulin sensitivity and high‐density lipoprotein‐cholesterol and inversely with plasma triglycerides but not IMCL. These findings are consistent with adiponectin promoting lipid uptake and subsequent oxidation in muscle and inhibiting TG synthesis in the liver. In multiple regression models that also included visceral and total fat, free fatty acids, TGs, and IMCL, either alone or in combination, adiponectin independently predicted insulin sensitivity, consistent with some of its insulin‐sensitizing effects being mediated through mechanisms other than modulation of lipid metabolism. Because VAT directly correlated with total fat and all three indices of local lipid availability, free fatty acids, and IMCL, an efficient regression model of insulin sensitivity (R2 = 0.69, p < 0.0001) contained only VAT (part R2 = 0.12, p < 0.002) and adiponectin (part R2 = 0.41, p < 0.0001) as independent variables. Discussion: Given the broad range of total adiposity and body fat distribution in our cohort, we suggest that insulin sensitivity is robustly associated with adiponectin and VAT.  相似文献   

19.
The relationship between intramyocellular (IMCL) and extramyocellular lipid (EMCL) accumulation and skeletal muscle insulin resistance is complex and dynamic. We examined the effect of a short-term (7-day) low-glycemic index (LGI) diet and aerobic exercise training intervention (EX) on IMCL and insulin sensitivity in older, insulin-resistant humans. Participants (66 ± 1 yr, BMI 33 ± 1 kg/m(2)) were randomly assigned to a parallel, controlled feeding trial [either an LGI (LGI/EX, n = 7) or high GI (HGI/EX, n = 8) eucaloric diet] combined with supervised exercise (60 min/day, 85% HR(max)). Insulin sensitivity was determined via 40 mU·m(-2)·min(-1) hyperinsulinemic euglycemic clamp and soleus IMCL and EMCL content was assessed by (1)H-MR spectroscopy with correction for fiber orientation. BMI decreased (kg/m(2) -0.6 ± 0.2, LGI/EX; -0.7 ± 0.2, HGI/EX P < 0.0004) after both interventions with no interaction effect of diet composition. Clamp-derived insulin sensitivity increased by 0.91 ± 0.21 (LGI/EX) and 0.17 ± 0.55 mg·kg(-1)·min(-1) (HGI/EX), P = 0.04 (effect of time). HOMA-IR was reduced by -1.1 ± 0.4 (LGI/EX) and -0.1 ± 0.2 (HGI/EX), P = 0.007 (effect of time), P = 0.02 (time × trial). Although both interventions increased IMCL content, (Δ: 2.3 ± 1.3, LGI/EX; 1.4 ± 0.9, HGI/EX, P = 0.03), diet composition did not significantly effect the increase. However, the LGI/EX group showed a robust increase in the [IMCL]/[EMCL] ratio compared with the HGI/EX group (Δ: 0.5 ± 0.2 LGI/EX vs. 0.07 ± 0.1, P = 0.03). The LGI/EX group also demonstrated greater reductions in [EMCL] than the HGI/EX group (Δ: -5.8 ± 3.4, LGI/EX; 2.3 ± 1.1, HGI/EX, P = 0.03). Changes in muscle lipids and insulin sensitivity were not correlated; however, the change in [IMCL]/[EMCL] was negatively associated with the change in FPI (r = -0.78, P = 0.002) and HOMA-IR (r = -0.61, P = 0.03). These data suggest that increases in the IMCL pool following a low glycemic diet and exercise intervention may represent lipid repartitioning from EMCL. The lower systemic glucose levels that prevail while eating a low glycemic diet may promote redistribution of lipid stores in the muscle.  相似文献   

20.
The purpose of this study was to test the hypothesis that weight loss results in a reduction in intramuscular lipid (IMCL) content that is concomitant with enhanced insulin action. Muscle biopsies were obtained from morbidly obese individuals [body mass index (BMI) 52.2 +/- 2.5 kg/m(2); n = 6] before and after gastric bypass surgery, an intervention that improves insulin action. With intervention, there was a 47% reduction (P < 0.01) in BMI and a 93% decrease in homeostasis model assessment, or HOMA (7.0 +/- 1.9 vs. 0.5 +/- 0.1). Histochemically determined IMCL content decreased (P < 0.05) by approximately 30%. In relation to fiber type, IMCL was significantly higher in type I vs. type II fibers. In both fiber types, there were reductions in IMCL and trends for muscle atrophy. Despite these two negating factors, the IMCL-to-fiber area ratio still decreased by approximately 44% with weight loss. In conclusion, despite differing initial levels and possible atrophy, weight loss appears to decrease IMCL deposition to a similar relative extent in type I and II muscle fibers. This reduction in intramuscular triglyceride may contribute to enhanced insulin action seen with weight loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号