首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vertebrate post-synaptic density (PSD) is a region of high molecular complexity in which dynamic protein interactions modulate receptor localization and synaptic function. Members of the membrane-associated guanylate kinase (MAGUK) family of proteins represent a major structural and functional component of the vertebrate PSD. In order to investigate the expression and significance of orthologous PSD components associated with the Aplysia sensory neuron-motor neuron synapse, we have cloned an Aplysia Dlg-MAGUK protein, which we identify as Aplysia synapse associated protein (ApSAP). As revealed by western blot, RT-PCR, and immunocytochemical analyses, ApSAP is predominantly expressed in the CNS and is located in both sensory neuron and motor neurons. The overall amino acid sequence of ApSAP is 55–61% identical to Drosophila Dlg and mammalian Dlg-MAGUK proteins, but is more highly conserved within L27, PDZ, SH3, and guanylate kinase domains. Because these conserved domains mediate salient interactions with receptors and other PSD components of the vertebrate synapse, we performed a series of GST pull-down assays using recombinant C-terminal tail proteins from various Aplysia receptors and channels containing C-terminal PDZ binding sequences. We have found that ApSAP selectively binds to an Aplysia Shaker-type channel AKv1.1, but not to (i) NMDA receptor subunit AcNR1-1, (ii) potassium channel AKv5.1, (iii) receptor tyrosine kinase ApTrkl, (iv) glutamate receptor ApGluR1/4, (v) glutamate receptor ApGluR2/3, or (vi) glutamate receptor ApGluR7. These findings provide preliminary information regarding the expression and interactions of Dlg-MAGUK proteins of the Aplysia CNS, and will inform questions aimed at a functional analysis of how interactions in a protein network such as the PSD may regulate synaptic strength.  相似文献   

2.
To cast light on the subunit composition of native NMDA-type glutamate receptors, four cloned subunits of the NMDA receptor have been expressed, in pairs, in Xenopus oocytes, and their single-channel properties have been measured. The conductances of the channels, and their characteristic patterns of sublevel transitions, turn out to be useful diagnostic criteria for subunit composition. The NR1-NR2A and NR1-NR2B combinations (which have identical TM2 sequences) are very similar to each other. Both have 50 pS openings and brief 40 pS sublevels (in 1 mM external Ca2+), with similar mean lifetimes and frequencies. They also show close quantitative resemblance to the channels of hippocampal CA1 and dentate gyrus cells and of cerebellar granule cells, except that the NR1-NR2A combination has a lower glycine sensitivity than the native channels. In contrast, the NR1-NR2C combination produces a channel with 36 pS and 19 pS conductances of similar (brief) duration; these closely resemble the 38-18 pS channels that have previously been observed in large cerebellar neurons in culture (together with 50 pS channels).  相似文献   

3.
This review presents analysis of literature data indicating the presence of NMDA-type glutamate receptors in several types of immune competent cells such as thymocytes, lymphocytes, and neutrophils. The possible role of these receptors in the function of these cells is discussed. The interaction of the receptors with certain ligands circulating in the blood-stream and their role in modulation of immune function is described. It is suggested that homocysteine acts as modulator of these receptors, and its toxicity is largely explained by hyperactivation of the NMDA-type glutamate receptors.  相似文献   

4.
Glutamatergic synapse maturation is critically dependent upon activation of NMDA-type glutamate receptors (NMDARs); however, the contributions of NR3A subunit-containing NMDARs to this process have only begun to be considered. Here we characterized the expression of NR3A in the developing mouse forebrain and examined the consequences of NR3A deletion on excitatory synapse maturation. We found that NR3A is expressed in many subcellular compartments, and during early development, NR3A subunits are particularly concentrated in the postsynaptic density (PSD). NR3A levels dramatically decline with age and are no longer enriched at PSDs in juveniles and adults. Genetic deletion of NR3A accelerates glutamatergic synaptic transmission, as measured by AMPAR-mediated postsynaptic currents recorded in hippocampal CA1. Consistent with the functional observations, we observed that the deletion of NR3A accelerated the expression of the glutamate receptor subunits NR1, NR2A, and GluR1 in the PSD in postnatal day (P) 8 mice. These data support the idea that glutamate receptors concentrate at synapses earlier in NR3A-knockout (NR3A-KO) mice. The precocious maturation of both AMPAR function and glutamate receptor expression are transient in NR3A-KO mice, as AMPAR currents and glutamate receptor protein levels are similar in NR3A-KO and wildtype mice by P16, an age when endogenous NR3A levels are normally declining. Taken together, our data support a model whereby NR3A negatively regulates the developmental stabilization of glutamate receptors involved in excitatory neurotransmission, synaptogenesis, and spine growth.  相似文献   

5.

Background

NMDA-type glutamate receptors (NMDARs) are major contributors to long-term potentiation (LTP), a form of synaptic plasticity implicated in the process of learning and memory. These receptors consist of calcium-permeating NR1 and multiple regulatory NR2 subunits. A majority of studies show that both NR2A and NR2B-containing NMDARs can contribute to LTP, but their unique contributions to this form of synaptic plasticity remain poorly understood.

Methodology/Principal Findings

In this study, we show that NR2A and NR2B-containing receptors promote LTP differently in the CA1 hippocampus of 1-month old mice, with the NR2A receptors functioning through Ras-GRF2 and its downstream effector, Erk Map kinase, and NR2B receptors functioning independently of these signaling molecules.

Conclusions/Significance

This study demonstrates that NR2A-, but not NR2B, containing NMDA receptors induce LTP in pyramidal neurons of the CA1 hippocamus from 1 month old mice through Ras-GRF2 and Erk. This difference add new significance to the observation that the relative levels of these NMDAR subtypes is regulated in neurons, such that NR2A-containing receptors become more prominent late in postnatal development, after sensory experience and synaptic activity.  相似文献   

6.
The expression of 34 transmitter-related genes has been examined in the cholinergic neurones of rat striatal brain slices, with the aim of correlating gene expression with functional activity. The mRNAs encoding types I, II/IIA, and III alpha subunits of the voltage-sensitive sodium channels were detected, suggesting the presence of these three types of sodium channel. Similarly, mRNAs encoding all four alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-type glutamate receptor subunits and the NR1 and NR2A, 2B, and 2D subunits of the NMDA-type glutamate receptors were detected, suggesting that various combinations of these subunits mediate the cellular response to synaptically released glutamate. Other mRNAs detected included the NK1 and NK3 tachykinin receptors, all four known adenosine receptors, and the GABA-synthesising enzyme glutamate decarboxylase. Subpopulations of these cholinergic neurones have been identified on the basis of the expression of the NK3 tachykinin receptor in 5% and the trkC neurotrophin receptor in 12% of the cells investigated.  相似文献   

7.
Under standard conditions, cultured ventral spinal neurons cluster AMPA- but not NMDA-type glutamate receptors at excitatory synapses on their dendritic shafts in spite of abundant expression of the ubiquitous NMDA receptor subunit NR1. We demonstrate here that the NMDA receptor subunits NR2A and NR2B are not routinely expressed in cultured spinal neurons and that transfection with NR2A or NR2B reconstitutes the synaptic targeting of NMDA receptors and confers on exogenous application of the immediate early gene product Narp the ability to cluster both AMPA and NMDA receptors. The use of dominant-negative mutants of GluR2 further showed that the synaptic targeting of NMDA receptors is dependent on the presence of synaptic AMPA receptors and that synaptic AMPA and NMDA receptors are linked by Stargazin and a MAGUK protein. This system of AMPA receptor-dependent synaptic NMDA receptor localization was preserved in hippocampal interneurons but reversed in hippocampal pyramidal neurons.  相似文献   

8.
Rapid bidirectional switching of synaptic NMDA receptors   总被引:5,自引:0,他引:5  
Bellone C  Nicoll RA 《Neuron》2007,55(5):779-785
Synaptic NMDA-type glutamate receptors (NMDARs) play important roles in synaptic plasticity, brain development, and pathology. In the last few years, the view of NMDARs as relatively fixed components of the postsynaptic density has changed. A number of studies have now shown that both the number of receptors and their subunit compositions can be altered. During development, the synaptic NMDARs subunit composition changes, switching from predominance of NR2B-containing to NR2A-containing receptors, but little is known about the mechanisms involved in this developmental process. Here, we report that, depending on the pattern of NMDAR activation, the subunit composition of synaptic NMDARs is under extremely rapid, bidirectional control at neonatal synapses. This switching, which is at least as rapid as that seen with AMPARs, will have immediate and dramatic consequences on the integrative capacity of the synapse.  相似文献   

9.
Abstract: The rat N -methyl- d -aspartate (NMDA) glutamate receptor subunit NR1-1a was transiently expressed in COS cells using the technique of electroporation, which was fivefold more efficient than the calcium phosphate precipitation method of transfection. The glycine site antagonist 5,7-[3H]dichlorokynurenic acid labeled a single high-affinity site ( K D = 29.6 ± 6 n M ; B max = 19.4 ± 1.6 pmol/mg of protein) in membranes derived from COS cells electroporated with NR1-1a. In contrast to previous reports using transiently transfected human embryonic kidney 293 cells, binding of the noncompetitive antagonist (+)-5-[3H]methyl-10,11-dihydro-5 H -dibenzo[ a,d ]-cyclohepten-5,10-imine ([3H]MK-801) was not detected in NR1-1a-transfected COS cells. Although immunofluorescent labeling of electroporated COS cells demonstrated that the NR1-1a protein appears to be associated with the cell membrane, neither NMDA nor glutamate effected an increase in intracellular calcium concentration in fura-2-loaded cells, suggesting that homomeric NR1-1a receptors do not act as functional ligand-gated ion channels. Therefore, COS cells appear to differ from Xenopus oocytes with respect to the transient expression of functional homomeric NR1 receptors. Although expression of NR1-1a is sufficient to reconstitute a glycine binding site with wild-type affinity for antagonists in COS cells, recombinant homomeric NR1-1a receptors do not display properties that are characteristic of native NMDA receptors, such as permeability to Ca2+ and channel occupancy by MK-801, when expressed in this mammalian cell line.  相似文献   

10.
11.
12.
Abstract: Transfection of mouse L(tk-) cells with human N -methyl- d -aspartate (NMDA) receptor subunit cDNAs under the control of a dexamethasone-inducible promoter has been used to generate two stable cell lines expressing NR1a/NR2A receptors and a stable cell line expressing NR1a/NR2B receptors. The cell lines have been characterised by northern and western blot analyses, and the pharmacology of the recombinant receptors determined by radioligand binding techniques. Pharmacological differences were identified between the two NMDA receptor subtypes. The glutamate site antagonist d,l -(ε)-2-[3H]amino-4-propyl-5-phosphono-3-pentanoic acid ([3H]CGP 39653) had high affinity for NR1a/NR2A receptors ( K D = 3.93 n M ) but did not bind to NR1a/NR2B receptors. Glycine site agonists showed a 2.6–5.4-fold higher affinity for NR1a/NR2B receptors. Data from radioligand binding studies indicated that one of the cell lines, NR1a/NR2A-I, expressed a stoichiometric excess of the NR1a subunit, which may exist as homomeric assemblies. This observation has implications when interpreting data from pharmacological analysis of recombinant receptors, as well as understanding the assembly and control of expression of native NMDA receptors.  相似文献   

13.
In ionotropic glutamate receptors, many channel properties (e.g., selectivity, ion permeation, and ion block) depend on the residue (glutamine, arginine, or asparagine) located at the tip of the pore loop (the Q/R/N site). We substituted a cysteine for the asparagine present at that position in both NR1 and NR2 N-methyl-D-aspartate (NMDA) receptor subunits. Under control conditions, receptors containing mutated NR1 and NR2 subunits show much smaller glutamate responses than wild-type receptors. However, this difference disappears upon addition of heavy metal chelators in the extracellular bath. The presence of cysteines at the Q/R/N site in both subunits of NR1/NR2C receptors results in a 220,000-fold increase in sensitivity of the inhibition by extracellular Zn. In contrast with the high-affinity Zn inhibition of wild-type NR1/NR2A receptors, the high-affinity Zn inhibition of mutated NR1/NR2C receptors shows a voltage dependence, which resembles very much that of the block by extracellular Mg. This indicates that the Zn inhibition of the mutated receptors results from a channel block involving Zn binding to the thiol groups introduced into the selectivity filter. Taking advantage of the slow kinetics of the Zn block, we show that both blocking and unblocking reactions require prior opening of the channel.  相似文献   

14.
15.
N-Methyl-D-aspartate receptors are a subclass of ligand-gated, heteromeric glutamatergic neurotransmitter receptors whose cell surface expression is regulated by quality control mechanisms. Functional quality control checkpoints are known to contribute to cell surface trafficking of non-N-methyl-D-aspartate glutamate receptors. Here we investigated if similar mechanisms operate for the surface delivery of NMDA receptors. Point mutations in the glycine binding domain of the NR1-1a subunit were generated: D732A, a mutation that results in an approximately 3 x 10(4) decrease in glycine binding affinity; D732E, a conservative change; and D723A, a residue in the same NR1-1a domain that has no effect on glycine binding affinity. Each NR1-1a subunit was co-expressed with NR2A in mammalian cells. Immunoblotting and immunoprecipitations showed that all mutants were expressed to similar levels as wild-type NR1-1a and associated with NR2A. Cell surface expression measured by an enzyme-linked immunosorbent assay found that whereas NR1-1a (D732E)/NR2A and NR1-1a (D723A)/NR2A trafficked as efficiently as NR1-1a/NR2A, there was a 90% decrease in surface expression for NR1-1a (D732A)/NR2A. This was confirmed by confocal microscopy imaging and cell surface biotinylation. Further imaging showed that NR1-1a (D732A) and co-transfected NR2A co-localized with an endoplasmic reticulum marker. Dichlorokynurenic acid, a competitive glycine site antagonist, partially rescued surface expression. Mutation of the NR1-1a ER retention motif showed that the ligand binding checkpoint is an early event preceding endoplasmic reticulum sorting mechanisms. These findings demonstrate that integrity of the glycine co-agonist binding site is a functional checkpoint requisite for efficient cell surface trafficking of assembled NMDA receptors.  相似文献   

16.
Functional N-methyl-d-aspartate (NMDA) glutamate receptors are composed of heteromeric complexes of NR1, the obligatory subunit for channel activity, and NR2 or NR3 family members, which confer variability in the properties of the receptors. Recent studies have provided evidence for the existence of both binary (containing NR1 and either NR2A or NR2B) and ternary (containing NR1, NR2A, and NR2B) receptor complexes in the adult mammalian brain. However, the mechanisms regulating subunit assembly and receptor localization are not well understood. In the CNS, NMDA subunits are present both at intracellular sites and the post-synaptic membrane of neurons. Using biochemical protein fractionation and co-immunoprecipitation approaches we have found that in rat striatum binary NMDA receptors are widely distributed, and can be identified in the light membrane, synaptosomal membrane, and synaptic vesicle-enriched subcellular compartments. In contrast, ternary receptors are found exclusively in the synaptosomal membranes. When striatal proteins are chemically cross-linked prior to subcellular fractionation, ternary NMDA receptors can be precipitated from the light membrane and synaptic vesicle-enriched fractions where this type of receptor complex is not detectable under normal conditions. These findings suggest differential targeting of distinct types of NMDA receptor assemblies between intracellular and post-synaptic sites based on subunit composition. This targeting may underlie important differences in the regulation of the transport pathways involved in both normal as well as pathological receptor functions.  相似文献   

17.
Functional characterization of wild-type and mutant cloned N-methyl-D-aspartate (NMDA) receptors has been used to deduce their subunit stoichiometry and quaternary structure. However, the results reported from different groups have been at variance and are thus inconclusive. This study has employed a biochemical approach to determine the number of NMDA R2 (NR2) subunits/receptor together with the NMDA R1 (NR1)/NR2 subunit ratio of both cloned and native NMDA receptors. Thus, human embryonic kidney 293 cells were transfected with the NR1-1a and NR2A NMDA receptor subunits in combination with both FLAG- and c-Myc epitope-tagged NR2B subunits. The expressed receptors were detergent-extracted and subjected to double immunoaffinity purification using anti-NR2A and anti-FLAG antibody immunoaffinity columns in series. Immunoblotting of the double immunopurified NR2A/NR2B(FLAG)-containing material demonstrated the presence of anti-NR1, anti-NR2A, anti-FLAG, and, more important, anti-c-Myc antibody immunoreactivities. The presence of anti-c-Myc antibody immunoreactivity in the double immunoaffinity-purified material showed the co-assembly of three NR2 subunits, i.e. NR2A/NR2B(FLAG)/NR2B(c-Myc), within the same NMDA receptor complex. Control experiments excluded the possibility that the co-immunopurification of the three NR2 subunits was an artifact of the solubilization procedure. These results, taken together with those previously described that showed two NR1 subunits/oligomer, suggest that the NMDA receptor is at least pentameric.  相似文献   

18.
Abstract: Previous studies in brain and recombinant NMDA receptors have observed heterogeneity in NMDA-sensitive glutamate binding site. We further characterized the glutamate site assembled from NR1a, NR2A, and NR2B NMDA receptor subunits using l -[3H]glutamate and [3H]CGP 39653 binding assays. In contrast to earlier reports, we demonstrate a unique pharmacology for the NR2A subunit alone, which has high affinity for agonists but low affinity for competitive antagonists compared with heteromeric combinations of NR1a + NR2A and NR1a + NR2B. Similar to previous reports, we find unequal antagonist affinity between heteromeric combinations of NR1a + NR2A and NR1a + NR2B. However, unlike earlier reports, we describe two binding components within each heteromeric transfection that more closely resemble data obtained for binding to brain membranes. In addition, we show Mg2+ can alter [3H]CGP 39653 binding in both the NR1a + NR2A and the NR1a + NR2B combination, thus allowing comparison of the [3H]CGP 39653-labeled site between the two heteromeric combinations. Agonist inhibition of [3H]CGP 39653 binding revealed differences between the heteromeric combinations as well as within each heteromeric combination, the latter of which more closely resembled results from brain. These results further determine components of the agonist and antagonist binding sites of the NMDA receptor as well as suggest additional possible mechanisms of heterogeneity of the glutamate site in the brain.  相似文献   

19.
Characterisation of the expression of NMDA receptors in human astrocytes   总被引:1,自引:0,他引:1  
Lee MC  Ting KK  Adams S  Brew BJ  Chung R  Guillemin GJ 《PloS one》2010,5(11):e14123
Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS). However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs) in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN). Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH) activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B) are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.  相似文献   

20.
The NMDA receptor, one of the two major ionotropic glutamate receptors, has been proposed to play fundamental roles in the survival, migration, differentiation, and activity-dependent maturation of neural cells. The NR1 gene encodes the major subunit that is responsible for channel function, and NR1 -/- mice die at birth, inhibiting the study of glutamate signaling in postnatal neurons. The properties of cells lacking the NR1 subunit of NMDA receptors were studied by transplanting dissociated telencephalic, diencephalic, and mesencephalic cells of E14 mouse embryos with a targeted deletion of the NR1 gene into the ventricles of embryonic rats using intrauterine transplantation (Brüstle et al., 1995, Neuron 15, 1275-1285). The transplanted cells took part in the normal development of the host brain where they survived after migration into a large number of brain structures. Morphological and immunohistochemical analysis suggests that NR1 -/- cells can differentiate normally in these sites. The results provide evidence that NMDA-receptor-initiated signals are not required for the postnatal differentiation and survival of many types of neurons in the central nervous system, in a noncell autonomous fashion after transplantation into a wild-type environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号