首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sequence of granulocyte colony-stimulating factor (G-CSF) has been circularly permuted by introducing new chain termini into interhelical loops and by constraining the N- and C-terminal helices, either by direct linkage of the termini (L0) or by substitution of the amino-terminal 10-residue segment with a seven-residue linker composed of glycines and serines (L1). All the circularly permuted G-CSFs (cpG-CSFs) were able to fold into biologically active structures that could recognize the G-CSF receptor. CD and NMR spectroscopy demonstrated that all of the cpG-CSFs adopted a fold similar to that of the native molecule, except for one [cpG-CSF(L1)[142/141]] which has the new termini at the end of loop 34 with the shorter L1 linker. All of the cpG-CSFs underwent cooperative unfolding by urea, and a systematically lower free energy change (DeltaGurea) was observed for molecules with the shorter L1 linker than for those molecules in which the original termini were directly linked (the L0 linker). The thermodynamic stability of the cpG-CSFs toward urea was found to correlate with their relative ability to stimulate proliferation of G-CSF responsive cells. Taken together, these results indicate that the G-CSF sequence is robust in its ability to undergo linear rearrangement and adopt a biologically active conformation. The choice of linker, with its effect on stability, seems to be important for realizing the full biological activity of the three-dimensional structure. The breakpoint and linker together are the ultimate determinants of the structural and biological profiles of these circularly permuted cytokines. In the following paper [McWherter, C. A., et al. (1999) Biochemistry 38, 4564-4571], McWherter and co-workers have used circularly permuted G-CSF sequences to engineer chimeric dual IL-3 and G-CSF receptor agonists in which the relative spatial orientation of the receptor agonist domains is varied. Interpreting the differences in activity for the chimeric molecules in terms of the connectivity between domains depends critically on the results reported here for the isolated cpG-CSF domains.  相似文献   

2.
Myelopoietins (MPOs) are a family of engineered dual interleukin-3 (IL-3) and granulocyte colony-stimulating factor (G-CSF) receptor agonists that are superior in comparison to the single agonists in their ability to promote the growth and maturation of hematopoietic cells of the myeloid lineage. A series of MPO molecules were created which incorporated circularly permuted G-CSF (cpG-CSF) sequences with an IL-3 receptor (IL-3R) agonist moiety attached at locations that correspond to the loops that connect the helices of the G-CSF four-helix bundle structure. The cpG-CSF linkage sites (using the original sequence numbering) were residue 39, which is at the beginning of the first loop connecting helices 1 and 2; residue 97, which is in the turn connecting helices 2 and 3; and residues 126, 133, and 142, which are at the beginning, middle, and end, respectively, of the loop connecting helices 3 and 4. The N- and C-terminal helices of each cpG-CSF domain were constrained, either by direct linkage of the termini (L0) or by replacement of the amino-terminal 10-residue segment with a seven-residue linker composed of SGGSGGS (L1). All of the MPO molecules stimulated the proliferation of both IL-3-dependent (EC50 = 13-95 pM) and G-CSF-dependent (EC50 = 35-710 pM) cell lines. MPOs with the IL-3R agonist domain linked to cpG-CSFs in the first (residue 39) or second (residue 133) long overhand loops were found by CD spectroscopy to have helical contents similar to that expected for a protein comprised of two linked four-helix bundles. The MPOs retained the ability to bind to the IL-3R with affinities similar to that of the parental MPO. Using both a cell surface competitive binding assay and surface plasmon resonance detection of binding kinetics, the MPOs were found to bind to the G-CSF receptor with low nanomolar affinities, similar to that of G-CSF(S17). In a study of isolated cpG-CSF domains [Feng, Y., et al. (1999) Biochemistry 38, 4553-4563], domains with the L1 linker had lower G-CSF receptor-mediated proliferative activities and conformational stabilities than those which had the L0 linker. A similar trend was found for the MPOs in which the G-CSFR agonist activity is mostly a property of the cpG-CSF domain. Important exceptions were found in which the linkage to the IL-3R agonist domain either restored (e.g., attachment at residue 142) or further decreased (linkage at residue 39) the G-CSFR-mediated proliferative activity. MPO in which the IL-3R agonist domain is attached to the cpG-CSF(L1)[133/132] domain was shown to be more potent than the coaddition of the IL-3R agonist and G-CSF in stimulating the production of CFU-GM colonies in a human bone marrow-derived CD34+ colony-forming unit assay. Several MPOs also had decreased proinflammatory activity in a leukotriene C4 release assay using N-formyl-Met-Leu-Phe-primed human monocytes. It was found that circular permutation of the G-CSF domain can alter the ratio of G-CSFR:IL-3R agonist activities, demonstrating that it is a useful tool in engineering chimeric proteins with therapeutic potential.  相似文献   

3.
Growth-blocking peptide (GBP) is a 25-amino acid cytokine isolated from the lepidopteran insect Pseudaletia separata. GBP exhibits various biological activities such as regulation of larval growth of insects, proliferation of a few kinds of cultured cells, and stimulation of a class of insect immune cells called plasmatocytes. The tertiary structure of GBP consists of a well structured core domain and disordered N and C termini. Our previous studies revealed that, in addition to the structured core, specific residues in the unstructured N-terminal region (Glu1 and Phe3) are also essential for the plasmatocyte-stimulating activity. In this study, a number of deletion, insertion, and site-directed mutants targeting the unstructured N-terminal residues of GBP were constructed to gain more detailed insight into the mode of interaction between the N-terminal region and GBP receptor. Alteration of the backbone length of the linker region between the core structure and N-terminal domain reduced plasmatocyte-stimulating activity. The substitutions of Gly5 or Gly6 in this linker region with more bulky residues, such as Phe and Pro, also remarkably reduced this activity. We conclude that the interaction of GBP with its receptor depends on the relative position of the N-terminal domain to the core structure, and therefore the backbone flexibility of Gly residues in the linker region is necessary for adoption of a proper conformation suited to receptor binding. Additionally, antagonistic experiments using deletion mutants confirmed that not only the core domain but also the N-terminal region of GBP are required for "receptor-binding," and furthermore Phe3 is a binding determinant of the N-terminal domain.  相似文献   

4.
The receptor-recognition site human transforming growth factor-alpha (TGF alpha), a 50-residue tricyclic peptide with three disulfide bonds, was mapped by a set of 46 peptide analogs consisting of linear, monocyclic, bicyclic, and tricyclic structures representing individual and overlapping subdomains of human TGF alpha. Linear overlapping fragments ranging from 7 to 18 residues and spanning the entire length of TGF alpha as well as monocyclic analogs with one disulfide linkage were found to be inactive in both receptor-binding and mitogenic assays. Bicyclic analogs with two disulfide linkage and representing either the amino or carboxyl two-thirds of TGF alpha showed low activity at 0.1-0.9 mM concentrations. Tricyclic analogs containing all three disulfide linkages but lacking either the amino or carboxyl terminal heptapeptide was, respectively, 3% and 0.1% as active as TGF alpha. These results show that determinants for the receptor binding cannot be represented by a short continuous fragment or a single subdomain, but are located on a discontinuous surface on a folded structure with disulfide restraints. Furthermore, these results when combined with our previous results which shows that the middle subdomain (second disulfide loop) is not involved in the receptor binding suggest that the receptor-binding residues are constituted of three fragments located at the first and third subdomains as well as the external carboxyl peptide.  相似文献   

5.
A His-tagged coiled coil stem loop peptide with stable secondary structure was designed and biosynthesized. A series of oligopeptides related to the EBV envelope glycoprotein 350/220 N-terminal nonapeptide as potential CD21 receptor-binding epitopes were engineered into the loop region of the peptide scaffold. It was shown that these peptides had a stable alpha-helical coiled coil structure and assumed a monomeric form in PBS. Biorecognition of the epitopes was studied by immobilizing the epitope-containing peptides on complexed Ni2+-containing surfaces through His-Ni2+ chelation and incubating with purified soluble CD21 receptor or CD21+ cells. The results showed that the potential epitopes bound to CD21 and CD21+ cells at different affinities depending on oligopeptide structures. This approach allows for the evaluation of epitope biorecognizabilities and the selection of optimal oligopeptides among sequences for use as targeting moieties in the design of new lymphoma-targeting polymeric drug carriers.  相似文献   

6.
Audette GF  Irvin RT  Hazes B 《Biochemistry》2004,43(36):11427-11435
Adherence of pathogens to host cells is critical for the initiation of infection and is thus an attractive target for anti-infective therapeutics and vaccines. In the opportunistic human pathogen Pseudomonas aeruginosa, host-cell adherence is achieved predominantly by type IV pili. Analysis of several clinical strains of P. aeruginosa reveals poor sequence conservation between pilin genes, including the residues in the receptor-binding site. Interestingly, the receptor-binding sites appear to retain a conserved surface epitope because all Pseudomonas type IV pili recognize the same receptor on the host cell and cross-reactive antibodies specific for the receptor-binding site exist. Here, we present the crystallographic analysis of two crystal forms of truncated pilin from P. aeruginosa strain K122-4 (DeltaK122-4) at 1.54 and 1.8 A resolution, respectively. The DeltaK122-4 structure is compared to other crystallographically determined type IV pilin structures and an NMR structure of DeltaK122-4 pilin. A comparison with the structure of the highly divergent P. aeruginosa strain K (DeltaPAK) pilin indicates that the receptor-binding loop in both pilins forms a shallow depression with a surface that is formed by main-chain atoms. Conservation of this putative binding site is independent of the sequence as long as the main-chain conformation is conserved and could therefore explain the shared receptor specificity and antibody cross reactivity of highly divergent Pseudomonas type IV pilins.  相似文献   

7.
SOCS3 is essential for regulating the extent, duration, and specificity of cellular responses to cytokines such as G-CSF and IL-6. Here we describe the solution structure of SOCS3, the first structure determined for any SOCS protein, in complex with a phosphotyrosine-containing peptide from the IL-6 receptor signaling subunit gp130. The structure of the complex shows that seven peptide residues form a predominantly hydrophobic binding motif. Regions outside the SOCS3 SH2 domain are important for ligand binding, in particular, a single 15 residue alpha helix immediately N-terminal to the SH2 domain makes direct contacts with the phosphotyrosine binding loop and, in part, determines its geometry. The SH2 domain itself is remarkable in that it contains a 35 residue unstructured PEST motif insertion that is not required for STAT inhibition. The PEST motif increases SOCS3 turnover and affects its degradation pathway, implying that it has an important regulatory role inside the cell.  相似文献   

8.
The Caenorhabditis elegans SEM-5 SH3 domains recognize proline-rich peptide segments with modest affinity. We developed a bivalent peptide ligand that contains a naturally occurring proline-rich binding sequence, tethered by a glycine linker to a disulfide-closed loop segment containing six variable residues. The glycine linker allows the loop segment to explore regions of greatest diversity in sequence and structure of the SH3 domain: the RT and n-Src loops. The bivalent ligand was optimized using phage display, leading to a peptide (PP-G(4)-L) with 1000-fold increased affinity for the SEM-5 C-terminal SH3 domain over that of a natural ligand. NMR analysis of the complex confirms that the peptide loop segment is targeted to the RT and n-Src loops and parts of the beta-sheet scaffold of this SH3 domain. This binding region is comparable to that targeted by a natural non-PXXP peptide to the p67(phox) SH3 domain, a region not known to be targeted in the Grb2 SH3 domain family. PP-G(4)-L may aid in the discovery of additional binding partners of Grb2 family SH3 domains.  相似文献   

9.
Human granulocyte colony-stimulating factor (G-CSF) is a hemopoietic growth factor that is being used successfully to treat various forms of neutropenia. To define functionally important regions of G-CSF, we have prepared 37 monoclonal anti-G-CSF antibodies and mapped the regions of G-CSF recognized by different antibody groups. Antibodies recognizing similar epitopes were identified by competition assays, neutralization assays, conformation dependence and cross-reactivity with canine G-CSF. Seven of eight neutralizing antibodies fell into two related epitope groups and were conformation-dependent. The eighth was unrelated and conformation-independent. Peptides of G-CSF were generated by chemical or enzymatic digestion and tested for antibody reactivity. One of the neutralizing antibodies (LMM351) recognized a small, disulfide-bonded peptide from the V8 protease digest (residues 34-46). A synthetic peptide (residues 20-58) was recognized by all the neutralizing antibodies, implicating this disulfide-bonded loop in receptor binding. The epitopes recognized by nonneutralizing antibodies were found throughout G-CSF. Thus, regions of G-CSF that are not involved in receptor binding have also been defined. A CNBr peptide (residues 1-121) had greatly reduced biological activity, indicating that the COOH terminus is required for receptor binding. We predict that residues 20-46 and the COOH terminus bind to the G-CSF receptor.  相似文献   

10.
Fibroblast growth factors (FGFs) mediate a multitude of physiological and pathological processes by activating a family of tyrosine kinase receptors (FGFRs). Each FGFR binds to a unique subset of FGFs and ligand binding specificity is essential in regulating FGF activity. FGF-7 recognizes one FGFR isoform known as the FGFR2 IIIb isoform or keratinocyte growth factor receptor (KGFR), whereas FGF-2 binds well to FGFR1, FGFR2, and FGFR4 but interacts poorly with KGFR. Previously, mutations in FGF-2 identified a set of residues that are important for high affinity receptor binding, known as the primary receptor-binding site. FGF-7 contains this primary site as well as a region that restricts interaction with FGFR1. The sequences that confer on FGF-7 its specific binding to KGFR have not been identified. By utilizing domain swapping and site-directed mutagenesis we have found that the loop connecting the beta4-beta5 strands of FGF-7 contributes to high affinity receptor binding and is critical for KGFR recognition. Replacement of this loop with the homologous loop from FGF-2 dramatically reduced both the affinity of FGF-7 for KGFR and its biological potency but did not result in the ability to bind FGFR1. Point mutations in residues comprising this loop of FGF-7 reduced both binding affinity and biological potency. The reciprocal loop replacement mutant (FGF2-L4/7) retained FGF-2 like affinity for FGFR1 and for KGFR. Our results show that topologically similar regions in these two FGFs have different roles in regulating receptor binding specificity and suggest that specificity may require the concerted action of distinct regions of an FGF.  相似文献   

11.
Bradykinin is a bioactive hormone involved in a variety of physiological processes. In various solvents, this peptide adopts beta-turn structures. The C-terminal turn is a structural feature for the receptor affinity of agonists and antagonists while the N-terminal turn might be important for antagonistic activities. Polyphenols like dimeric proanthocyanidin B3 interact with the peptide. Thus to investigate the effects of polyphenols on bradykinin activity and structure, we studied the interaction in the structuring solvent DMSO which can be a close mimic of aqueous physiological environments like receptor-binding sites. Bradykinin alone presented a folded structure with two turns. B3 interacted with the peptide C-terminus and involved the loss of the bend structure of this region, while the N-terminus turn was maintained. Numerous studies have shown that polyphenolic molecules can act upon various biological targets, and the formation of this type of complex might be one of the possible modes of action.  相似文献   

12.
Photoaffinity labeling techniques using p-azido-m-[125I]iodobenzylcarazolol have recently demonstrated that both the beta 1- and beta 2-adrenergic receptor-binding subunits from mammalian tissues including heart, lung, and erythrocytes reside on peptides of Mr approximately equal to 62,000-64,000. In this study, a two-dimensional gel electrophoresis method for peptide mapping was used to investigate and compare the structure of beta 1 - and beta 2-adrenergic receptor subtypes. When the photoaffinity labeled Mr approximately equal to 62,000 peptides from the beta 2-adrenergic receptors of rat lung and erythrocyte are subjected to simultaneous proteolysis using Staphylococcus aureus V8 proteinase or papain, exactly the same peptide fragments are generated from each subunit. In contrast, when the Mr approximately equal to 62,000 peptide containing the beta 1-adrenergic receptor-binding subunit derived from the rat heart is proteolyzed simultaneously with the Mr approximately equal to 62,000 peptide containing the beta 2-adrenergic receptors from either lung or erythrocyte, the peptide fragments generated are distinctly different. Peptide maps of beta 1-adrenergic receptors from the myocardial tissue of different species (pig versus rat) yield slightly different maps while the maps derived from the beta 2-adrenergic receptors of hamster lung and rat lung or erythrocytes reveal no interspecies differences. These data suggest: 1) alterations in the primary structure of the beta-adrenergic receptor may be responsible for the pharmacological specificities characteristic of beta 1- and beta 2-adrenergic receptor subtypes; and 2) alterations in the primary structure of similar beta-adrenergic receptor subtypes across different species may relate to the magnitude of their phylogenetic differences.  相似文献   

13.
The structure of the glycoprotein hormones (LH, CG, FSH, and TSH) and their mechanism of receptor recognition are problems of long-standing interest and speculation. Here we describe the two-dimensional [1H]nuclear magnetic resonance ([1H]NMR) analysis of a linear peptide model for the intercysteine sequence (38-57) from the beta-subunit of human (h) LH. This sequence contains functional determinants for receptor binding and postreceptor activation and is predicted by computer-based modeling to fold as a compact minidomain containing a central amphipathic helix. To test this prediction, an Arg-extended disulfide-free (38-57) analog of enhanced solubility was prepared for complementary circular-dichroic and two-dimensional NMR studies. The linear peptide retains ovarian membrane receptor-binding activity. Although the peptide is not highly structured in aqueous solution, circular-dichroic analysis shows partial alpha-helix formation in a lipophilic medium (50% trifluoroethanol). Complete sequential assignment is obtained in 50% trifluoroethanol based on homonuclear and [15N]edited heteronuclear NMR methods. alpha-Helix-related (i,i + 3) connectivities are observed by nuclear-Overhauser effect spectroscopy that define an amphipathic alpha-helical segment (residues 41-48). Additional long range nuclear-Overhauser effects are observed in the C-terminal region that are consistent with beta-turns involving one or more proline residues; these may serve to reverse the direction of the peptide chain. A nuclear-Overhauser effect contact is identified between residues 38 and 55 at opposite ends of the linear sequence, suggesting that a loop configuration is significantly populated in this solvent system. These results, taken together, characterize elements of ordered structure in the 38-57 peptide, which appear to be distinguishing features of hLH (and the homologous region of hCG). We propose that the structure of this peptide provides a model for the structure of the corresponding region of native hLH in the hormone-receptor complex.  相似文献   

14.
The insulin-like growth factor 1 (IGF1) receptor is closely related to the insulin receptor. However, the unique biological functions of IGF1 receptor make it a target for therapeutic intervention in human cancer. Using its isolated tyrosine kinase domain, we show that the IGF1 receptor is regulated by intermolecular autophosphorylation at three sites within the kinase activation loop. Steady-state kinetic analyses of the isolated phosphorylated forms of the IGF1 receptor kinase (IGF1RK) reveal that each autophosphorylation event increases enzyme turnover number and decreases Km for ATP and peptide. We have determined the 2.1 A-resolution crystal structure of the tris-phosphorylated form of IGF1RK in complex with an ATP analog and a specific peptide substrate. The structure of IGF1RK reveals how the enzyme recognizes peptides containing hydrophobic residues at the P+1 and P+3 positions and how autophosphorylation stabilizes the activation loop in a conformation that facilitates catalysis. Although the nucleotide binding cleft is conserved between IGF1RK and the insulin receptor kinase, sequence differences in the nearby interlobe linker could potentially be exploited for anticancer drug design.  相似文献   

15.
Toxins and viruses often initiate their attacks by binding to specific proteins on the surfaces of target cells. Bacterial toxins (e.g. bacteriocins) and viruses (bacteriophages) targeting Gram-negative bacteria typically bind to outer membrane proteins. Bacterial E-colicins target Escherichia coli by binding to the outer membrane cobalamin transporter BtuB. Colicins are tripartite molecules possessing receptor-binding, translocation, and toxin domains connected by long coiled-coil alpha-helices. Surprisingly, the crystal structure of colicin E3 does not possess a recognizable globular fold in its receptor-binding domain. We hypothesized that the binding epitope of enzymatic E-colicins is a short loop connecting the two alpha-helices that comprise the coiled-coil region and that this flanking coiled-coil region serves to present the loop in a binding-capable conformation. To test this hypothesis, we designed and synthesized a 34-residue peptide (E-peptide-1) corresponding to residues Ala366-Arg399 of the helix-loop-helix region of colicin E3. Cysteines placed near the ends of the peptide (I372C and A393C) enabled crosslinking for reduction of conformational entropy and formation of a peptide structure that would present the loop epitope. A fluorescent analog was also made for characterization of binding by measurement of fluorescence polarization. Our analysis shows the following. (i). E-peptide-1 is predominantly random coil in aqueous solution, but disulfide bond formation increases its alpha-helical content in both aqueous buffer and solvents that promote helix formation. (ii). Fluorescein-labeled E-peptide-1 binds to purified BtuB in a calcium-dependent manner with a Kd of 43.6 +/- 4.9 nm or 2370 +/- 670 nm in the presence or absence of calcium, respectively. (iii). In the presence of calcium, cyanocobalamin (CN-Cbl) displaces E-peptide-1 with a nanomolar inhibition constant (Ki = 78.9 +/- 5.6 nm). We conclude that the BtuB binding sites for cobalamins and enzymatic E-colicins are overlapping but inequivalent and that the distal loop and (possibly) the short alpha-helical flanking regions are sufficient for high affinity binding.  相似文献   

16.
Nociceptin (NOC) and dynorphin A (DYN) analogues containing 2',6'-dimethylphenylalanine (Dmp) in place of Phe or Tyr in position 1 and/or 4 were synthesized and their metabolic stability and receptor-binding properties were investigated. [Dmp1]NOC(1-13)-NH2 (1) possessed high ORL1 receptor affinity comparable to that of the parent peptide with substantially improved affinities for kappa-, mu-, and delta-opioid receptors. However, Dmp4 substitution of NOC peptide (2) reduced ORL1 receptor affinity. [Dmp1]DYN(1-13)-NH2 (4) and its Dmp4 analogue (5) possessed a 3-fold greater kappa-opioid receptor affinity and improved kappa-receptor selectivity compared to the parent peptide. Analogue 4 however exhibited an unexpectedly low in vitro bioactivity (GPI assay), suggesting, the phenolic hydroxyl group at the N-terminal residue in DYN peptide is extremely important for activation of the kappa-opioid receptor. Analogue 5 possessed an improved kappa-opioid receptor selectivity with an IC50 ratio of 1(kappa)/509(mu)/211598(delta); thus, this peptide may serve as a highly selective kappa-receptor agonist for pharmacological study. Dmp1 substitution in both the NOC and DYN peptides improved metabolic stability toward these peptides, while Dmp4 substitution provided no additional metabolic stability.  相似文献   

17.
Abstract

Bradykinin is a bioactive hormone involved in a variety of physiological processes. In various solvents, this peptide adopts β-turn structures. The C-terminal turn is a structural feature for the receptor affinity of agonists and antagonists while the N-terminal turn might be important for antagonistic activities. Polyphenols like dimeric proanthocyanidin B3 interact with the peptide. Thus to investigate the effects of polyphenols on bradykinin activity and structure, we studied the interaction in the structuring solvent DMSO which can be a close mimic of aqueous physiological environments like receptor-binding sites. Bradykinin alone presented a folded structure with two turns. B3 interacted with the peptide C-terminus and involved the loss of the bend structure of this region, while the N-ter-minus turn was maintained. Numerous studies have shown that polyphenolic molecules can act upon various biological targets, and the formation of this type of complex might be one of the possible modes of action.  相似文献   

18.
Peptides representing both loop and the sixth transmembrane regions of the α-factor receptor of Saccharomyces cerevisiae were synthesized by solid-phase procedures and purified to near homogeneity. CD, nmr, and modeling analysis indicated that in aqueous media the first extracellular loop peptide E1(107–125), the third intracellular loop peptide I3(231–243), and the carboxyl terminus peptide I4(350–372) were mostly disordered. In contrast, the second extracellular loop peptide E2(191–206) assumed a well-defined structure in aqueous medium and the sixth transmembrane domain peptide receptor M6(252-269, C252A) was highly helical in trifluoroethanol/water (4:1), exhibiting a kink at Pro258. A synthetic peptide containing a sequence similar to that of the sixth transmembrane domain of a constitutively active α-factor receptor M6(252–269, C252A, P258L) in which Leu replaces Pro258 exhibited significantly different biophysical properties than the wild-type sequence. In particular, this peptide had very low solubility and gave CD resembling that of a β-sheet structure in hexafluoroacetone/water (1:1) whereas the wild-type peptide was partially helical under identical conditions. These results would be consistent with the hypothesis that the constitutive activity of the mutant receptor is linked to a conformational change in the sixth transmembrane domain. The study of the receptor segments also indicate that peptides corresponding to loops of the α-factor receptor do not appear to assume turn structures. © 1998 John Wiley & Sons, Inc. Biopoly 46: 343–357, 1998  相似文献   

19.
Interaction of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein with the primary receptor, CD4, promotes binding to a chemokine receptor, either CCR5 or CXCR4. The chemokine receptor-binding site on gp120 elicits CD4-induced (CD4i) antibodies in some HIV-1-infected individuals. Like CCR5 itself, the CD4i antibody 412d exhibits a preference for CCR5-using HIV-1 strains and utilizes sulfated tyrosines to achieve binding to gp120. Here, we show that 412d binding requires the gp120 beta19 strand and the base of the V3 loop, elements that are important for the binding of the CCR5 N terminus. Two gp120 residues in the V3 loop base determined 412d preference for CCR5-using HIV-1 strains. A chimeric molecule in which the 412d heavy-chain third complementarity-determining loop sequence replaces the CCR5 N terminus functioned as an efficient second receptor, selectively supporting the entry of CCR5-using HIV-1 strains. Sulfation of N-terminal tyrosines contributed to the function of this chimeric receptor. These results emphasize the close mimicry of the CCR5 N terminus by the gp120-interactive region of a naturally elicited CD4i antibody.  相似文献   

20.
Linker stability is critically important for the efficacy and safety of peptide and protein conjugates used for biological applications. One common conjugation strategy, thiol–maleimide coupling, generates a succinimidyl thioether linker with limited stability under physiological conditions. We have shown in previous work that when a peptide with an N-terminal cysteine is conjugated to a maleimide reagent, a thiazine structure is formed via a chemical rearrangement. Our preliminary work indicated that the thiazine linker has favorable stability. Here, we report the evaluation of a thiazine linker as an alternative to the widely used succinimidyl thioether linker for thiol–maleimide bioconjugation. The stability of the thiazine conjugate in comparison to the thioether conjugate was assessed across a broad pH range. Additionally, the propensity for retro-Michael reaction and cross-reactivity with other thiols was evaluated by treating conjugates in the presence of glutathione. The studies indicated that the thiazine linker degrades markedly slower than the thioether conjugate. In addition, the thiazine linker is over 20 times less susceptible to glutathione adduct formation. The NMR study of the thiazine structure confirmed that the formation of the thiazine linker is a stereoselective process that yields a single diastereomer. In summary, we propose the use of the thiazine linker obtained by conjugation of maleimide-containing reagents with peptides or proteins presenting an N-terminal cysteine as a novel approach for bioconjugation. The advantages of this approach are the formation of a linker with a well-defined stereochemical configuration, increased stability at physiological pH, and a strongly reduced propensity for thiol exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号